

Vniver4dad Nacional AvFnºma de Mexiço

Fermionic dark matter in a Left-Right model with mirror fermions

Mario Lamprea (him/his) FES Cuautitlán UNAM

In collab. with R. Gaitan, J. Montes, M. Arroyo-Ureña, T.Valencia Perez [Rev.Mex.Fis.Suppl. 3 (2022) 2, 020725]

XVIII Mexican Workshop on Particles and Fields November 24th, Puebla

The Standard Model

Experimental search for the SM

716

4 Jul 2012, CERN Francois Englert & Peter Higgs

ELSEVIER

Some open questions on the SM

- Hierarchy problem
- Neutrino masses
- (Particle) Dark Matter
- CP and P problem in the SM
- Particle antiparticle asymmetry
- ✤ Observed deviations from SM (e.g. LUV, muon g 2, M_W)

Left-Right symmetry

V-A structure of the weak interaction

- * Enlarging the SM gauge structure by $SU(3)_C \times SU(2)_L \times U(1)_Y$
- $SU(3)_C \times SU(2)_L \times SU(2)_R \times U(1)_Y$ V+A interaction mediated by gauge vector boson W_R heavy enough.

 $e^{- \mu \gamma^{2} v_{e}} = j^{\mu} \propto \overline{u}_{v_{e}} (\gamma^{\mu} - \gamma^{\mu} \gamma^{5}) u_{e}$ V - A

Mirror fermions

 Doubling the fermion content of the SM with opposite chirality

 $\begin{array}{c} \ell_L \\ \nu_R \\ \ell_R \end{array}$ SM $\begin{array}{c} q_L \\ u_R \\ d_R \end{array}$

 $\begin{array}{c}
 L_R \\
 N_L \\
 L_L
 \end{array}$ Mirror
 Q_R U_L U_L

	Field	$SU(3)_C \otimes SU(2)_L \otimes SU(2)_R \otimes U(1)_{Y'}$
Leptons	ℓ_{iL}	$(1, \ 2, \ 1, \ -1)$
	$ u_{iR}$	$(1, \ 1, \ 1, \ 0)$
	e_{iR}	$(1, \ 1, \ 1, \ -2)$
	$\hat{ u}_{iL}$	$(1, \ 1, \ 1, \ 0)$
	\hat{e}_{iL}	$(1, \ 1, \ 1, \ -2)$
	\hat{l}_{iR}	$(1, \ 1, \ 2, \ -1)$
Quarks	u_{iR}	(3 , 1 , 1 , 4/3)
	d_{iR}	$(3, \ 1, \ 1, \ 2/3)$
	\hat{u}_{iL}	$(3, \ 1, \ 1, \ 4/3)$
	\hat{d}_{iL}	$(3, \ 1, \ 1, \ 2/3)$
	q^o_{iL}	$(3, \ 2, \ 1, \ 1/3)$
Scalars	\hat{q}_{iR}	$(3, \ 1, \ 2, \ 1/3)$
	Φ	$(1, \ 2, \ 1, \ -1)$
	$\hat{\Phi}$	$(1, \ 1, \ 2, \ -1)$

	Field	$SU(3)_C \otimes SU(2)_L \otimes SU(2)_R \otimes U(1)_{Y'}$
	ℓ_{iL}	$({f 1},\ {f 2},\ {f 1},\ -1)$
	$ u_{iR}$	(1, 1, 1, 0)
	e_{iR}	(1, 1, 1, -2)
	$\hat{ u}_{iL}$	$(1, \ 1, \ 1, \ 0)$
SM	\hat{e}_{iL}	$(1, \ 1, \ 1, \ -2)$
JIVI	\hat{l}_{iR}	$(1, \ 1, \ 2, \ -1)$
termions	u_{iR}	(3, 1, 1, 4/3)
	d_{iR}	$(3, \ 1, \ 1, \ 2/3)$
	\hat{u}_{iL}	(3 , 1 , 1 , 4/3)
	d_{iL}	$(3, \ 1, \ 1, \ 2/3)$
	q^o_{iL}	$(3, \ 2, \ 1, \ 1/3)$
Scalars	\hat{q}_{iR}	$(3, \ 1, \ 2, \ 1/3)$
	Φ	(1, 2, 1, -1)
	$\hat{\Phi}$	(1, 1, 2, -1)

