



# Search for heavy resonances decaying to ZZ or ZW and axion-like particles mediating non resonant ZZ or ZH production at sqrt(s) = 13 TeV

**XVIII Mexican Workshop on Particles and Fields** 

November 25<sup>th</sup>, 2022

Jorge Fernadez de Troconiz, UAM; Rogelio Reyes-Almanza, CINVESTAV

# Phenomenological Models

- Bosons like extension of the SM
  - Resonances, Non-resonances, Heavy narrow, or Light-mass and long-lived particles.
- Some resonant examples:
- Spin-1:
  - Heavy Vector Triplet (HVT) model (W' Z'). Two working points:
  - Model A: g\_V = 1; weakly coupled scenario. BR to fermions and EWK bosons similar;
  - Model B: g\_V = 3; strongly coupled scenario, typical of Composite Higgs Models; BR to EWK bosons dominant; sensitivity dominated by diboson analyses.
- Spin-2:
  - **KK-Graviton** from Bulk Warped Extra Dimension model; k\_tilde = 0.5.
  - BR to top, Higgs and EWK bosons are dominant.

### Phenomenological Models: ALPs

- ALPs (Axion-like Particles) are well motivated theoretically as neutral pseudo-scalar Pseudo-Goldstone Bosons (PGB) of a new spontaneously broken global symmetry. Examples: axions, technipions.
- ALP interactions parameterized with a general Effective Field Theory Lagrangian, consistent with SM gauge symmetries and CP. Two implementations of EFTs: linear (related to weakly coupled new physics models, minimal) and chiral (related to strongly coupled new physics models, more parameters).
- ALP interactions are derivative: they grow with momentum; couplings are proportional to Wilson coefficient *c* and inversely proportional to new physics energy scale *f<sub>a</sub>*. This is a real advantage for highenergy experiments.
- Colliders allow searches in a wide range of ALP masses and couplings. We can explore ALP masses beyond astrophysical constraints, and even there, provide important crosschecks. At the LHC, natural sensitivity is to f<sub>a</sub> scales in the TeV region.

#### Phenomenological Models: GGF ALP-Mediated Processes

- Gluon-initiated ALP-mediated processes provide new possibilities to test the ALP universe beyond classical searches.
- These channels are sensitive to the product of the ALP coupling to gluons times the coupling to EWK dibosons.



#### GGF ALP-Mediated Non-Resonant Diboson Production

- Off-shell ALP production. This is very promising because the cross-sections are large enough to constraint significantly the theoretical models using data.
- ALPs are s-channel mediators in gg → VV production with s-hat >> M<sub>a</sub><sup>2</sup>. The size of s-hat is enhanced by the mass threshold of the on-shell diboson system in the final state; but most importantly by the hard pT-spectrum provided by the derivative couplings.
- The analysis uses the ZV, WW, ZH searches looking for high-pT / high-mass deviations in the tails of the transverse momentum / mass spectra with respect to SM expectations.
- For ALPs light enough the cross-sections, kinematical distributions, and expected limits are found independent of M<sub>a</sub>, from the very-light limit up to masses of the order of 100 GeV.

### Hadron Z / W / H: Resonances and Non-resonances

ATLAS, Eur. Phys. J. C 80 (2020) 1165



gluon-iniated ALP-mediated

CMS, JHEP 04 (2022) 087

# Hadron Z / W / H: Resonances and Non-resonaces

Josephille Color MMMM X XEvents 20 **Pros: Large Branching Fractions** -Sensitive in 400-2000 GeV mass region 15 Signal Cons: Large backgrounds from QCD V+jets. 10 -Estimate via NLO QCD and/or sideband (SB) data. SM Bkg

# Experiment and Reconstruction

27 km

MA

**CERN** Prévessi

ATLA

FRN

# Experiment: CMS at LHC







#### Experiment: CMS at LHC







# **Experiment: CMS triggering**

#### • Required:

- Look at (almost) all bunch crossings,
- Select most interesting ones.
- Collect all detector information and store/sort it for off-line analysis. Trigger is a function of



