XVII Mexican Workshop on Particles and Fields (MWPF)

Phenomenological analysis in direct photon production using Neural Network

David Francisco Rentería-Estrada Universidad Autónoma de Sinaloa, México

Based on:

- 1011.0486
- 2104.14663
- 2112.05043

In colaboration with: Roger J. Hernández Pinto German F.R. Sborlini Pia Zurita

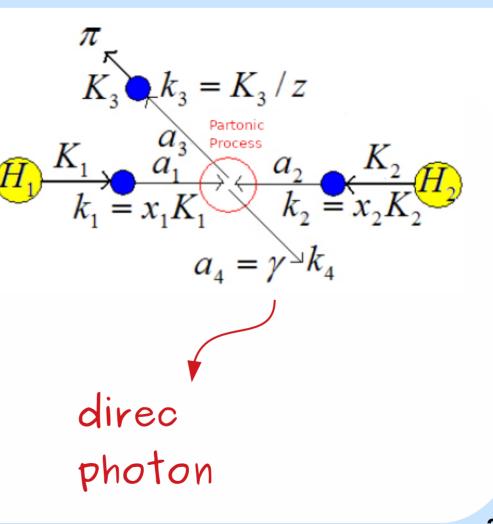
November 21th, 2022

Process

In this work we are interested in studying the production of a direct photon plus a pion in protonproton collision:

$$pp \rightarrow \pi^+ + \gamma$$

The aim is reconstruct the momentum fraction \mathbf{x}_1 , \mathbf{x}_2 and \mathbf{z} of the originals partons in the interaction to NLO QCD + LO QED accuracy.



Motivation

- Aim: reconstruct the momentum fractions x_1 , x_2 and z.
- Nowadays, Machine Learning is a tool that allows to make a predictive model to ٠ reconstruct $\{x_1, x_2, z\}$. symmetry 2021

1011.0486

PHYSICAL REVIEW D 83, 074022 (2011)

Hadron plus photon production in polarized hadronic collisions at next-to-leading order accuracy

Daniel de Florian and Germán F.R. Sborlini

Departamento de Física Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires Pabellón I. Ciudad Universitaria (1428) Capital Federal, Argentina (Received 3 November 2010; revised manuscript received 23 February 2011; published 27 April 2011)

We compute the next-to-leading order OCD corrections to the polarized (and unpolarized) cross sections for the production of a hadron accompanied by an opposite-side prompt photon. This process, being studied at RHIC, permits us to reconstruct partonic kinematics using experimentally measurable variables. We study the correlation between the reconstructed momentum fractions and the true partonic ones, which in the polarized case might allow us to reveal the spin-dependent gluon distribution with a higher precision.

DOI: 10.1103/PhysRevD.83.074022

PACS numbers: 13.88.+e, 12.38.Bx, 13.87.Fh

Article

Analysis of the Internal Structure of Hadrons Using Direct Photon Production

David Francisco Rentería-Estrada ^{1,†}⁽⁰⁾, Roger José Hernández-Pinto ^{1,*,†}⁽⁰⁾ and German Sborlini ^{2,3,†}⁽⁰⁾

¹ Facultad de Ciencias Físico-Matemáticas, Universidad Autónoma de Sinaloa, Ciudad Universitaria, CP 80000 Culiacán, Mexico; davidrenteria.fcfm@uas.edu.mx

Instituto de Física Corpuscular, Universitat de València-Consejo Superior de Investigaciones Científicas, Parc Científic, E-46980 Paterna, Spain; german, sborlini@desv.de

2112.05043

SciPost Phys. Core 5, 049 (2022)

Reconstructing partonic kinematics at colliders with machine learning

I for deciphering there are several r to complement onstraints from iternal structure ron plus photon neasurements.

MDPI

David F. Rentería Estrada^{1*}, Roger J. Hernández-Pinto¹, German E R. Sborlini^{2,3} and Pia Zurita⁴

 Facultad de Ciencias Físico-Matemáticas, Universidad Autónoma de Sinaloa, Ciudad Universitaria, CP 80000 Culiacán, Mexico 2 Deutsches Elektronen-Synchrotron DESY, Platanenallee 6, 15738 Zeuthen, Germany 3 Departamento de Física Fundamental e IUFFyM, Universidad de Salamanca, E-37008 Salamanca, Spain 4 Institut für Theoretische Physik, Universität Regensburg, 93040 Regensburg, Germany

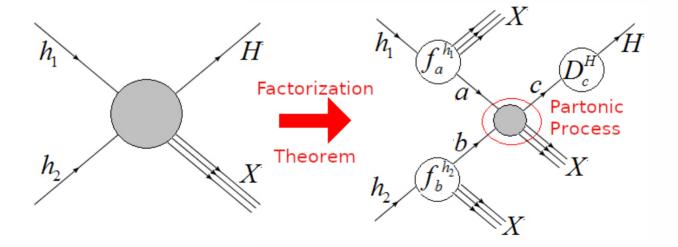
* davidrenteria.fcfm@uas.edu.mx

2011

Hadronic Cross-Section

In hadron-hadron collisions, the cross section is described by the convolution between PDFs, FFs, and the partonic cross section.

