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Il. ITERATED AND NESTED RESIDUES

Catani, Gleisberg, Krauss, Rodrigo, Winter, JHEP 09 (2008) 065

ONE-LOOP DIAGRAMS

N-point loop integral

1
Gr(q) =
F(a) q? — m? + i0
=10+ pr
k=1

The inverse Feynman propagator (Gp(qi))_1
vanishes for

QZO—qu —ﬂ:\/qz m — 10
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Catani, Gleisberg, Krauss, Rodrigo, Winter, JHEP 09 (2008) 065

ONE-LOOP DIAGRAMS

Positive energy mode:

ah) = +\/a +m? —i0

(and negative imaginary part)

To obtain the duality relation, we apply Cauchy’s
residue theorem (CRT) in the loop energy
complex plane and selecting residues with
definite positive energy and negative imaginary
part (which is done with the contour 7))




Il. ITERATED AND NESTED RESIDUES

ONE-LOOP DIAGRAMS

One-loop scalar integrals (or scattering amplitudes in any relativistic, local and unitary
QFT) represented as a linear combination of N single-cut integrals

LY ({pi}n) = Z/ t) [[ér (qu) _pj’i’o’cjj)

ica’. 260" jea
J7

v

a the set of indices of the internal lines.

ql.(z;) is the negative-imaginary-part on-shell energy of the i-th internal particle.

v

v

Gr (ql.(,g) — Dijo ﬁ}) is the propagator of the j-th internal particle when the i-th internal particle set on-

shell and p; ; is the energy of the momentum p; + p;_; + --- + p;,; wheneveri > j.

v

CRT reduces the dimension of the integration space in 1. If it is applied to the energy of the loop

momentum, the final integral is performed over the phase space.



Il. ITERATED AND NESTED RESIDUES

Aguilera-Verdugo, Hernandez-Pinto, Rodrigo, Sborlini, Torres Bobadilla, JHEP02 (2021) 112

ONE-LOOP DIAGRAMS

» In the case of the scalar two-point function (Bubble function),
the algebraic simplitication of the residues add physical
divergencies only.
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Aguilera-Verdugo, Hernandez-Pinto, Rodrigo, Sborlini, Torres Bobadilla, JHEP02 (2021) 112

MULTI-LOGP DIAGRAMS: ITERATED RESIDUES

» CRT /f(z)dz = ZWZZFjReS(f, {z,7})
C jep
» The application of CRT to a multi-loop diagram demands the

promotion of the integration variable to C. All other variables
remain real.

» For the same contour of integration, the final result of CRT let
us use the equation,

~——

ITERATED
J f(z) dz = — 2m 2 Res <f(z), {z, Zo}> 0 (—Im (Zo)> : RESIDUES

C Z()EP

where P is the set of all poles of the integrand f(2).
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MULTI-LOGP DIAGRAMS

» The iterated residues make evident the presence of poles with
non-definite imaginary-part sign poles, the displaced poles.

a1 A 42,0
—420 (+)
p p % —q30 — 41,0

SN,

q, + g, + ks (+) X
d30 — 41,0 (+)
J 1 q2,0

2 2 D) 2
e (%2,0— (at¥) ) (6122,0— (a5%)) > <<‘11,0+C]2,0+P0) - (45 )

Pole structure of the scalar sunrise diagram.
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MULTI-LOOP DIAGRAMS

» The computation of the second integral with CRT demands the
knowledge of the sign of the imaginary part of the poles.

A d1,0 A d1,0

Sign of the imaginary part?

Diagrammatic representation of the pole structure of both term in the integrand for the second integral.
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Aguilera-Verdugo, Hernandez-Pinto, Rodrigo, Sborlini, Torres Bobadilla, JHEP02 (2021) 112

NESTED RESIDUES

» The contributions of the displaced poles
cancel, leaving the residues of the
negative-imaginary part poles only.

