Top quark and vector meson production in heavy ion collisions at CMS

Luis F. Alcerro I.alcerro@cern.ch

Collaborators: C. Royon (Ph.D. advisor), G. Krintiras, M. Walczack

Department of Physics & Astronomy University of Kansas

Top quark:

- Discovered in 1995 in Tevatron
- Heaviest particle in the SM: $m_t \sim 173 \text{ GeV}$
- •Yukawa coupling $y_t = \sqrt{2m/v} \sim 1$
- Decay time : ~ $10^{-24}s$
- Decay modes:

 $\circledast t \rightarrow bW \rightarrow b + \ell \nu$ ($\sim 33\,\%$)

 $\bullet t \rightarrow bW \rightarrow b + q\overline{q} (\sim 66\%)$

High production rate at the LHC

Primarily produced in $t\bar{t}$ pairs by gluon fusion

Channels:

- $\ell + jets$ (semileptonic): $t\overline{t} \to bb'W(\to \ell\nu)W'(\to q\overline{q'})$ High BR
- Dilepton (leptonic): $t\bar{t} \rightarrow bb'W(\rightarrow \ell\nu)W'(\rightarrow \ell'\nu')$ Cleanest
- All jets (hadronic):
 $t\bar{t} \rightarrow bb'W(\rightarrow q\bar{q'})W'(\rightarrow q''\bar{q''})$ Dirtiest and more challenging.

- Since its discovery, $t\bar{t}$ observed in CMS:
 - * $t\bar{t}$ in pp: $\sqrt{s} = 5$ arXiv:2112.09114, 7, 8, JHEP 08 (2016) 029 Eur. Phys. J.C. 77, <u>15 (2017)</u> **13** JHEP 09 (2017) 051 Eur. Phys. J.C. 77, 172 (2017) TeV
 - * $t\bar{t}$ in pPb: $\sqrt{s} = 8$ TeV <u>Phys. Rev. Lett. 119, 242001</u>
- Motivation:
 - pp:
 - PA and AA profit from pp measurements.
 - Constrain to proton PDF ($x \sim 1/\sqrt{s}$).

pA and AA:

- Probe for nuclear PDFs
- Paves the way for using tops as a probe for QGP.

- First evidence of $t\bar{t}$ in nucleus-nucleus using PbPb collision data recorded by CMS in 2018 at $\sqrt{s} = 5.02 \,\text{TeV}_{\text{Phys. Rev. Lett. 125, 222001}}$
- Data sample corresponds to $\mathscr{L} = 1.7 \pm 0.1 \ nb^{-1}$
- Dilepton ($t\bar{t} \rightarrow \ell^+ \ell^- \nu_\ell \overline{\nu}_\ell b\bar{b}$) final states were analyzed.
 - BR($t\bar{t} \to \ell^+ \ell^- \nu_\ell \overline{\nu}_\ell b\bar{b}$) ~ 5 %
- Two methods to extract $\sigma_{t\bar{t}}$:
 - Dilepton only: Final state kinematic properties alone
 - Dilepton + b-jets: Imposing extra requirements on the number of b-tagged jets

Theoretical prediction (CT14 NLO +

CMS-HIN-19-001

- Compatible with *pp* scaled data and QCD calculations.
- Statistical uncertainties dominate by far.
- Service of top production in PbPb

Going further dileptons...

- $t\bar{t}$ in pp: baseline reference for AA
 - $t\bar{t}$ in pp at 5.02 TeV update in dilepton channel with 2017 data. arXiv:2112.09114
 - Dilepton & $\ell + jets$ channel accessible
 - Reaching higher precision

 $\sigma_{t\bar{t}} = 69.5 \pm 6.1 \text{ (stat)} \pm 5.6 \text{ (syst)} \pm 1.6 \text{ (lumi) pb}$

dilepton(2017) & $\ell + jets$ (2015)

 $\sigma_{t\bar{t}} = 63.0 \pm 4.1 \ (stat) \pm 3.0 \ (syst + lumi) \ pb$

Projections for $t\bar{t}$ in PbPb at HL-LHC

- Focusing on dilepton only method (no b-jets).
- Total uncert. expected to be halved w.r.t. Run 2.