$$d\sigma^{h_1h_2 \to HX} = \sum_{a,b,c} \int_0^1 dx \int_0^1 dy \int_0^1 dz \, f_a^{h_1}(x,\mu_I) f_b^{h_2}(y,\mu_I) d_c^H(z,\mu_F) d\hat{\sigma}_{ab \to cX}$$



Cross section calculation

 The Cross-Section at NLO QCD is implement in FKS (virtual + real + UV counter terms + ISR counter-terms)

Hadronic cross-section
$$d\sigma_{H_1H_2 \to h\gamma} = \sum_{a_1, a_2, a_3} \int_0^1 dx_1 \, dx_2 \, dz \, f_{a_1}^{H_1}(x_1, \mu_I) f_{a_2}^{H_2}(x_2, \mu_I) d_{a_3}^h(z, \mu_F) d\hat{\sigma}_{a_1a_2 \to a_3\gamma}^{ISO}(z, \mu_I) d\hat{\sigma}_{a_1a_2 \to a_3\gamma}$$

LO QCD

LO QED

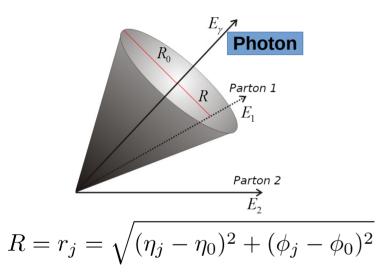
NLO QCD

Partonic cross-section

$$\begin{aligned} d\hat{\sigma}_{a_{1}a_{2}\rightarrow a_{3}\gamma}^{\mathrm{ISO}} &= \frac{\alpha_{s}}{2\pi} \frac{\alpha}{2\pi} \int d\mathrm{PS}^{2\rightarrow 2} \frac{|\mathcal{M}^{(0)}|^{2}(x_{1}K_{1}, x_{2}K_{2}, K_{3}/z, K_{4})}{2\hat{s}} \mathcal{S}_{2} \\ &+ \frac{\alpha_{s}^{2}}{4\pi^{2}} \frac{\alpha}{2\pi} \int d\mathrm{PS}^{2\rightarrow 2} \frac{|\mathcal{M}^{(1)}|^{2}(x_{1}K_{1}, x_{2}K_{2}, K_{3}/z, K_{4})}{2\hat{s}} \mathcal{S}_{2} \\ &+ \frac{\alpha_{s}^{2}}{4\pi^{2}} \frac{\alpha}{2\pi} \sum_{a_{5}} \int d\mathrm{PS}^{2\rightarrow 3} \frac{|\mathcal{M}^{(0)}|^{2}(x_{1}K_{1}, x_{2}K_{2}, K_{3}/z, K_{4})}{2\hat{s}} \mathcal{S}_{3} \end{aligned} \begin{aligned} q\bar{q} \rightarrow \gamma g &= q\bar{q} \rightarrow \gamma g \\ q\bar{q} \rightarrow \gamma g &= q\bar{q} \rightarrow \gamma g \\ q\bar{q} \rightarrow \gamma q \mathcal{Q} \overrightarrow{q} \rightarrow \gamma q \mathcal{Q} \end{aligned} \end{aligned}$$

Computational details

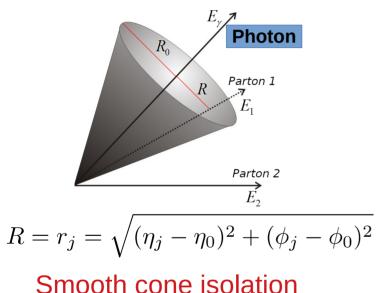
The selection procedure is given by the Smooth Cone Isolation algorithm



Smooth cone isolation

Computational details

The selection procedure is given by the Smooth Cone Isolation algorithm



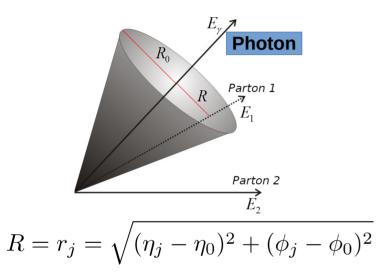
 $(-\phi_0)^2$ γ is Isolate Else: γ is not Is

Selection criteriaDefine: $E_T(r) = \sum_j E_{T_j} \Theta(r - r_j)$ If $E_T(r) < \xi(r)$ Then: γ is IsolatedElse: γ is not Isolated

Smooth function: $\xi(r) = \epsilon_{\gamma} E_T^{\gamma} \left(\frac{1 - \cos(r)}{1 - \cos r_0}\right)^4$

