Effective dark matter-standard model interactions with spin-one mediators

Fabiola Elena Fortuna Montecillo

Work done in collaboration with Pablo Roig

e-Print: 2208.12330 [hep-ph]

CINVESTAV

XVIII Mexican Workshop on Particles and Fields

November 2022

November 2022

Fabiola Fortuna

▲圖 ▶ ▲ 圖 ▶ ▲ 圖 ▶

1

э

Outline

Motivation

Effective Field Theory Lagrangian

Observacional limits

Direct Detection Experiments Limits from dwarf spheroidal satellite galaxies (dSphs) Limits from AMS-02 positron measurements

Collider constraints

Results

November 2022

Fabiola Fortuna

▲御 → ▲ 臣 → ▲ 臣 → 二 臣

2

Evidence for dark matter is abundant and compelling

6000

November 2022

Fabiola Fortuna

3

э

Effective Field Theory

DM-SM interaction.¹

Heavy mediators that can be scalars, fermions or vectors.

Dark sector:

Scalars Φ

Fermions Ψ

Vectors X

The mediators are weakly coupled to both sectors, dark and standard.

- The dark fields transform non-trivially under \mathcal{G}_{DM} .
- All SM particles are singlets under $\mathcal{G}_{DM} \rightarrow$ stable DM particle.
- All dark fields are singlets under $\mathcal{G}_{SM} = SU(3) \otimes SU(2) \otimes U(1)$.
- The consequence of interactions generated by a mediator are:

$$\mathcal{O} = \mathcal{O}_{\mathsf{SM}} \mathcal{O}_{\mathsf{dark}} \tag{1}$$

▲□ → ▲ □ → ▲ □ → □

4

In the effective lagrangian, each term has a factor $1/\Lambda^n$, $n = \dim(\mathcal{O}) - 4$.

As we assume that the dark fields transform non-trivially under \mathcal{G}_{DM} , we know that $\mathcal{O}_{\text{dark}}$ contains at least two fields.

¹González-Macías & Wudka *JHEP 1507 (2015) 161*. Follow-up work: González-Macías et al. *JHEP 05 (2016) 171* and Lamprea et al. *Phys.Rev.D 103 (2021) 1, 015017*.

November 2022

Lagrangian

Terms with dark fermions (Ψ) :

$$\mathcal{L}_{\text{eff}}^{\Psi} = \frac{\Upsilon_{\text{eff}}}{\Lambda} B_{\mu\nu} \bar{\Psi} \sigma^{\mu\nu} \Psi + \frac{A_{\text{eff}}^{L,R}}{\Lambda^2} \bar{\psi} \gamma_{\mu} \psi \bar{\Psi} \gamma^{\mu} P_{L,R} \Psi + \frac{\kappa_{\text{eff}}^{L,R}}{\Lambda^2} B_{\mu\nu} \bar{\Psi} (\gamma^{\mu} \overset{\leftrightarrow}{\mathcal{D}}^{\nu} - \gamma^{\nu} \overset{\leftrightarrow}{\mathcal{D}}^{\mu}) P_{L,R} \Psi.$$
(2)

Terms with dark bosons (X, Φ) :

$$\mathcal{L}_{\text{eff}}^{\Phi,X} = \frac{\zeta_{\text{eff}}}{\Lambda} B_{\mu\nu} X^{\mu\nu} \Phi + \frac{\epsilon_{\text{eff}}}{\Lambda^2} \bar{\psi} \gamma_{\mu} \psi \frac{1}{2i} \Phi^{\dagger} \overleftrightarrow{\mathcal{D}}^{\mu} \Phi.$$
(3)

Where

$$B = A\cos\theta - Z\sin\theta. \tag{4}$$

November 2022

Fabiola Fortuna

æ

< 回 > < 回 > < 回 >

Observational limits

We introduce the following notation that we will use below:

$$OP1 \equiv B_{\mu\nu}\bar{\Psi}\sigma^{\mu\nu}\Psi,$$

$$OP2 \equiv \bar{\psi}\gamma^{\mu}\psi\bar{\Psi}\gamma_{\mu}P_{L,R}\Psi,$$

$$OP3 \equiv B_{\mu\nu}\bar{\Psi}(\gamma^{\mu}\overset{\leftrightarrow}{\mathcal{D}^{\nu}} - \gamma^{\nu}\overset{\leftrightarrow}{\mathcal{D}^{\mu}})P_{L,R}\Psi,$$

$$OP4 \equiv B_{\mu\nu}X^{\mu\nu}\Phi,$$

$$OP5 \equiv \frac{1}{2i}\left(\bar{\psi}\gamma^{\mu}\psi\right)\left(\Phi^{\dagger}\overset{\leftrightarrow}{\partial}_{\mu}\Phi\right).$$
(5)

Besides, we use the effective couplings that correctly reproduce the observed relic abundance.

We also analyze the combined contributions with the same DM candidate, with the following relations between the Λ scales and the *C* coefficients of the operators:

$$\Lambda_{\dim 6} = \Lambda_{\dim 5}, \qquad C_{\dim 6} = \pm C_{\dim 5}. \tag{6}$$

< 回 > < 回 > < 回 >

6

э

Ð

November 2022

Fabi

Direct Detection Experiments

Currently the most stringent limit on spin-independent scattering cross sections of DMnucleon come from the LUX-ZEPLIN, PandaX-4T and XENON1T. We study DMnucleon cross sections in the limit where the relative velocity goes to zero, using micrOMEGAs.