Top quark as a probe for QGP

- $\tau_t \sim 10^{-24}$ sec. Does not hadronize and decays before QCD mechanisms start acting.
- Unlike other jet quenching probes (dijets, $Z/\gamma + jets$) which are produced simultaneously with the collision, tops can resolve the time evolution of QGP:

- Depending p_t tops can decay before or within QGP.
- Taking "snapshots" at different times (p_t), one could resolve the QGP time evolution.
- Semileptonic $t\bar{t}$ represents a "golden channel":
 - High BR
 - Good S/B

Vector mesons in UPC

Central HI collisions mainly devoted to study quark matter properties: Y(nS) S. Lee, QM2022 slides

© Ultra-Peripheral HI Collisions (UPC):

- Interplay between QED, QCD and BSM.
- Impact parameter $b > R_1 + R_2$ (nuclei don't "touch" each other.

- Large photon flux $\sim Z^2$ (Fermi/Weizsacker-Williams see Mariola's talk).
- Experimentally clean. (Paradoxically HI collisions are the messiest and cleanest!).

 J/ψ candidates in a central PbPb collision (left) and in an ultra-peripheral collision (right).

Upsilon production in HI UPC

Boundary Methods Weights and Set up and Set of the Set of Section 4.1 Set of Section 4.1 Constant of Section 4.1 C

- Photon produced from one ion fluctuates to a quark-antiquark pair which interacts with the other nucleus via two gluon color singlet.
- $Pb+Pb \rightarrow Pb + V + Pb$

Relevance:

Understand nuclear structure: nuclear PDFs, specially at lox x. (Nucleus is not just a simple superposition of protons and neutrons).

Constrains theoretical models of nuclei.

Upsilon production in HI UPC

Relevant related analyses by CMS:

Υ photo-production in pPb <u>arXiv:1809.11080</u> at 5.02 TeV

Relevant related analyses by CMS:

 I/ψ photoproduction in PbPb at 2.76 TeV <u>arXiv:1605.06966</u>

Summary

Top quark:

- $t\bar{t}$ at $\sqrt{s} = 5,7,8,13$ TeV.
- $t\bar{t}$ in pp, pPb and and evidence in PbPb.
- Looking forward for observation with Run 3 data.
- Top quark in HI is unique probe to resolve the time evolution of QGP.

Vector meson in UPC:

- Important for nPDF determination.
- Relevant to understand saturation.
- Quarkonium photoproduction analyses ongoing (J/ψ to be approved soon...).

Backup slides

Backup

Identification of b-jets

Combined Secondary Vertex Algorithm (CS) CSv2V Run II): combines the info. of displace tracks and secondary vertices associated with jet using MVA.

JINST 13 (2018) P05011

ea	$\mathbf{\Theta}$	~ /	0
	Input variable	Run 1 CSV	CSVv2
th the	SV 2D flight distance significance	Х	Х
	Number of SV	—	Х
	Track $\eta_{\rm rel}$	Х	Х
	Corrected SV mass	Х	Х
	Number of tracks from SV	Х	Х
	SV energy ratio	Х	Х
	$\Delta R(SV, jet)$	—	Х
	3D IP significance of the first four tracks	Х	Х
our	Track $p_{T,rel}$	—	Х
	$\Delta R(\text{track}, \text{jet})$	—	Х
	Track <i>p</i> _{T,rel} ratio	—	Х
	Track distance	—	Х
	Track decay length	—	Х
	Summed tracks $E_{\rm T}$ ratio	—	Х
	ΔR (summed tracks, jet)	—	Х
	First track 2D IP significance above c threshold	—	Х
	Number of selected tracks	—	Х
	Jet <i>p</i> _T	—	Х
	Jet η	—	Х

Backup

Boosted Decision Trees (BDT)

CERN-OPEN-2007-007

Solution $t\bar{t}$ in PbPb: BDT is trained with kinematics of the two leading- p_T leptons.

- p_T of leading lepton, $p_T(\ell_1)$
- Asymmetry in lepton- p_T 's, $\frac{p_T(\ell_1) p_T(\ell_2)}{p_T(\ell_1) + p_T(\ell_2)}$
- Dilepton system $p_T, p_T(\ell \ell)$
- Dilepton system pseudorapidity, $|\eta(\ell \ell)|$
- Absolute azimuthal separation in ϕ of the two leptons, $|\Delta \phi(\ell \ell)|$
- Sum of absolute η 's of leptons, $\sum |\eta_i|$

CMS-HIN-19-001

