

Neutrino Scale within a Universal Texture and Majorana Masses Model

L. T. López-Lozano, S. Gómez Ávila, J. A. Hernández-Acosta

Área Académica de Matemáticas y Física, Universidad Autónoma del Estado de Hidalgo. Carr. Pachuca-Tulancingo Km. 4.5, C.P. 42184, Pachuca Hidalgo, México.

Contents

1. Abstract

2. Introduction

Background, motivations and elements used.

3. Dirac Masses Approach

Deducing expressions for neutrino masses using Dirac's approach.

4. Majorana Masses Approach

Deducing expressions for neutrino masses using Majorana's approach.

5. Conclusions

Thoughts on the results and perspectives for future work.

We give a prediction for the scale of the heavier neutrino using the concept of universal texture constraint and corrections from the Majorana mass contributions for neutrinos assuming normal ordering.

> $m_3 \in [2.488, 2.544] imes 10^{-3}$ $(\delta_1', \delta_2') \in [0.4766, 0.5157]$

Introduction

- The Standard Model groups particles with similar properties in families.
- Fermions in the Standard Model can have a Dirac or a Majorana Mass.

Although there are eight matrices, only those with a diagonal not composed out of only zeros are used.

$$\ell_{3} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix} , \quad \ell_{8} = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{pmatrix}$$
(1)
$$\underline{l} = \sqrt{\frac{2}{3}} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \ell_{0}$$
(2)

Mass Matrix & Exp. Measurements

Mass matrices are modified by multiplying them for the inverse of the heaviest fermion within each sector:

$$\underline{M_{i}} = \frac{1}{m_{3,i}} \underline{m_{i}} = \frac{1}{m_{3,i}} \begin{pmatrix} m_{1,i} & 0 & 0\\ 0 & m_{2,i} & 0\\ 0 & 0 & m_{3,i} \end{pmatrix}$$

$$= C_{0} \cdot \underline{l} + C_{3} \cdot \ell_{3} + C_{8} \cdot \ell_{8} \quad ; \quad i = u, d, l$$
(3)

We want to reproduce the experimental data for the squared masses difference for neutrinos given by:

$$(\Delta m_{21}^2)_{\rm exp} = 7.53 \pm 0.18 \times 10^{-5} eV^2 \tag{5}$$

$$(\Delta m_{32}^2)_{\rm exp} = 2.453 \pm 0.034 \times 10^{-3} eV^2$$
 (6)

Parameters $C_k \& \Delta C_k$

The universal texture permits taking the C_{k,i} as invariant parameters in all sectors.

$$C_{k,i} = \frac{1}{2} Tr(\ell_k \cdot M_i) \tag{7}$$

$$\Delta C_{k,i} = \sum_{j=1}^{3} \frac{dC_{k,i}}{dm_j} \delta_{\text{err}} m_j$$
(8)

Using equation (7) we can compute the three parameters for charged leptons:

$$C_{0,l} = \frac{m_e + m_\mu}{m_\tau} + 1 \quad , \quad C_{3,l} = \frac{m_e - m_\mu}{m_\tau} \,, \\ C_{8,l} = \frac{1}{\sqrt{3}} \left(\frac{m_e + m_\mu}{m_\tau} - 2 \right)$$
(9)

Universal Texture Constraint - UTC

A bottom-up approach to distinguishing patterns.

Coeff.	Value	Error
C _{0,l}	0.4326	4.0365×10 ⁻⁶
C _{0,u}	0.4112	1.0585×10^{-4}
C _{0,d}	0.4178	2.0038×10^{-3}

Table 1: Errors for coefficients $C_{0,i}$.

Coeff.	Value	Error
C _{3,l}	-2.9587×10 ⁻²	3.9951×10 ⁻⁶
C _{3,u}	-3.6708×10^{-3}	-1.7902×10^{-3}
C _{3,d}	-1.0613×10^{-2}	-1.0022×10^{-4}

Table 2: Errors for coefficients $C_{3,i}$.

Coeff.	Value	Error	
C _{8,1}	-0.5601	-2.3290×10 ⁻⁶	
C _{8,u}	-0.5752	6.1115×10^{-5}	
C _{8,d}	-0.5705	1.1569×10^{-3}	
Table 2. Europe for an officients C			

able 3: Errors for coefficients C_{8,i}.

This suggest the existence of a common mechanism to describe every sector.

Dirac Masses Approach

Dirac Masses Approach

Dirac's Approach

Using (7) we compute the parameters in the neutrino sector:

$$C_{0,\nu} = \frac{m_1 + m_2}{m_3} + 1 \quad , \quad C_{3,\nu} = \frac{m_1 - m_2}{m_3} \,,$$

$$C_{8,\nu} = \frac{1}{\sqrt{3}} \left(\frac{m_1 + m_2}{m_3} - 2 \right)$$
(10)

Solving for m_1 and m_2 and changing the neutrino sector parameters for those in (9), we obtain:

$$m_{1} = \frac{m_{3}(C_{0,l} + C_{3,l})}{2} - \frac{m_{3}}{2}$$

$$m_{2} = \frac{m_{3}(C_{0,l} - C_{3,l})}{2} - \frac{m_{3}}{2}$$
(11)