November 2022

Fabiola Fortuna

7

Limits from dwarf spheroidal satellite galaxies (dSphs)

The dwarf spheroidal satellite galaxies (dSphs) of the Milky Way are some of the most DM dominated objects known. Drlica-Wagner et al. ² searched for gamma-ray emission coincident with the positions of the dSphs in six years of Fermi Large Area Telescope data and no significant excesses of gamma-ray emission were found.

November 2022

Fabiola Fortuna

8

Limits from AMS-02 positron measurements

Ibarra, Lamperstorfer and Silk 3 used measurements of the positron flux to derive limits on the dark matter annihilation cross section and lifetime for various final states, and extracted strong limits on DM properties.

³Alejandro Ibarra, Anna S. Lamperstorfer, and Joseph Silk. Dark matter annihilations and decays after the AMS-02 positron measurements. *Phys. Rev.* D89(6):063539, 2014.

November 2022

Collider constraints

The effective operators we are working with allow for the pair production of WIMPs (χ) in the proton-proton collisions at the LHC. If one of the incoming partons radiates a jet through initial state radiation (ISR), one can observe the process $pp \rightarrow \chi\chi j$ as a single jet associated with missing transverse energy (E_T) . In this study, we include the ATLAS ⁴ monojet analysis based on 139 fb⁻¹ of data from Run II.

Operator	Dim.	DM candidate	Allowed mass (GeV) ⁵
1 $B_{\mu u} \bar{\Psi} \sigma^{\mu u} \Psi$	5	Ψ fermion	pprox 0.0025 – 2, $pprox$ 33 – 44.5
2 $\bar{\psi}\gamma_{\mu}\psi\bar{\Psi}\gamma^{\mu}P_{L,R}\Psi$	6	Ψ fermion	none
3 $B_{\mu\nu} \bar{\Psi} (\gamma^{\mu} \overset{\leftrightarrow}{\mathcal{D}^{\nu}} -\gamma^{\nu} \overset{\leftrightarrow}{\mathcal{D}^{\mu}}) P_{L,R} \Psi$	6	Ψ fermion	pprox 33 – 44.5
4 $B_{\mu\nu}X^{\mu\nu}\Phi$	5	vector X , scalar Φ	pprox 0.11-2, pprox 36-44.5
5 $\bar{\psi}\gamma_{\mu}\psi\frac{1}{2i}\Phi^{\dagger}\overset{\leftrightarrow}{\mathcal{D}^{\mu}}\Phi$	6	scalar Φ	none
1+2	5+6	Ψ fermion	pprox 0.0025 - 2
1+3	5+6	Ψ fermion	pprox 0.0025 - 2, pprox 33 - 44.5
2+3	6	Ψ fermion	none

⁴Georges Aad et al. Phys. Rev. D, 103(11):112006, 2021.

⁵Fortuna, Roig and Wudka. JHEP 02(2021) 223.

November 2022

Fabiola Fortuna

<回><同><日><日

Collider constraints. OP1

November 2022

Collider constraints. OP3

November 2022

Fabiola Fortuna

æ

< □ > < □ > < □

Collider constraints. OP4

November 2022

Fabiola Fortuna

æ

(日本)(日本)

Collider constraints. OP1 & OP2

November 2022

Fabiola Fortuna

æ

< 部 > < 注 > < 注

Collider constraints. OP1 & OP3

November 2022

Summary of results

We recall that the effective coefficients are the ones that correctly reproduce the relic abundance.

Operator	Dim.	DM candidate	Allowed mass (GeV) ⁶
1 $B_{\mu\nu}\bar{\Psi}\sigma^{\mu\nu}\Psi$	5	Ψ fermion	> 1000
2 $\left(\bar{\psi}\gamma_{\mu}\psi\right)\left(\bar{\Psi}\gamma^{\mu}P_{L,R}\Psi\right)$	6	Ψ fermion	none
3 $B_{\mu u} \overline{\Psi} (\gamma^{\mu} \stackrel{\leftrightarrow}{\mathcal{D}^{ u}}_{\nu} - \gamma^{ u} \stackrel{\leftrightarrow}{\mathcal{D}^{\mu}}) P_{L,R} \Psi$	6	Ψ fermion	> 1150
4 $B_{\mu\nu}X^{\mu\nu}\Phi$	5	vector X , scalar Φ	[32, 78] & > 600
5 $(\bar{\psi}\gamma_{\mu}\psi) \frac{1}{2i} \Phi^{\dagger} \overleftrightarrow{\mathcal{D}}^{\mu} \Phi$	6	scalar Φ	none
1 ± 2	5+6	Ψ fermion	none
1 + 3	5+6	Ψ fermion	> 1000
1 - 3	5+6	Ψ fermion	> 1100
2 ± 3	6	Ψ fermion	none

⁶e-Print: 2208.12330 [hep-ph]

▲■▶▲≣▶▲≣▶ ≣ のへで

November 2022

Thank you

November 2022

Fabiola Fortuna

æ

<日

<