Computational details

The selection procedure is given by the Smooth Cone Isolation algorithm



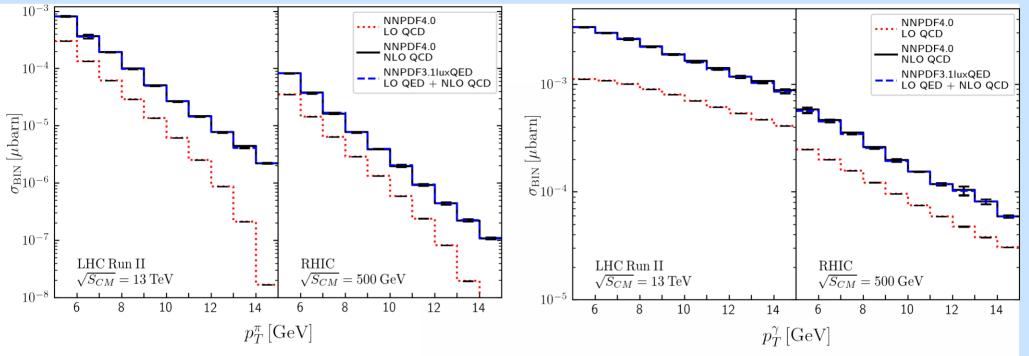
Smooth cone isolation

Smooth function: $\xi(r) = \epsilon_{\gamma} E_T^{\gamma} \left(\frac{1 - \cos(r)}{1 - \cos r_0} \right)^4$ Selection criteria Define: $E_T(r) = \sum_j E_{T_j} \Theta(r - r_j)$ If $E_T(r) < \xi(r)$ Then: γ is Isolated Else: γ is not Isolated

The cuts are used by STAR/PHENIX @ RHIC

 $|\eta^h| \le 0.35, \quad |\eta^\gamma| \le 0.35, \quad p_T^h \ge 2 \,\text{GeV}, \quad 5 \,\text{GeV} \le p_T^\gamma \le 15 \,\text{GeV}$

First: Photon + Hadron distributions

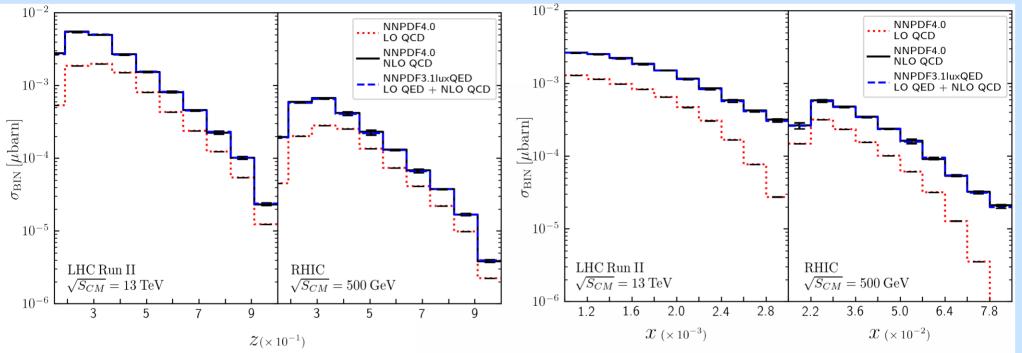


2112.05043 [hep-ph]

Transverse momentum distribution.

- The cross-section increases for higher c.m. energies.
- The distribution in p_T^{π} falls faster than the p_T^{γ} -spectrum, mainly because of the convolution with the FFs.

First: Photon + Hadron distributions



Fraction momentum distribution.

2112.05043 [hep-ph]

- Important NLO QCD corrections, but small percent-level LO QED ones.
- The experimental cut in p_T^{γ} induces a restriction on the maximum value of **x** involved in the collision.
- The distribution present a peak, located at $\mathbf{z}_{\text{peak}} \approx 0.35$ for RHIC $\mathbf{z}_{\text{peak}} \approx 0.25$ for LHC Run II.

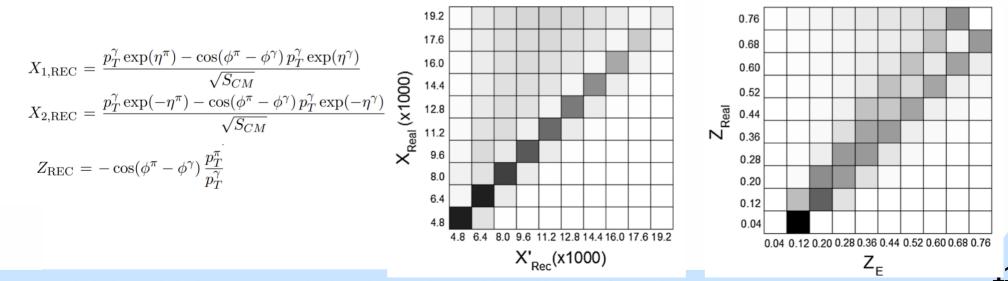
Experimentally accessible quantities:

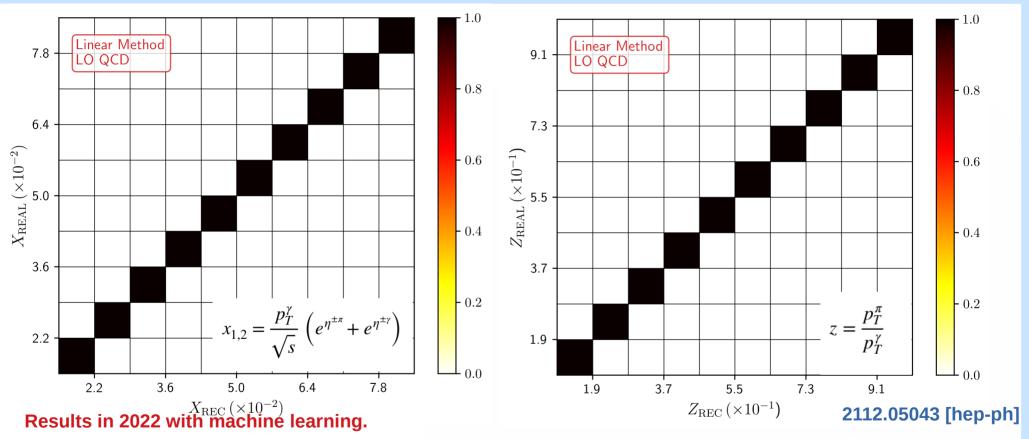
$$\overline{\mathcal{V}}_{\mathrm{Exp}} = \{ \overline{p}_T^{\gamma}, \overline{p}_T^{\pi}, \overline{\eta}^{\gamma}, \overline{\eta}^{\pi}, \overline{\mathrm{cos}}(\phi^{\pi} - \phi^{\gamma}) \} \blacktriangleleft$$