(+) » Defining the set P as the set of
2 definite negative-imaginary part poles of
1<9) J the integrand, then we can define the
nested residues.

o= 9 R < e ) | NESTED
J J&) ngﬁ os (/0 1230} RESIDUES
0

C




Il. ITERATED AND NESTED RESIDUES

Aguilera-Verdugo, Hernandez-Pinto, Rodrigo, Sborlini, Torres Bobadilla, JHEP02 (2021) 112

CAUSAL AND NON-CAUSAL DIVERGENCES

» We say a non-causal divergence i
is the one that appears within

the integration domain of a
multi-loop phase space.

» A causal divergence is the
kind of divergence that

configuration of external

- @ - depends only on the

momenta.
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lll. THE LOOP-TREE DUALITY

HIGHER PERTURBATIVE ORDERS

» An algebraic simplification of the nested residues to the
scalar sunrise integral leads to causal divergences only.

o ! 1 1
L=p) == 3 (+) (+) (+) T (+) (+) (+)
124 \ 910 T 4o T TP 910 T%ho T30 —Po
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Aguilera-Verdugo, et al, Phys. Rev. Lett. 124 211602

TOPOLOGICAL FAMILIES

Feynman diagrams can be classified by the number n of vertex of the diagrams, the
topological families. The number 7 = n — 1 is called topological complexity.

» The simplest topological family (2 vertices) form the Maximal Loop Topology (MLT) family.

» Diagrams with 3 vertices form the Next-to Maximal Loop Topology (NMLT) family.

» Diagrams with 1 vertices form the Next-to-...-Next-to Maximal Loop Topology (N*~>MLT)
family.

1 1 L+2 1 L+2

L+1 L+1 L+1

MLT diagram with L loops NMLT diagram with L loops ~ N?MLT diagram with L loops
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Aguilera-Verdugo, et al, Phys. Rev. Lett. 124 211602

TOPOLOGICAL FAMILIES

The topological classification of Feynman diagrams showed

a great power when studying arbitrary L-loop diagrams. The
topology of the diagrams is encoded within the relations of
the internal momenta with the loop momenta.

INTERNAL MOMENTA

* L N
dr+i = Z @ q; T Zﬂij p;
j=1 j=1

TOPOLOGY
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Aguilera-Verdugo, et al, Phys. Rev. Lett. 124 211602

MAXIMAL LOOP TOPOLOGY

After applying the nested residues to the scalar MLT(L)

diagram with and n = L + 1 internal particles, a term related
with each spanning tree is obtained.

1 I 1
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Aguilera-Verdugo, et al, Phys. Rev. Lett. 124 211602

MAXIMAL LOOP TOPOLOGY

As the MLT(L) diagram is the natural generalization of the
scalar 2-point 1-loop diagram and the scalar sunrise diagram
with respect to the number of loops, it is possible to obtain
the causal representation,
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Aguilera-Verdugo, Hernandez-Pinto, Rodrigo, Sborlini, Torres Bobadilla, JHEP02 (2021) 112

NEXT-TO MAXIMAL LOOP TOPOLOGY

The case of the scalar NMLT(L) diagram withn = L + 2
internal particles, the nested residue leads to a non trivial
combination of tree-level contributions, which can be
expressed with convolutions.
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Aguilera-Verdugo, et al, Phys. Rev. Lett. 124 211602

NEXT-TO-NEXT-TO MAXIMAL LOOP TOPOLOGY

For a scalar N®MLT(L), the nested residues lead to quite
more intricate combination of tree-level contributions. This
combination can be expressed as some other convolutions.

N @5
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CONVOLUTION RELATIONS

Nested residues lead to a Each convolution relation of a
combination of contributions  diagram with topological
associated with each spanning Cgmplexity T expresses the

tree of the underlying graph,  integrand in terms of diagrams
expressed as convolution with lower topological
relations. complexity.