Dirac's Approach

Using a fixed value for m_3 such as $m_3 = 0.05 \text{ eV}$ we obtain:

$$m_{1} = \frac{(0.05eV)(C_{0,l} + C_{3,l})}{2} - \frac{(0.05eV)}{2} = 1.4379 \times 10^{-5} \text{ eV}$$

$$m_{2} = \frac{(0.05eV)(C_{0,l} - C_{3,l})}{2} - \frac{(0.05eV)}{2} = 2.9731 \times 10^{-3} \text{ eV}$$
(12)

Therefore:

$$\begin{aligned} (\Delta m_{21}^2)' &= m_2^2 - m_1^2 = 8.839 \times 10^{-6} \,\mathrm{eV}^2 \\ (\Delta m_{32}^2)' &= m_3^2 - m_2^2 = 2.491 \times 10^{-3} \,\mathrm{eV}^2 \\ \Delta m_{21}^2 &\neq (\Delta m_{21}^2)' = 7.53 \times 10^{-5} \mathrm{eV}^2 \\ \Delta m_{32}^2 &\approx (\Delta m_{32}^2)' = 2.453 \times 10^{-3} \mathrm{eV}^2 \end{aligned} \tag{13}$$

Figure 1: Behaviour of Δm^2 . For the case of Δm^2_{21} we see it doesn't grow within the range for m_3 .

Majorana Masses Approach

Majorana Masses Approach

Majorana's Approach

We introduce a Majorana mass correction in two different ways; An addition to the mass and a scaling of the mass.

Case 1 $egin{aligned} m_1 &
ightarrow rac{m_1}{\delta_1'} \ m_2 &
ightarrow rac{m_1}{\delta_2'} \end{aligned}$ $m_1 \rightarrow m_1 + \delta$ (14) $m_2 \rightarrow m_2 + \delta$ (15)

We want to accomplish:

$$f_1 = \Delta m_{21}^2 - (\Delta m_{21}^2)_{\exp} = 0$$
 (16)

Case 2

$$f_2 = \Delta m_{32}^2 - (\Delta m_{32}^2)_{\exp} = 0$$
 (17)

Substituting expressions (14) in (10) and solving m_1 and m_2 we obtain (18):

$$m_{1\mathcal{M}} = \frac{m_3(C_{0,l} + C_{3,l})}{2} - \frac{m_3 + \delta}{2}$$

$$m_{2\mathcal{M}} = \frac{m_3(C_{0,l} - C_{3,l})}{2} - \frac{m_3 - \delta}{2}$$
(18)

Majorana's Approach Case 1

Figure 2: Curve for Δm_{21}^2 when; $m_3 \in (0.0, 0.1)$.

Majorana's Approach Case 1

Figure 3: Curves; f_1 , f_2 using expressions in (16). Level zero curves do not intersect.

Now substituting (15) in (10) gives us the expressions in (19):

$$m_{1\mathscr{M}}' = \frac{m_3 \cdot \delta_1' \cdot (C_{0,l} + C_{3,l})}{2} - \frac{m_3 \cdot \delta_1'}{2}$$

$$m_{2\mathscr{M}}' = \frac{m_3 \cdot \delta_2' \cdot (C_{0,l} - C_{3,l})}{2} - \frac{m_3 \cdot \delta_2'}{2}$$
(19)

Majorana's Approach Case 2

Figure 4: Curve for Δm_{21}^2 when; $m_3 \in (0.0, 0.1)$.

Majorana's Approach Case 2

Figure 5: Curve; f_1 , f_2 using expressions in (17). Level zero curves do intersect.

We get the area in Figure 6 from where the ranges for m_3 , δ_1' , δ_2' can be defined as:

$$m_3 \in [2.488, 2.544] \times 10^{-3}$$
 (20)
 $(\delta'_1, \delta'_2) \in [0.4766, 0.5157]$ (21)

Figure 6: Prediction of sets of numerical values for $m_3, \delta'_1, \delta'_2$ so that; $\Delta m^2_{21} = (\Delta m^2_{21})_{\exp} y$ $\Delta m^2_{32} = (\Delta m^2_{32})_{\exp}$.

Conclusions

There is a set of values for m_3 , δ'_1 , δ'_2 such that the theoretical Δm^2_{21} and Δm^2_{32} agree with the experimental measurements and they are given by:

$$m_3 \in [2.488, \, 2.544] imes 10^{-3} \ (\delta_1', \delta_2') \in [0.4766, \, 0.5157]$$

- Study of the relation between the Majorana correction and the electro weak Lagrangian.
- Study of the relation between three generation mixing mechanism for neutrinos and the Majorana correction.
- Repeat procedure using the C₈ parameters.

References

- Giunti, C. and Kim, C. W. (2007). Fundamentals of Neutrino Physics and Astrophysics. Oxford University Press.
- Monteverde, A. C., Ávila, S. G., and Lozano, L.T.L. (2020). On the universal texture in the pa-2hdm for the v-spin case.
- Ryder, L. H. (1985). Quantum Field Theory. Cambridge University Press.
- Ereditato, Antonio (2018). The State of the Art of Neutrino Physics. A tutorial for Graduate Students and Young Researchers. World Scientific.
- 🗜 Grossman, Yuval (2002). TASI 2002 lectures on neutrinos. pp: 1-12.
- Westerdale, Shawn (2015). Neutrino Mass Problem: Masses and Oscillations. pp: 1-7.
- Santamaria, Arcadi (1993). Masses, Mixings, Yukawa Couplings and their Symmetries. pp: 1-9.
- R.L. Workman et al.(Particle Data Group), Prog.Theor.Exp.Phys.2022, 083C01 (2022)