Exactly solutions at LO accuracy

$$x_{1,2} = \frac{p_T^{\gamma}}{\sqrt{s}} \left(e^{\eta^{\pm \pi}} + e^{\eta^{\pm \gamma}} \right) \qquad \qquad z = \frac{p_T^{\pi}}{p_T^{\gamma}}$$

Approximation solutions at NLO QCD accuracy





- We started with LO cross-sections, and applied linear regression.
- We used the basis: $\mathcal{B}_{\text{LO}} = \{ \frac{p_T^{\gamma}}{\sqrt{S_{CM}}} \exp(\eta^{\pi}), \frac{p_T^{\gamma}}{\sqrt{S_{CM}}} \exp(\eta^{\gamma}), \frac{p_T^{\gamma}}{\sqrt{S_{CM}}} \exp(-\eta^{\pi}), \frac{p_T^{\gamma}}{\sqrt{S_{CM}}} \exp(-\eta^{\gamma}), p_T^{\pi}/p_T^{\gamma} \}$

Reconstructions Methods

 $\mathbf{X} = \{ \mathbf{X}_{general}, X_{LO-ins}, X_{physically} \}$

• Linear Method

$$Y_{REC} = \sum_{i=k}^{i=0} \alpha_i x_i \text{ for } x_i \in X_j$$

j = general, LO-ins, physically

Gaussian Process Regression

$$Y_{REC} = \prod_{i} \exp\left(-||x - \mu_i||^2 / 2l^2\right)$$

Reconstructions Methods

 $\mathbf{X} = \{ \mathbf{X}_{general}, X_{LO-ins}, X_{physically} \}$

Linear Method

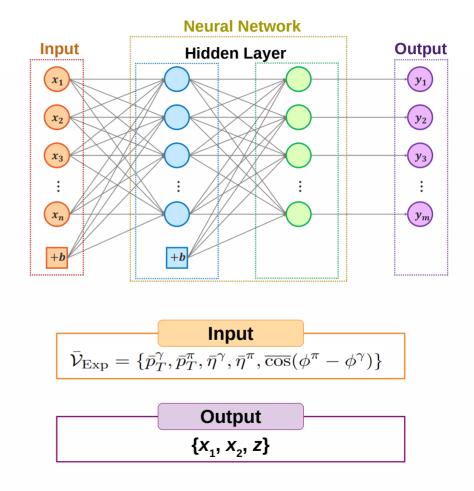
$$Y_{REC} = \sum_{i=k}^{i=0} \alpha_i x_i \text{ for } x_i \in X_j$$

- j = general, LO-ins, physically
- Gaussian Process Regression

$$Y_{REC} = \prod_{i} \exp\left(-||x - \mu_i||^2 / 2l^2\right)$$

Neural Network

The NN implemented in this work is a **Multilayer Perceptron** with 5 hidden layers, 300 neurons per layer and a Relu (Unitary Linear Rectifier) activation function.

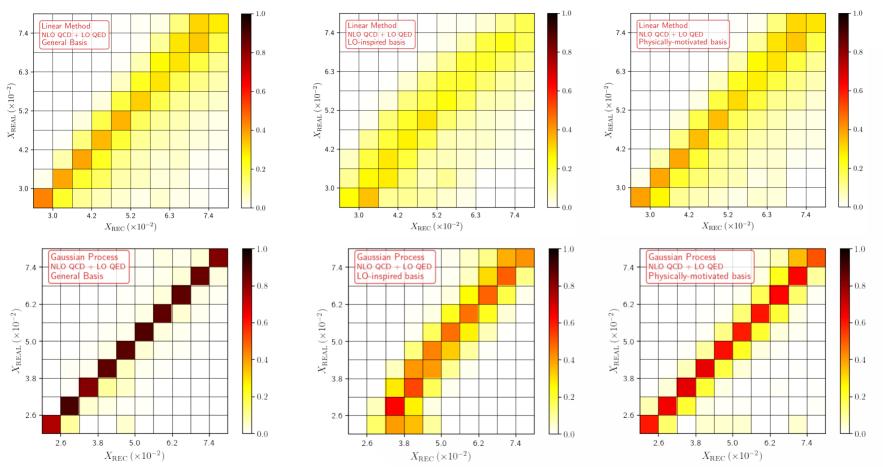


General basis:

$$\mathcal{K} = \{\frac{p_T^{\gamma}}{\sqrt{S_{CM}}}, \frac{p_T^{\pi}}{\sqrt{S_{CM}}}, \exp(\eta^{\gamma}), \exp(\eta^{\pi}), \cos(\phi^{\pi} - \phi^{\gamma}), (\frac{p_T^{\gamma}}{\sqrt{S_{CM}}})^{-1}, (\frac{p_T^{\pi}}{\sqrt{S_{CM}}})^{-1}, (\exp(\eta^{\gamma}))^{-1}, (\exp(\eta^{\pi}))^{-1}\}$$
$$Y_{\text{REC}} = \sum_{i=1, i \neq 5} (a_i^Y + b_i^Y \mathcal{K}_5) \mathcal{K}_i + \sum_{i \leq j, \{i,j\} \neq 5, j-i \neq 5} (c_{ij}^Y + d_{ij}^Y \mathcal{K}_5) \mathcal{K}_i \mathcal{K}_j$$