# Experiment: CMS triggering

#### • Two levels;

- L1; recognize parameters as charge, time, patterns, etc.
- HLT; algorithms to filter L1 objects, and build complete events.
- Trigger menus; sum of all object definitions and algorithms to take a decision and build an event.
  - Adjust thresholds to be sensitive to electroweak or new physics.
  - "Single muon trigger"
  - "Single electron trigger"



#### **Reconstruction : CMS Particle Flow**

- Principle: Combine information from all detectors. Trading information from low- to high-resolution detectors

- Deal types of particles



#### DOI:10.1088/1748-0221/12/10/P10003

#### **Reconstruction: Leptonic**





#### Reconstruction: Hadronic (Jets)



CMS Experiment at LHC, CERN Data recorded: Mon May 23 21:46:26 2011 EDT Run/Event: 165567 / 347495624 Lumi section: 280 Orbit/Crossing: 73255853 / 3161

#### Hadronic Z / W / H: Heavy Resonance = Boosted Regime



# Z, W, H Jets vs QCD

- Standard discrimination against QCD in CMS uses:
  - 1. PU mitigation: CHS: Charged Hadron Subtraction, PUPPI: Pile Up Per Particle Identification.
  - 2. Jet Grooming: Recluster jet removing soft radiation and wide angle constituents (PU). Main observable is the groomed M(J); grooming pushes QCD to lower M(J) values and improves signal mass resolution. The Soft Drop method.
  - **3.** Jet Substructure: **N-subjettiness** is a measure of how consistent a jet is with a hypothesized number of subjets.
  - B-tagging in boosted topologies: DeepCSV: Combined Secondary Vertex on SD subjets; Double-B: Double b-tagging (mostly) dedicated to boosted H decays. DeepJet, DeepAK8 and etc.

# Z, W, H Jets vs QCD: Soft Drop Grooming (SD)

- After re-clustering CA into 2 subjets:
- If  $\frac{\min(pT1,pT2)}{pT1+pT2} > z_{cut} \left(\frac{\Delta R_{12}}{R_0}\right)^{\beta}$ , declare SD jet is defined.
- Else, drop softer subjet and iterate on harder one.
- For  $\beta = 0$ , soft radiation removed (A.K.A Modified mass drop tagger)



 Two subjets returned by the SD algorithm are used to calculate the SD jet mass



# Z, W, H Jets vs QCD: N-subjettiness

- We know how many final state objects to expect from Boson decays
- Can look inside the jet for the expected substructure
  - > Top decays  $\rightarrow$  3 subjets
  - > W/Z/H decays → 2 subjets



- τN provides a measure of the number of subjets that can be found inside of the jet.
- $\succ$  Low  $\tau N \rightarrow$  consistent with N (or fewer) subjets

τ21 = τ2 / τ1 is found a very powerful discriminant boosted decays

> Analysis uses HP cut  $\tau 21 < 0.4$ 



### Z, W, H Jets vs QCD: B-tagging Subjets

#### CMS Collaboration, JINST 15 (2020) P06005



Key ingredients for b/c vs. light :

- □ Large lifetime & decay lengths
- Displaced vertices/tracks
- □ Large impact parameters
- □ Non-isolated leptons (soft)
- □ Harder fragmentation

□ Analysis uses DeepCSV technique □ Tagged event: 1Loose + 1Medium

Run 3

# Selection events

### Selection and Categorization Events



- Both Boosted and Resolved considered
- Background estimated using SB data and corrected NLO Z+jets MC prediction
- Categorization based on b-tagging



#### **Basic Selection: Leptonic Z**



Z+jets background distribution normalized to data (2%)

### Boosted Selection: AK8 Jets (SB/SR1/SR2)

137 fb<sup>-1</sup> (13 TeV)

Data

Z۷

0. 0.8 0.9

800

Data

Z۷

Z(II) + jets

tī tW WW

Bkg. unc.

ALP ZZ (x 1/8)

1000 Jet Pt (GeV)

puppi τ<sub>2</sub>

1200

137 fb<sup>-1</sup> (13 TeV)

Z(II) + jets

tī tW WW

Bkg. unc.

ALP ZZ (x 1/8)





Postfit normalization of Z+jets from SB/SR1/SR2 background only fits to m(ZV/ZH).

