Inert Doublet-Triplet Model with Two Dark Matter Candidates

Sheryl Melara, Ricardo Gaitán, Mario Lamprea.

Instituto de Física, UNAM

November 24, 2022

In spite of the Standard Model success to accurately explain most particle phenomena, there is a list of non solved problems that can't be explained within the SM context:

- Neutrino masses origin.
- Baryon asymmetry of the universe.
- Dark Matter existence.
- Gravitational interaction.

There are missing pieces that we are still trying to find!

STANDARD MODEL OF ELEMENTARY PARTICLES

Motivation

- Neutrino mass generation through Seesaw I + Seesaw II mechanisms.
- Improve dark matter relic abundance in the Scotogenic model (Ernest Ma, 2006) by adding a second scalar candidate.
- It is possible to study leptogenesis resulting from the out of equilibrium decay of heavy particles.
- It is convenient to study different phenomena BSM within the same model.

Figure: Vera Rubin studied the rotation curves of spiral galaxies.

Figure: Relic density for the Scotogenic model as a function of DM mass.

Sheryl Melara, Ricardo Gaitán, Mario Lamprea. XVIII Mexican Workshop on Particles and Fields ...

The Model

We consider an Standard Model extension by adding an $SU(2)_L$ inert scalar doublet Φ_2 , a hypercharless inert scalar triplet T and a scalar triplet Δ with Y = 1. Additionaly, we extend the fermion sector with three fermion singlets N_i , which represent the right handed neutrinos. A discrete $Z_2 \times Z'_2$ symmetry is introduce to guarantee the stability of the two dark matter candidates.

Particle	SU(3)	SU(2)	U(1)	Z_2	Z ₂
Ni	1	1	0	-1	1
Δ	1	3	1	1	1
Т	1	3	0	1	-1
Φ ₂	1	2	1/2	-1	1

All SM particles are trivially charged under $Z_2 \times Z'_2$ symmetry.

Model with two DM candidates: Physical Review D 105, 115010 (2022) N. Chakrabarty, R. Roshan, A. Sil

Sheryl Melara, Ricardo Gaitán, Mario Lamprea. XVIII Mexican Workshop on Particles and Fields ...

The most general scalar potential invariant under $Z_2 \times Z'_2$ is:

$$V = \mu_1^2 \Phi_1^{\dagger} \Phi_1 + \lambda_1 (\Phi_1^{\dagger} \Phi_1)^2 + \mu_2^2 \Phi_2^{\dagger} \Phi_2 + \lambda_2 (\Phi_2^{\dagger} \Phi_2)^2 + \lambda_3 \Phi_1^{\dagger} \Phi_1 \Phi_2^{\dagger} \Phi_2 + \lambda_4 \Phi_1^{\dagger} \Phi_2 \Phi_2^{\dagger} \Phi_1$$

+ $\frac{1}{2} \lambda_5 \left((\Phi_1^{\dagger} \Phi_2)^2 + (\Phi_2^{\dagger} \Phi_1)^2 \right) + \mu_{\Delta}^2 \Delta^{\dagger} \Delta + \lambda_{\Delta} (\Delta^{\dagger} \Delta)^2 + \lambda_6 \Phi_1^{\dagger} \Phi_1 \Delta^{\dagger} \Delta$
+ $\lambda_7 \Phi_2^{\dagger} \Phi_2 \Delta^{\dagger} \Delta + \mu_{\Phi_1 \Delta} \left(\Phi_1^{\dagger} \Delta \tilde{\Phi}_1 + h.c. \right) + \mu_{\Phi_2 \Delta} \left(\Phi_2^{\dagger} \Delta \tilde{\Phi}_2 + h.c. \right)$
+ $\mu_T^2 T^{\dagger} T + \lambda_T (T^{\dagger} T)^2 + \lambda_{\Phi_1 T} \Phi_1^{\dagger} \Phi_1 T^{\dagger} T + \lambda_{\Phi_2 T} \Phi_2^{\dagger} \Phi_2 T^{\dagger} T.$ (2)

Where $\tilde{\Phi}_i = i\tau_2 \Phi_i^*$ is the doublet charge conjugate and τ_2 the second of Pauli matrices.