LO-inspired basis:

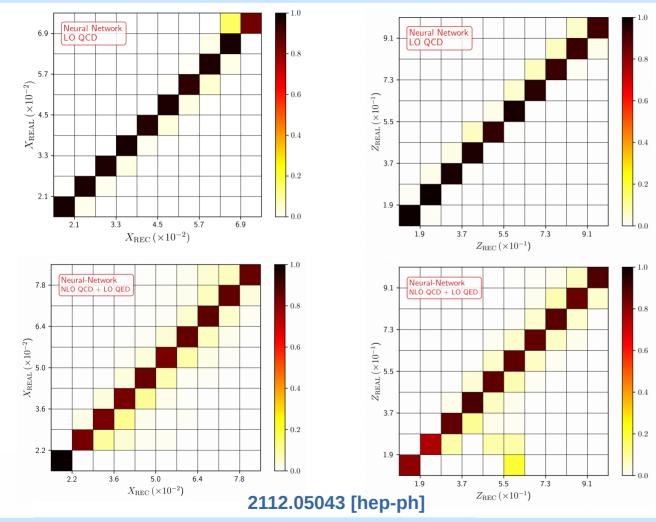
Physica



2112.05043 [hep-ph]

1.0 Linear Method Linear Method Linear Method NLO QCD + LO QED NLO QCD + LO QED NLO QCD + LO QED 8.0 8.0 8.0 General Basis Physically-motivated basis LO-inspired basis - 0.8 0.8 0.8 6.9 6.9 6.9 $Z_{\rm REAL}\left(\times 10^{-1}\right)_{\overset{{\rm G}}{\scriptstyle \rm SC}}$ $Z_{\rm REAL} \left(\times 10^{-1}\right)$ $Z_{\rm REAL} \left(\times 10^{-1}\right)_{\rm 8°}$ - 0.6 - 0.6 - 0.6 - 0.4 - 0.4 - 0.4 4.7 4.7 4.7 - 0.2 -0.2- 0.2 3.5 3.5 -3.5 0.0 - 0.0 - 0.0 3.5 4.7 5.8 6.9 8.0 3.5 4.7 5.8 6.9 8.0 3.5 4.7 5.8 6.9 8.0 $Z_{\rm REC}$ (×10⁻¹) $Z_{\rm REC}$ (×10⁻¹) $Z_{\rm REC} \, (\times 10^{-1})$ 1.0Gaussian Process Gaussian Process Gaussian Process NLO QCD + LO QED NLO QCD + LO QED NLO QCD + LO QED 9.3 -9.3 9.3 + General Basis LO-inspired basis Physically-motivated basis 0.80.8 0.87.9 7.9 7.9 $Z_{\rm REAL} (\times 10^{-1})$ $Z_{\rm REAL} (\times 10^{-1})$ $Z_{\rm REAL} (\times 10^{-1})$ 0.6 - 0.6 - 0.6 - 0.4 - 0.4 - 0.4 5.15.15.1- 0.2 - 0.2 - 0.2 3.7 3.7 3.7 0.0 0.0 $\pm_{0.0}$ 3.7 5.1 6.5 7.9 9.3 3.7 5.16.5 7.9 9.3 3.7 5.16.5 7.9 9.3 $Z_{\rm REC} (\times 10^{-1})$ $Z_{\rm REC} \, (\times 10^{-1})$ $Z_{\rm REC} \, (\times 10^{-1})$

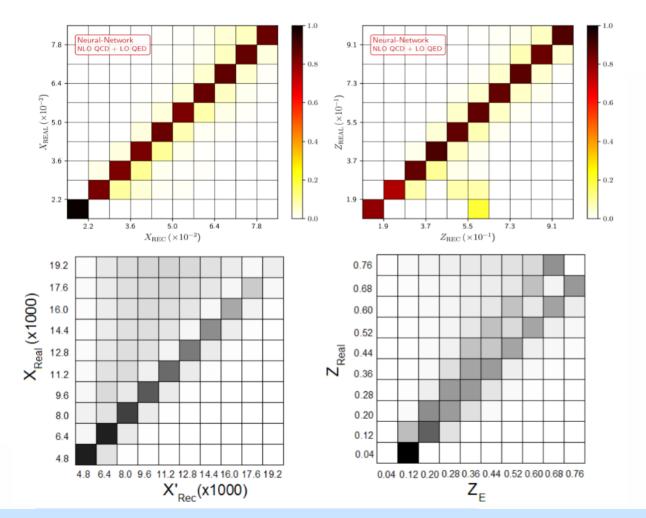
2112.05043 [hep-ph]