#### **Boosted Selection: SB region**

137 fb<sup>-1</sup> (13 TeV)

Data

z٧

Z(II) + jets

tī tW WW

Bkg. unc.

<sub>╈</sub>╪╪╷╪╪╪」

137 fb<sup>-1</sup> (13 TeV)

100 105 DiLepton Mass (GeV)

Data

z٧

0.4 0.6 0.8

cos0

Z(II) + jets

tī tW WW

Bkg. unc.



Postfit normalization of Z+jets from sideband region background only fit to m(ZV).



#### Boosted Selection: SR1 (V) region







Postfit normalization of Z+jets from signal region background only fit to m(ZV).

### Boosted Selection: SR2 (H) region







Postfit normalization of Z+jets from signal region background only fit to m(ZH).

### **Resolved Selection: SB region**



Postfit normalization of Z+jets from sideband region background only fit to m(ZV).

### Resolved Selection: SR1 (V) region







Postfit normalization of Z+jets from signal region background only fit to m(ZV).

### Resolved Selection: SR2 (H) region

M II

80

85

90

 $\cos\theta^*$ 

95

137 fb<sup>-1</sup> (13 TeV)

🛉 Data

ZV

Z(II) + jets

tī tW WW

Bkg. unc.

ALP ZH (x 0.75)

100

Z(II) + jets

tī tW WW

Bkg. unc.

ALP ZH (x 0.75)

Data

ZV

0.2 0.4 0.6

0.8

cos0

DiLepton Mass (GeV)

105







# B-tagging: Boosted Selection SB/SR1/SR2



Postfit normalization of Z+jets from SB/SR1/SR2 background only fits to m(ZV/ZH).

# B-tagging: Resolved Selection SB/SR1/SR2



Postfit normalization of Z+jets from SB/SR1/SR2 background only fit to m(ZV/ZH).

# Fit to the SB 2l2q Mass Distributions

- Fit m(ZV) distributions for electrons / muons, boosted / resolved, tagged / untagged categories in SB.
- Z+jets normalizations float in the fit.
- Z+jets shape corrections float in the fit.
- → Postfit norm. and shape in good agreement to prefit prediction.



# Subdominant Backgrounds

#### *t+X* background

- Lepton flavor symmetric backgrounds determined from eµ data (tt̄, tW, WW, Z to ττ, fakes).
- Leptonic Z cut loosened (m(II) > 50 GeV) to enhance background.
- Tested in a top quark-enriched control region: MET significance > 6, Im(II) – m(Z)I > 10 GeV, 1M DeepCSV tag.
- $\rightarrow$  Agreement within e $\mu$  vs. (ee +  $\mu\mu$ ): 4%.

#### SM ZV background

- Small: taken from simulation.
- Size: 3 20%.



# Fit to Data

# Fit to 2l2q Invariant Mass

$$p(d | f) = \frac{f^{d}e^{-f}}{d!} \xrightarrow{\text{N-bins}} L = \prod_{i=1}^{N} \frac{f_i^{d_i}e^{-f_i}}{d_i!}$$

#### Counting experiment

- d are the data measured; Signal (S) + Background (B),
- f (r,  $\theta$ ); the model prediction, SM; POI -> r = S strength;  $\theta$  nuisance params.
- Syst. Unc. split into two types normalization and shapebased,
  - Normalization unc. uniformly affects yields in all bins (ex. luminosity)
  - Shape-based has non-uniform effect on bin yields (ex.  $p_T$  dependent).
- Binned-Shape analysis,
  - ee/mm x boosted/resolved x tagged/untagged
  - Norm and Shape are floating free



# **Fitting Procedure**

- Maximum-likelihood fit to m(ZV/ZH) distributions for electrons / muons, boosted / resolved, tagged / untagged categories in SR + SB simultaneously.
- The background-only hypothesis is tested against the combined signal + background hypothesis.
- Systematic and MC statistical uncertainties included as nuisance parameters in the fit.
- Z+jets normalizations and shape corrections float in the fit, independently for the boosted / resolved and tagged / untagged categories.
- Overflow bin includes events with m(ZV/ZH) up to 3000 GeV.
- In the ALP fits, for given value of the  $f_a$  scale, events with m(ZZ/ZH) >  $f_a$  are excluded from the fit.