Relevant parameters: $\lambda_L = (\lambda_3 + \lambda_4 + \lambda_5)/2$, $\lambda_{\Phi_1T}, \lambda_{\Phi_2T}$ y Δm

After electroweak symmetry breaking, the neutral component of Φ_1 acquires a vacuum expectation value (VEV) v. Φ_2 y T are inert scalars, therefore do not obtain a VEV.

$$\left\langle \Phi_{1}\right\rangle_{0} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0\\ \nu \end{pmatrix} \tag{3}$$

$$\left\langle \Phi_2 \right\rangle_0 = \begin{pmatrix} 0\\ 0 \end{pmatrix}$$
 (4)

$$\langle \Delta \rangle_0 = \begin{pmatrix} 0 \\ 0 \\ v_T \end{pmatrix}$$
(5)
$$\langle T \rangle_0 = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$
(6)

Where v = 246 GeV.

Masses of the physical scalars.

After EWSB the masses of the physical scalars are:

$$\begin{split} m_{H_{1}^{\pm}}^{2} &= \mu_{1}^{2} + \lambda_{1}v^{2} + \lambda_{6}v_{T}^{2} \\ m_{H_{2}^{\pm}}^{2} &= \mu_{2}^{2} + \frac{1}{2}\lambda_{3}v^{2} + \lambda_{7}v_{T}^{2} \\ m_{\Delta^{\pm}}^{2} &= \mu_{\Delta}^{2} + \frac{1}{2}\lambda_{6}v^{2} + 2\lambda_{\Delta}v_{T}^{2} \\ m_{T^{\pm}}^{2} &= \mu_{t}^{2} + \frac{1}{2}\lambda_{\phi_{1}\tau}v^{2} \\ m_{H_{1}^{0}}^{2} &= \mu_{2}^{2} + \frac{1}{2}\left(\lambda_{3} + \lambda_{4} + \lambda_{5}\right)v^{2} + \mu_{\phi_{2}\Delta}v_{T} + \lambda_{7}v_{T}^{2} \\ m_{H_{2,3}^{2}}^{2} &= \frac{1}{2}\left(a + b \pm \sqrt{(a - b)^{2} + 4c^{2}}\right) \\ m_{T^{0}}^{2} &= \mu_{t}^{2} + \frac{1}{2}\lambda_{\phi_{1}\tau}v^{2} \\ m_{A_{1}^{0}}^{2} &= \mu_{2}^{2} + \frac{1}{2}\left(\lambda_{3} + \lambda_{4} - \lambda_{5}\right)v^{2} - \mu_{\phi_{2}\Delta}v_{T} + \lambda_{7}v_{T}^{2} \end{split}$$

Masses of the physical scalars.

$$egin{aligned} m_{A_{2,3}^0}^2 &= rac{1}{2} \left(d + f \pm \sqrt{(d-f)^2 + 4g^2}
ight) \ m_{A_4^0}^2 &= \mu_t^2 + rac{1}{2} \lambda_{\Phi_1 T} v^2 \ m_{\Delta^{\pm\pm}}^2 &= 2 \mu_\Delta^2 + \lambda_6 v^2 + 4 \lambda_\Delta v_T^2 \end{aligned}$$

Where: $a = 2\lambda_1 v^2$, $b = 2\mu_{\Delta}^2 + \lambda_6 v^2 + 12\lambda_{\Delta} v_T^2$, $c = \mu_{\Phi_1 \Delta} v$, $d = -2\mu_{\Phi_1 \Delta} v_T$, $f = 2\mu_{\Delta}^2 + \lambda_6 v^2 + 12\lambda_{\Delta} v_T^2$ and $g = \mu_{\Phi_1 \Delta} v$.

The Seesaw type II contribution to the neutrino mass generation is:

$$m_{\nu} = 2Y_{\Delta}v_T,$$

with a choice $v_T \sim 1 eV$, the matrix Y_{Δ} must be adjusted to produce the neutrino mass scale.

The dark matter candidates are the lightest particles charged under Z_2 and Z'_2 , therefore H_0 and T_0 are our DM candidates.