Neural Networks (NN) reconstruction

LO prediction

NLO QCD + LO QED prediction



arXiv:2112.05043 [hep-ph] Machine Learning 2022

arXiv:1011.0486 [hep-ph] Analytical formula approx 2011

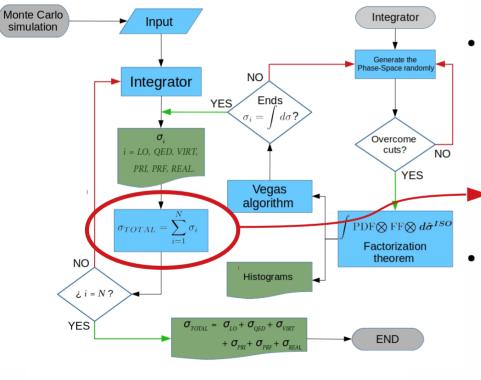
Conclusions

- Updated results are still consistent with '11 analysis (modifications come from new PDFs and better FFs)
- LM: better for large-size basis
- GR: has more flexibility, and better agreement w.r.t. LM (improvement in X)
- NN: based on MLP, offers the best balance between assumptions and quality of the reconstruction

MLP techniques (specially NN) offers an outstanding framework to understand the partonic kinematics in an (almost) automatized and (almost) human-independent way

Thanks!

Reconstructing $\{x, z\}$ at higher-order



- NLO corrections involve: real (2-to-3), virtual (2-to-2), counterterms (2-to-2).
- Create "bins" in the external variables and compute the cross-section:

$$p_j = \{\bar{p}_T^{\gamma}, \bar{p}_T^{\pi}, \bar{\eta}^{\gamma}, \bar{\eta}^{\pi}, \overline{\cos}(\phi^{\pi} - \phi^{\gamma})\} \in \bar{\mathcal{V}}_{\text{Exp}}$$

$$\sigma_j(\bar{p}_T^{\gamma}, \bar{p}_T^{\pi}, \bar{\eta}^{\gamma}, \bar{\eta}^{\pi}, \overline{\cos}(\phi^{\pi} - \phi^{\gamma})) = \int_{(p_T^{\gamma})_{j,\mathrm{MIN}}}^{(p_T^{\gamma})_{j,\mathrm{MAX}}} dp_T^{\gamma} \int_{(p_T^{\pi})_{j,\mathrm{MIN}}}^{(p_T^{\pi})_{j,\mathrm{MAX}}} dp_T^{\pi} \dots \times \int dx_1 dx_2 dz \, d\bar{\sigma}$$

• Weight the MC momentum fractions with the cross-section per bin:

$$(x_1)_j = \sum_i (x_1)_i \frac{d\sigma_j}{dx_1} (p_j; (x_1)_i)$$
$$(z)_j = \sum_i z_i \frac{d\sigma_j}{dz} (p_j; z_i)$$

Motivation

• Aim: reconstruct the momentum fractions x_1 , x_2 and z.

• Nowadays, Machine Learning is a tool that allows to make a predictive model to reconstruct $\{x_1, x_2, z\}$. Analysis of the internal structure of hadrons using direct photon production

2112.05043

1011.0486

PHYSICAL REVIEW D 83, 074022 (2011)

Hadron plus photon production in polarized hadronic collisions at next-to-leading order accuracy

Daniel de Florian and Germán F.R. Sborlini

Departamento de Física Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires Pabellón I, Ciudad Universitaria (1428) Capital Federal, Argentina (Received 3 November 2010; revised manuscript received 23 February 2011; published 27 April 2011)

We compute the next-to-leading order QCD corrections to the polarized (and unpolarized) cross sections for the production of a hadron accompanied by an opposite-side prompt photon. This process, being studied at RHIC, permits us to reconstruct partonic kinematics using experimentally measurable variables. We study the correlation between the reconstructed momentum fractions and the true partonic ones, which in the polarized case might allow us to reveal the spin-dependent gluon distribution with a higher precision.

2011

DOI: 10.1103/PhysRevD.83.074022

PACS numbers: 13.88.+e, 12.38.Bx, 13.87.Fh

David F. Rentería-Estrada,^a Roger J. Hernández-Pinto^a and German F. R. Sborlini^{b,c}

loa, Ciudad Universi-

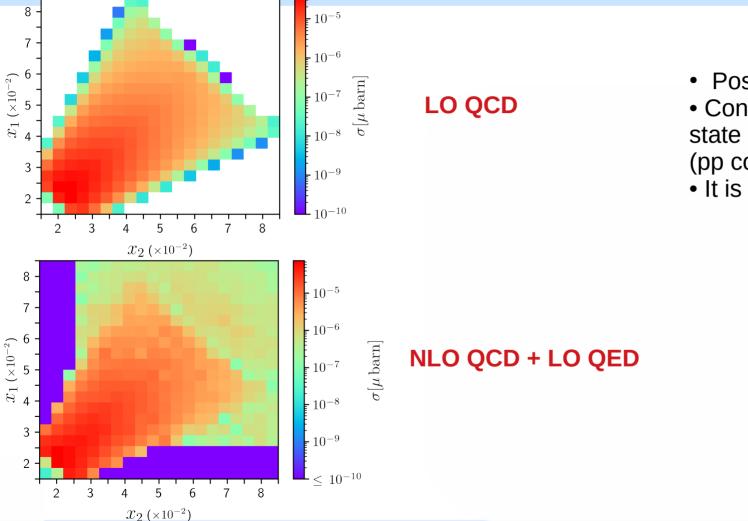
ior de Investigaciones

ien, Germany.