# Results

# SR1 ZZ/ZW: 2l2q Mass Distributions

- Fit m(ZV) distributions for electrons / muons, boosted / resolved, tagged / untagged categories in SR1 + SB.
- Z+jets normalizations float in the fit.
- Z+jets shape corrections float in the fit.

→ Signal (red line) normalized to 95% CL ALP linear ZZ cross-section limit for  $f_a = 3$  TeV.





#### Boosted Tagged

(312 ev.)

#### Resolved Tagged

(1566 ev.)

39

# SR2 ZH: 2l2q Mass Distributions

- Fit m(ZH) distributions for electrons / muons, boosted / resolved, tagged / untagged categories in SR2 + SB.
- Z+jets normalizations float in the fit.
- Z+jets shape corrections floating in the fit.

→ Signal (red line) normalized to 95% CL ALP chiral ZH cross-section limit for  $f_a = 3$  TeV.





#### Boosted Tagged

(117 ev.)

Resolved Tagged

(1130 ev.)

40

#### Boosted m(J) / Resolved m(jj) Distributions

TeV.

138 fb<sup>-1</sup> (13 TeV) 138 fb<sup>-1</sup> (13 TeV) GeV Entries / 20 GeV 250 9000 CMS CMS Data Data Boosted Tagged Z(II) + jets 8000 Boosted Untagged Z(II) + jets ZV zν Entries 200 tī tW WW tī tW WW Bkg. unc. Bkg. unc. ----- ALP ZZ (x 1/8) ----- ALP ZZ (x 1/50) 6000 150 5000F Postfit background 4000F 100 normalization. 3000 Boosted Boosted 50 2000  $\rightarrow$  Signal (red line) 1000F Tagged Untagged normalized to hypothetical Data/Bkg ALP linear cross-section 250 300 50 100 150 200 50 100 150 200 250 m, (GeV) with 1TeV<sup>-1</sup> couplings to 138 fb<sup>-1</sup> (13 TeV) 138 fb<sup>-1</sup> (13 TeV) Entries / 20 GeV Entries / 10 GeV gluons and ZZ, and  $f_a = 3$ CMS Data CMS Data Resolved Tagged Z(II) + jets 20 Resolved Untagged Z(II) + jets ZV Z٧ 18F tī tW WW tī tW WW Bkg. unc. Bkg. unc. ----- ALP ZZ (x 1/8) ----- ALP ZZ (x 1/8) 800 14 12E 600 10F **Resolved** Resolved 8 400 6E Tagged Untagged 4F 200 Data/Bkg Data/Bkg 41 200 250 300 150 100 300 50 100 150 200 250 m<sub>ii</sub> (GeV) m<sub>ii</sub> (GeV)

#### Observed and expected Limits: Bulk and W'



• These limits improve published results of 2016 in the 450-1800 GeV region by a factor of 2.5-3

#### Observed Local p-values: No significant excess



# Observed and Expected ALP Limits: ALP linear ZZ and chiral ZH



CMS, JHEP 04 (2022) 087

### Observed and Expected ALP Limits

• Expected and observed 95% CLs upper limits on  $\sigma(gg \rightarrow a^* \rightarrow ZZ/ZH)$  (fb) for  $f_a = 3$  TeV.

| Model         |            | Observed   |        |            |            |          |
|---------------|------------|------------|--------|------------|------------|----------|
|               | $-2\sigma$ | $-1\sigma$ | Median | $+1\sigma$ | $+2\sigma$ | Observed |
| ALP linear ZZ | 79         | 107        | 151    | 218        | 304        | 162      |
| ALP chiral ZH | 32         | 39         | 64     | 94         | 134        | 57       |

- For  $f_q \ge 3$  TeV the observed (expected) 95% CL limits on:
  - ALP linear ZZ:  $lc_G \cdot c_Z l / f_a^2 = 0.0415 (0.0400) \text{ TeV}^2$ ,
  - ALP chiral ZH:  $lc_{G} \cdot \tilde{a}_{2D} l / f_{a}^{2} = 0.0269 (0.0281) \text{ TeV}^{-2}$ .