Perturbativity, positivity and unitarity constraints

To ensure the scalar potential remains bounded from below we impose the positivy conditions:

$$\lambda_1 > 0, \quad \lambda_2 > 0, \quad \lambda_\Delta > 0, \quad \lambda_T > 0.$$

$$\lambda_{3} + \lambda_{4} - |\lambda_{5}| + \sqrt{\lambda_{1}\lambda_{2}} > 0, \qquad \lambda_{3} + \sqrt{\lambda_{1}\lambda_{2}} > 0, \qquad \lambda_{6} + \sqrt{\lambda_{1}\lambda_{4}} > 0$$
(7)

$$\lambda_{7} + \sqrt{\lambda_{2}\lambda_{\Delta}} > 0, \qquad \lambda_{\Phi_{1}T} + \sqrt{\lambda_{1}\lambda_{T}} > 0 \qquad \lambda_{\Phi_{2}T} + \sqrt{\lambda_{2}\lambda_{T}} > 0$$

We also have the unitarity constraints:

$$|\lambda_3 \pm \lambda_4| \leq 8\pi$$
, $|\lambda_3 \pm \lambda_5| \leq 8\pi$, $|\lambda_3 + 2\lambda_4 \pm \lambda_5| \leq 8\pi$

$$|\lambda_{\mathcal{T}}| \le 24\pi, \quad |\lambda_{\Delta}| \le 24\pi, \quad |\lambda_{\Phi_2 \mathcal{T}}| \le 8\pi, \quad |\lambda_{\Phi_1 \mathcal{T}}| \le 8\pi$$
 (8)

$$\left|\lambda_1+\lambda_2\pm\sqrt{(\lambda_1-\lambda_2)^2+\lambda_4^2}
ight|\leq 8\pi, \qquad \left|\lambda_1+\lambda_2\pm\sqrt{(\lambda_1-\lambda_2)^2+\lambda_5^2}
ight|\leq 8\pi.$$

Figura 1: Dark matter density for H^0 and T^0 , where $MT^0 > MH^0$, $\Delta m = MH^{\pm} - MH^0 = 1 \text{ GeV}$ and $\lambda_L = 0.01$. Dashed line shows the Planck limit for the total relic density: $\Omega_{DM}h^2 = 0.120 \pm 0.001$. To compute the dark matter density we use computer tools such as SARAH and MicrOmegas.

$$\Omega h_{Total}^2 = \Omega h_{H^0}^2 + \Omega h_{T^0}^2$$

Figure: Upper limits for the spin independent DM-nucleon cross section. Credit: Prog. Theor. Exp. Phys. 2022, 083C01 (2022).

Results: Spin Independent cross section

Figures show the spin independent DM-nucleons scattering cross sections for H^0 and T^0 respectively. The different dashed lines represent the upper limits from direct detection experiments.

Points allowed by relic density

Table II shows sample points allowed by theoretical constraints and total relic density. Points are also allowed by direct detection experiments limits.

MH0	MT0	$\Omega_{H_0} h^2$	$\Omega_{T_0} h^2$	Ωh^2	$\sigma_{H^0}(pb)$	$\sigma_{T^0}(pb)$
430	1510	0.0733	0.0377	0.111	1.811×10^{-12}	2.075×10^{-12}
450	1490	0.0799	0.0369	0.117	1.655×10^{-12}	2.134×10^{-12}
460	1480	0.0832	0.0366	0.120	1.520×10^{-12}	2.194×10^{-12}

MH0 - MT0 plane.

Sheryl Melara, Ricardo Gaitán, Mario Lamprea. XVIII Mexican Workshop

XVIII Mexican Workshop on Particles and Fields ...

- Relic density for each candidate is underabundant, but considering the contribution of both candidates to the total relic abundance allows to recover some desert regions.
- The mass splitting is very important, a very large $\Delta m \sim 100 GeV$ between the components of the scalar triplet makes de relic density very small.
- For an appropriate choice of the relevant parameters, we obtain the observed relic abundance and the DM-nucleon cross section within experimental limits.
- Different phenomena beyond the SM can be explained within a single model by proposing the appropriate SM extensions.
- In addition to dark matter phenomenology, we aim to study baryogenesis via leptogenesis of the out of equilibrium decay of heavy neutrinos and the active scalar triplet.

"In a spiral galaxy, the ratio of dark-to-light matter is about a factor of ten. That's probably a good number for the ratio of our ignorance-to-knowledge. We're out of kindergarten, but only in about third grade."

- Vera Rubin

Thank you for your attention!