	Field	$SU(3)_C \otimes SU(2)_L \otimes SU(2)_R \otimes U(1)_{Y'}$
Mirror fermions	ℓ_{iL}	(1, 2, 1, -1)
	$ u_{iR}$	$(1, \ 1, \ 1, \ 0)$
	e_{iR}	(1, 1, 1, -2)
	$\hat{ u}_{iL}$	$(1, \ 1, \ 1, \ 0)$
	\hat{e}_{iL}	$(1, \ 1, \ 1, \ -2)$
	\hat{l}_{iR}	(1, 1, 2, -1)
	u_{iR}	$(3, \ 1, \ 1, \ 4/3)$
	d_{iR}	$(3, \ 1, \ 1, \ 2/3)$
	\hat{u}_{iL}	$(3, \ 1, \ 1, \ 4/3)$
	\hat{d}_{iL}	$(3, \ 1, \ 1, \ 2/3)$
	q^o_{iL}	$(3, \ 2, \ 1, \ 1/3)$
	\hat{q}_{iR}	(3, 1, 2, 1/3)
Scalars	Φ	$(1, \ 2, \ 1, \ -1)$
	$\hat{\Phi}$	$(1, \ 1, \ 2, \ -1)$

Field	$SU(3)_C \otimes SU(2)_L \otimes SU(2)_R \otimes$	$\supset U(1)_{Y'}$
ℓ_{iL}	$(1, \ 2, \ 1, \ -1)$	
$ u_{iR}$	$(1, \ 1, \ 1, \ 0)$	
e_{iR}	$(1, \ 1, \ 1, \ -2)$	
$\hat{ u}_{iL}$	$(1, \ 1, \ 1, \ 0)$	
\hat{e}_{iL}	$(1, \ 1, \ 1, \ -2)$	
\hat{l}_{iR}	(1, 1, 2, -1)	
u_{iR}	$(3, \ 1, \ 1, \ 4/3)$	\mathbb{Z}_2 charge assigned
d_{iR}	$(3, \ 1, \ 1, \ 2/3)$	to mirror neutrinos
\hat{u}_{iL}	$(3, \ 1, \ 1, \ 4/3)$	
\hat{d}_{iL}	$(3, \ 1, \ 1, \ 2/3)$	Å
q^o_{iL}	$(3, \ 2, \ 1, \ 1/3)$	heavy higgs
\hat{q}_{iR}	$(3, \ 1, \ 2, \ 1/3)$	
Φ	(1, 2, 1, -1)	
$\hat{\Phi}$	(1, 1, 2, -1)	×

Symmetry breaking scheme

 $SU(3)_C \times SU(2)_L \times SU(2)_R \times U(1)_Y \times \mathbb{Z}_2$

 $\checkmark \quad \langle \phi_2 \rangle = v_2$

 $SU(3)_C \times SU(2)_L \times U(1)_Y \times \mathbb{Z}_2$

, $\langle \phi_1 \rangle = v_1$

 $SU(3)_C \times U(1)_Q \times \mathbb{Z}_2$

Neutrino masses

 Left-handed neutrino masses generated via type-1 seesaw mechanism

Neutrinos mass terms

$$(\overline{\Psi}_{\nu L}, \overline{\Psi}_{\nu L}^{c}) \begin{pmatrix} M_{L} & M_{D} \\ M_{D} & M_{R} \end{pmatrix} \begin{pmatrix} \Psi_{\nu R} \\ \Psi_{\nu R}^{c} \end{pmatrix}$$

with

$$M_L = \begin{pmatrix} 0 & \frac{v}{\sqrt{2}}\sigma_{ij} \\ \frac{v}{\sqrt{2}}\sigma_{ij}^T & \hat{\chi}_{ij} \end{pmatrix}$$
$$M_R = \begin{pmatrix} \chi_{ij} & \frac{\hat{v}}{\sqrt{2}}\hat{\sigma}_{ij} \\ \frac{\hat{v}}{\sqrt{2}}\hat{\sigma}_{ij}^T & 0 \end{pmatrix}$$

$$M_D = \begin{pmatrix} \frac{v}{\sqrt{2}}\lambda_{ij} & 0\\ h_{ij} & \frac{\hat{v}}{\sqrt{2}}\hat{\lambda}_{ij} \end{pmatrix}$$

DM Phenomenology

- ✤ The \mathbb{Z}_2 stabilises the DM (χ), which is a ν_R & N_L mixing.
- We have performed a parameter region scan consistent with
 - Scalar potential copositivity constraints
 - LH neutrino masses $m_{
 u} \sim 1 eV$
 - DM direct detection constrains
 - Higgs invisible decay ($\Gamma(h \rightarrow \text{inv}) < 20\%$)
 - Previous collider data (small mixings)

DM Relic density

DM Direct Detection

Summary and final remarks

- We have showed a minimal Left-Right model with mirror fermions which is able to induce small neutrino masses and having a viable DM candidate.
- We still have to explore the scenario where matter-antimatter asymmetry could be generated by the decay of heavy mirror neutrinos (N_R).
- ✤ Further constraint the allowed parameter region of the model with the inclusion of LFV processes & collider data (e.g. $N_{2,3} → N_1 γ$).

Thank you for your attention.