Reconstructing partonic kinematics at colliders with Machine Learning

f hadrons is a hard as starting from first is necessary to use article, we describe . Using up-to-date orrections to hadron b Instituto de Física Corpuscular, Universitat de València – Consejo Superior de Investigaciones Científicas, Parc Científic, E-46980 Paterna, Valencia, Spain ^c Deutsches Elektronen-Synchrotron DESY, Platanenallee 6, 15738 Zeuthen, Germany ^d Institut für Theoretische Physik, Universität Regensburg, 93040 Regensburg, Germany, Universität Regensburg, Germany E-mail: davidrenteria.fcfm@uas.edu.mx, roger@uas.edu.mx, german.sborlini@desy.de, maria.zurita@ur.de

Photon + Hadron correlations



• Positive correlation

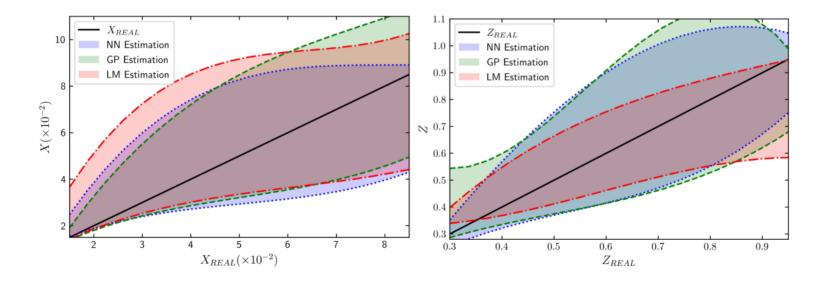
- Consequence of the initial state symmetry (pp collision)
- It is a cross-check

This procedure leads to three functions for reconstructing each momentum fraction: given a kinematic point in the grid, $p_j \in \bar{V}_{Exp}$, we have

$$X(p_j) \equiv \{X_{\text{REC}}^{(\xi=2)}(p_j), X_{\text{REC}}^{(\xi=1)}(p_j), X_{\text{REC}}^{(\xi=1/2)}(p_j)\},$$
(50)

and define

$$X_{\text{REC}}(p_j) = \overline{X(p_j)} \pm \frac{\max(X(p_j)) - \min(X(p_j))}{2} \equiv \overline{X(p_j)} \pm \Delta X(p_j), \quad (51)$$



Parameters	TEST 1	TEST 2	TEST 3
# hidden layers	2	4	3
# neurons/layer	50	100	100
tolerance	10^{-2}	10^{-2}	10^{-3}
max. number of iterations	108	10 ⁸	109
# iterations w/o change	14,000	21,000	100,000

Table 3: Architectures for the MLP of three different tests for the reconstruction of the momentum fractions at NLO in QCD. All parameters are taken to be the same for X_{REC} and Z_{REC} .

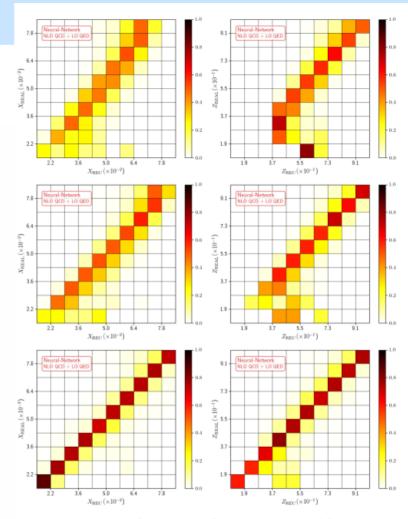


Figure 19: Comparison of the momentum fractions X_{REAL} vs. X_{REC} (left) and Z_{REAL} vs. Z_{REC} (right) obtained with MLP at NLO QCD + LO QED accuracy. The parameters for TEST1 (upper row), TEST2 (middle row) and TEST3 (lower row) are given in Table 3.

	X_{REC} (LO)	Z_{REC} (LO)	X_{REC} (NLO)	Z _{REC} (NLO)
# of hidden layers	2	1	5	5
# of neurons/layer	200	100	300	300
activation function	ReLU	ReLU	ReLU	ReLU
# iterations	1×10^{5}	1×10^{5}	1×10^{12}	1×10^{12}
learning rate	1×10^{-3}	1×10^{-3}	1×10^{-4}	1×10^{-4}

Table 2: Architecture for the MLP best fit parameters for the reconstruction of the momentum fractions at LO in QCD: $X_{REC}(LO)$ and $Z_{REC}(LO)$ (second and third columns), and for the momentum fractions at NLO QCD + LO QED: $X_{REC}(NLO)$ and $Z_{REC}(NLO)$ (fourth and fifth columns).