# Back up

#### Event Selection and Categorization: Summary

Boosted V/H AK8 PF jet – Boosted V tagging with PUPPI softdrop mass and  $\tau 21$  HP cut → V/H Pt > 200 GeV → Z(II) Pt > 200 GeV V SR1(m\_J) : 65→105 GeV H SR2 (m\_J): 95→135 GeV SB : 30→65 + 135→ 300 GeV B-tagging: 1Loose 1Medium

Resolved V/H2 AK4 PF jets - If no Boosted Vcandidate look for dijet $\rightarrow$  V/H Pt > 150 GeV $\rightarrow$  Z(II) Pt > 150 GeV $\rightarrow$  DeltaR(jj) < 1.5</td>V SR1 (m\_jj) : 65 $\rightarrow$ 110 GeVH SR2 (m\_jj) : 95 $\rightarrow$ 135 GeVSB : 30 $\rightarrow$ 65 + 135 $\rightarrow$ 180 GeVB-tagging: 1Loose 1Medium



### Systematic Uncertainties Of Normalization

|                                 | Boost      | ted         | Resolved   |           |  |
|---------------------------------|------------|-------------|------------|-----------|--|
| Source                          | Background | Signal      | Background | Signal    |  |
| Integrated luminosity           | 1.8        |             | 1.8        |           |  |
| Electron trigger and ID         | 2.0        |             | 2.0        |           |  |
| Muon trigger and ID             | 1.5        |             | 1.5        |           |  |
| Electron energy scale           | 0.8        | <0.1-0.2    | 0.9        | < 0.1     |  |
| Muon momentum scale             | 0.5        | <0.1-0.1    | 0.6        | < 0.1     |  |
| Jet energy scale                |            | <0.1-0.1    | 2.8        | 0.1–1.9   |  |
| Jet energy resolution           | 0.3        | < 0.1 - 0.3 | 0.3        | 1.0       |  |
| b tag SF untagged               | 0.1        | 1.0 - 7.4   | 0.1        | 0.7–2.2   |  |
| b tag SF tagged                 | 12         | 12          | 3.6        | 4         |  |
| Mistag SF untagged              | 0.3        | < 0.1 - 0.2 | 0.2        | 0.1       |  |
| Mistag SF tagged                | 3.5        | 0.1–0.3     | 3.8        | 0.4 - 1.0 |  |
| SM ZV production                | 12         | —           | 12         |           |  |
| t + X normalization             | 4 (eµ)     |             | 4 (eµ)     |           |  |
| V identification ( $	au_{21}$ ) | 5 (ZV)     | 5           |            |           |  |
| V identification (extrap.)      |            | 2.6-6.0     |            |           |  |
| V mass scale                    | 0.6 (ZV)   | 0.4 - 0.8   | —          |           |  |
| V mass resolution               | 5.0 (ZV)   | 5.0-6.0     | —          |           |  |
| Pileup                          | 0.5        | 0.1–0.2     | 0.1        | 0.1–0.2   |  |
| SR-to-SB norm. ratio            | 3 (DY)     |             | 5 (DY)     | —         |  |
| PDFs                            |            | 1.5–1.6     |            | 0.3–1.1   |  |
| QCD renorm./fact. scales        |            | 0.1–0.3     |            | 0.2–0.3   |  |

## Z+jets Background Shape Systematic

- Corrections to the shape of the m(ZX) distributions of the Z+jets background are implemented multiplying the MC predictions in the SR and SB regions by a linear function.
- One single parameter: slope (s) of the linear shape correction.
- The linear shape correction is conventionally defined as 1 for m(ZX) = 500 GeV. Other definitions are equivalent; the change is absorbed in a redefinition of the overall normalization.
- In the SB-only and SR + SB fits, the linear shape correction is allowed to float, constrained by the residual differences between data and simulation.

# Z+jets Background Shape Systematic

 Residuals data-MC from SB fit. Red lines correspond to 2σ of the error given by the fit.

SR: Z+jets standard (dots),
Z+jets - 2σ (blue), Z+jets +2σ (red).





#### Expected Limits: Bulk Graviton



#### Expected Limits: Bulk Graviton

