Fermionic dark matter in a LeftRight model will mirror fermions

Mario Lamprea (him/his)
FES Cuautitlán UNAM

In collab. with R. Gaitan, J. Montes, M. Arroyo-Ureña, T.Valencia Perez [Rev.Mex.Fis.Stppl. 3 (2022) 2, 020725]

XVII Mexican Workshop on Particles and Fields
Nooember 24th, Puebla

The

Standard

Model

QUARKS
LEPTONSBOSONS
HIGGS BOSON

Experimental search for the SM

Some open questions on the SM

* Hierarchy problem
\because Neutrino masses
\% (Particle) Dark Matter
\% CP and P problem in the SM
* Particle - antiparticle asymmetry
\% Observed deviations from SM (e.g. LUV, muon $g-2, M_{W}$)

Left-Right symmetry

$\because V-A$ structure of the weak interaction

$$
\begin{gathered}
j^{\mu} \propto \bar{u}_{v_{e}}\left(\gamma^{\mu}-\gamma^{\mu} \gamma^{5}\right) u_{e} \\
\mathbf{V}-\mathbf{A}
\end{gathered}
$$

\% Enlarging the SM gauge structure by
$\because \mathrm{V}+\mathrm{A}$ interaction mediated by gauge vector boson W_{R} heavy enough.

Mirror fermions

\because Doubling the fermion content of the SM with opposite chirality

Particle content

	Field	$S U(3)_{C} \otimes S U(2)_{L} \otimes S U(2)_{R} \otimes U(1)_{Y^{\prime}}$
	$\ell_{i L}$	$(\mathbf{1}, \mathbf{2}, \mathbf{1},-1)$
	$\nu_{i R}$	$(\mathbf{1}, \mathbf{1}, \mathbf{1}, 0)$
Qeptons	$e_{i R}$	$(\mathbf{1}, \mathbf{1}, \mathbf{1},-2)$
	$\hat{\nu}_{i L}$	$(\mathbf{1}, \mathbf{1}, \mathbf{1}, 0)$
	$\hat{e}_{i L}$	$(\mathbf{1}, \mathbf{1}, \mathbf{1},-2)$
	$\hat{l}_{i R}$	$(\mathbf{1}, \mathbf{1}, \mathbf{2},-1)$
	$u_{i R}$	$(\mathbf{3}, \mathbf{1}, \mathbf{1}, 4 / 3)$
Scarks	$d_{i R}$	$(\mathbf{3}, \mathbf{1}, \mathbf{1}, 2 / 3)$
	$\hat{u}_{i L}$	$(\mathbf{3}, \mathbf{1}, \mathbf{1}, 4 / 3)$
	$\hat{d}_{i L}$	$(\mathbf{3}, \mathbf{1}, \mathbf{1}, 2 / 3)$
	$q_{i L}^{o}$	$(\mathbf{3}, \mathbf{2}, \mathbf{1}, 1 / 3)$
	$\hat{q}_{i R}$	$(\mathbf{3}, \mathbf{1}, \mathbf{2}, 1 / 3)$
	Φ	$(\mathbf{1}, \mathbf{2}, \mathbf{1},-1)$
	$\hat{\Phi}$	$(\mathbf{1}, \mathbf{1}, \mathbf{2},-1)$

Particle content

	Field	$S U(3)_{C} \otimes S U(2)_{L} \otimes S U(2)_{R} \otimes U(1)_{Y^{\prime}}$
SM	$\frac{\begin{array}{l} \ell_{i L} \\ \nu_{i R} \\ e_{i R} \end{array}}{\hat{\nu}_{i L}} \begin{aligned} & \hat{e}_{i L} \\ & \hat{l}_{i R} \end{aligned}$	$\left.\begin{array}{c}(\mathbf{1}, \mathbf{2}, \mathbf{1},-1) \\ (\mathbf{1}, \mathbf{1}, \mathbf{1}, 0) \\ (\mathbf{1}, \mathbf{1}, \mathbf{1},-2)\end{array}\right)$
fermions	$\begin{aligned} & \begin{array}{l} u_{i R} \\ d_{i R} \\ \hat{u}_{i L} \end{array} \\ & d_{i L} \\ & q_{i L}^{o} \\ & \hat{q}_{i R} \end{aligned}$	$\left.\begin{array}{l}(\mathbf{3}, \mathbf{1}, \mathbf{1}, 4 / 3) \\ (\mathbf{3}, \mathbf{1}, \mathbf{1}, 2 / 3) \\ (\mathbf{3}, \mathbf{1}, \mathbf{1}, 4 / 3)\end{array}\right)$
Scalars	$\begin{aligned} & \Phi \\ & \hat{\Phi} \end{aligned}$	$\begin{aligned} & (\mathbf{1}, \mathbf{2}, \mathbf{1},-1) \\ & (\mathbf{1}, \mathbf{1}, \mathbf{2},-1) \end{aligned}$