Nested residues could lead to causal representations of
Feynman diagrams (iterating the convolution relations).
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V. CAUSAL REPRESENTATIONS

Aguilera-Verdugo, Hernandez-Pinto, Rodrigo, Sborlini, Torres Bobadilla, JHEP02 (2021) 069

SCALAR SUNRISE DIAGRAM: CAUSAL REPRESENTATION
N

» Scalar sunrise: Gz(1,2,3) p p

o After nested residues

@1+a+p
Gr(1,2,3) : + : ! + ! !
F\ ‘o< -
4gH g 2 27 40, 2 2 4, 2 2
WL (g +aff+po) — (a5) DB (g —af+po) - (a8)  *R0B0 (g +a55 - p) — (aD)

e Causal representation

1 1 1
G.(123) — +
) 8q\Haitaly) ( o +a5)+a+p0 g +a5H + 48 — po >

48
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SCALAR SUNRISE DIAGRAM: CAUSAL REPRESENTATION
N

» Scalar sunrise: Gz(1,2,3) p p

o After nested residues

q,+q,+p

1 1 1 | 1

+ +
4o 2 2 40 ) 2 2 40 ) 2 2
d1.0492,0 <ij6)+‘1§6)+170> _ (qgf))) q1043,0 <q{j6)—q§}))+p0> _ (%B) 420430 (qé"('))+q§:5)—p0> _ <q§jf))>

b

Gp(1,2,3) -

e Causal representation

1 1 1
G.(123) — +
) 8q\Hastast) ( o +a5)+a+p0 g +a5H + 48 — po >

I
AT

1
GF(19293) — = (
A3

43
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SCALAR SUNRISE DIAGRAM: CAUSAL REPRESENTATION
» Scalar sunrise: Gz(1,2,3)

e After nested residues e Causal representation

0.000
-0.001

-0.002

-0.003 ¢

43
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SCALAR NMLT DIAGRAM: CAUSAL REPRESENTATION

» Scalar NMLT integrand: Gz(1,...,L+2) = GF(I,...,L,I...L,12)

e After nested residues e Causal representation

'L+ L1

48
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SCALAR N2MLT DIAGRAM: CAUSAL REPRESENTATION

> Scalar N°*MLT integrand: Gx(1,...,L + 3) = Gx(1,.. L 12,23)
e After nested residues e Causal representation
-1 11 1 1 1 1
] Ge(l,...,L+2) > o |7 (’12_-%_)(@4_%)

L 11
T \G T I
1 (1 11
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SCALAR N2MLT DIAGRAM: CAUSAL REPRESENTATION ‘ ”
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» Scalar N°MLT integrand: Gx(1,...,L 4+ 3) = GF(I,...,L,I...Z,IZ,ZB)

e After nested residues e Causal representation

48
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NUMERICAL EVALUATION
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~6.x 1078 -
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» Internal momenta {1,..., L}

have mass m-2.

-8.x 108 -

» Other particles have mass m?. o

mj

Scalar MLT(4) integral.

LTD: Solid lines
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Scalar NMLT(4) integral. Scalar N*?MLT(4) integral.
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ENTANGLED CAUSAL THRESHOLDS

» Causal representations of topological tamilies with positive
topological complexity demand specific properties to the
causal thresholds appearing in each term.

» For the N*"!MLT(L), its causal representation involves terms

with 7 causal thresholds each. These thresholds are not
arbitrary, but they should satisfy:

e All internal particles become on-shell.

e Causal thresholds do not intersect. E’::T‘:\ﬁ‘gkfn

. THRESHOLDS
e Compatible momentum flow.

48



SUMMARY

SUMMARY

* The contribution to the residues of the displaced poles cancel.

* The causal structure of the scalar MLT(L) diagram is naturally obtained and is
independence of the order of integration.

 Factorization formulae to NMLT and N*MLT topological families were found.

* Analytic reconstructions can be used to obtain the causal structures of the NMLT
and N°MLT topological families.

* We have studied the stability of the causal structures obtained through the LTD,
obtaining good agreement with numerical approach.
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