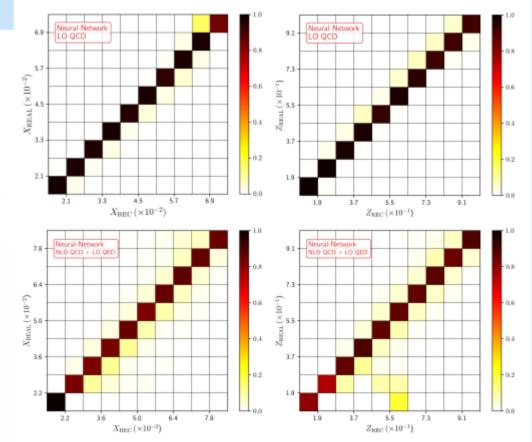
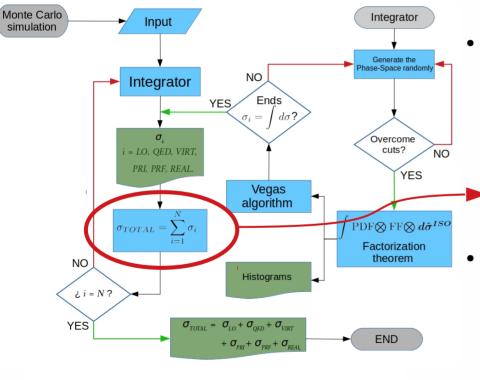


Figure 15: Left: Comparison of the momentum fractions X_{REAL} and X_{REC} obtained with MLP neural networks with the parameters given in Table 2. The upper (lower) row corresponds to the LO QCD (NLO QCD + LO QED) data set. Right: same as the l.h.s but for Z_{REAL} and Z_{REC} .

Reconstructing $\{x, z\}$ at higher-order



- NLO corrections involve: real (2-to-3), virtual (2-to-2), counterterms (2-to-2).
- Create "bins" in the external variables and compute the cross-section:

$$p_j = \{\bar{p}_T^{\gamma}, \bar{p}_T^{\pi}, \bar{\eta}^{\gamma}, \bar{\eta}^{\pi}, \overline{\cos}(\phi^{\pi} - \phi^{\gamma})\} \in \bar{\mathcal{V}}_{\text{Exp}}$$

$$\sigma_j(\bar{p}_T^{\gamma}, \bar{p}_T^{\pi}, \bar{\eta}^{\gamma}, \bar{\eta}^{\pi}, \overline{\cos}(\phi^{\pi} - \phi^{\gamma})) = \int_{(p_T^{\gamma})_{j,\mathrm{MIN}}}^{(p_T^{\gamma})_{j,\mathrm{MAX}}} dp_T^{\gamma} \int_{(p_T^{\pi})_{j,\mathrm{MIN}}}^{(p_T^{\pi})_{j,\mathrm{MAX}}} dp_T^{\pi} \dots \times \int dx_1 dx_2 dz \, d\bar{\sigma}$$

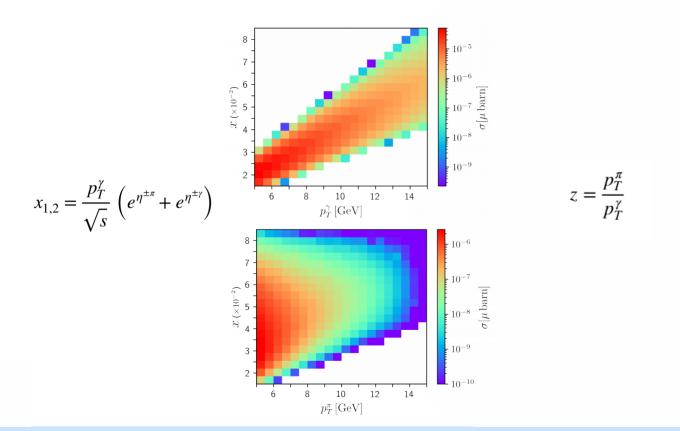
• Weight the MC momentum fractions with the cross-section per bin:

$$(x_1)_j = \sum_i (x_1)_i \frac{d\sigma_j}{dx_1} (p_j; (x_1)_i)$$
$$(z)_j = \sum_i z_i \frac{d\sigma_j}{dz} (p_j; z_i)$$

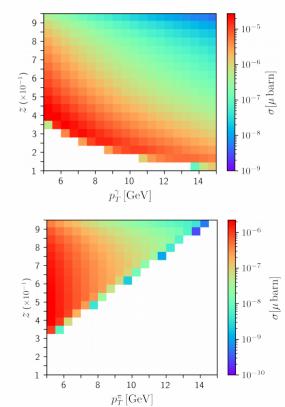
Second: Photon + Hadron correlations

LO kinematics

• x vs p_T



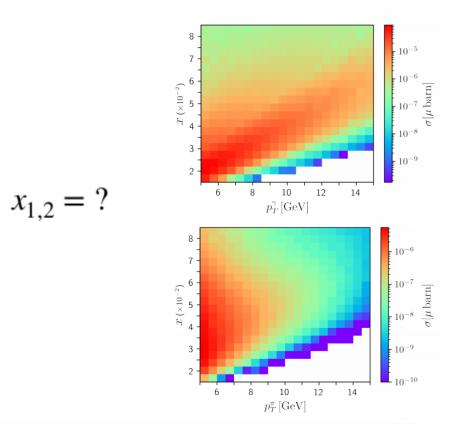
• $z vs p_T$



Second: Photon + Hadron correlations

NLO kinematics

• x vs p_T



• z vs p_T