Particle content

Particle content

Field	$S U(3)_{C} \otimes S U(2)_{L} \otimes S U(2)_{R} \otimes U(1)_{Y^{\prime}}$	
$\ell_{i L}$	$(\mathbf{1}, \mathbf{2}, \mathbf{1},-1)$	
$\nu_{i R}$	$(\mathbf{1}, \mathbf{1}, \mathbf{1}, 0)$	
$e_{i R}$	$(\mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{- 2)}$	
$\hat{\nu}_{i L}$	$(\mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{0})$	
$\hat{e}_{i L}$	$(\mathbf{1}, \mathbf{1}, \mathbf{1},-2)$	
$\hat{l}_{i R}$	$(\mathbf{1}, \mathbf{1}, \mathbf{2},-1)$	
$u_{i R}$	$(\mathbf{3}, \mathbf{1}, \mathbf{1}, 4 / 3)$	\mathbb{Z}_{2} charge assigned
$d_{i R}$	$(\mathbf{3}, \mathbf{1}, \mathbf{1}, 2 / 3)$	to mirror neutrinos
$\hat{u}_{i L}$	$(\mathbf{3}, \mathbf{1}, \mathbf{1}, 4 / 3)$	
$\hat{d}_{i L}$	$(\mathbf{3}, \mathbf{1}, \mathbf{1}, 2 / 3)$	
$q_{i L}^{o}$	$(\mathbf{3}, \mathbf{2}, \mathbf{1}, 1 / 3)$	heavy higgs
$\hat{q}_{i R}$	$(\mathbf{3}, \mathbf{1}, \mathbf{2}, 1 / 3)$	
Φ	$(\mathbf{1}, \mathbf{2}, \mathbf{1},-1)$	
$\dot{\Phi}$	$(\mathbf{1}, \mathbf{1}, \mathbf{2},-1)$	

Symmetry breaking scheme

$S U(3)_{C} \times S U(2)_{L} \times S U(2)_{R} \times U(1)_{Y} \times \mathbb{Z}_{2}$

$$
\downarrow \quad\left\langle\phi_{2}\right\rangle=v_{2}
$$

$S U(3)_{C} \times S U(2)_{L} \times U(1)_{Y} \times \mathbb{Z}_{2}$

$$
\frac{1}{v} \quad\left\langle\phi_{1}\right\rangle=v_{1}
$$

$S U(3)_{C} \times U(1)_{Q} \times \mathbb{Z}_{2}$

Neutrino masses

Neutrinos mass terms

* Left-handed neutrino masses generated via type-1 seesaw mechanism
$\left(\begin{array}{ll}\bar{\Psi}_{\nu L}, & \bar{\Psi}^{c}{ }_{\nu L}\end{array}\right)\left(\begin{array}{ll}M_{L} & M_{D} \\ M_{D} & M_{R}\end{array}\right)\binom{\Psi_{\nu R}}{\Psi_{\nu R}^{c}}$
with

$$
M_{\nu}^{l i g h t}=\frac{v^{2} y^{2}}{2 m} S D
$$

$$
\begin{aligned}
& M_{L}=\left(\begin{array}{cc}
0 & \frac{v}{\sqrt{2}} \sigma_{i j} \\
\frac{v}{\sqrt{2}} \sigma_{i j}^{T} & \hat{\chi}_{i j}
\end{array}\right) \\
& M_{R}=\left(\begin{array}{cc}
\chi_{i j} & \frac{\hat{v}}{\sqrt{2}} \hat{\sigma}_{i j} \\
\frac{\hat{v}}{\sqrt{2}} \hat{\sigma}_{i j}^{T} & 0
\end{array}\right) \\
& M_{D}=\left(\begin{array}{cc}
\frac{v}{\sqrt{2}} \lambda_{i j} & 0 \\
h_{i j} & \frac{\hat{v}}{\sqrt{2}} \hat{\lambda}_{i j}
\end{array}\right)
\end{aligned}
$$

DM Phenomenology

\% The \mathbb{Z}_{2} stabilises the $\operatorname{DM}(\chi)$, which is a $\nu_{R} \& N_{L}$ mixing.
\% We have performed a parameter region scan consistent with

+ Scalar potential copositivity constraints
\downarrow LH neutrino masses $m_{\nu} \sim 1 \mathrm{eV}$
* DM direct detection constrains

\uparrow Higgs invisible decay $(\Gamma(h \rightarrow$ inv $)<20 \%)$
- Previous collider data (small mixings)

DM Relic density

DM Direct Detection

Indirect detection

Summary and final remarks

* We have showed a minimal Left-Right model with mirror fermions which is able to induce small neutrino masses and having a viable DM candidate.
* We still have to explore the scenario where matter-antimatter asymmetry could be generated by the decay of heavy mirror neutrinos (N_{R}).
*Further constraint the allowed parameter region of the model with the inclusion of LFV processes \& collider data (e.g. $N_{2,3} \rightarrow N_{1} \gamma$).

Thank you for your attention.

