Off-shell couplings

XVIII Mexican Workshop on Particles and Fields

A. I. Hernández-Juárez, A. Fernández-Téllez, G. Tavares, A. Moyotl

21-25 November 2022

The virtual or off-shell particles are denoted by an asterisk: $Z^*, H^*, W^{\pm^*}, \ldots$

MOTIVATION

Off-shell couplings have been of great interest in recent years

MOTIVATION

Off-shell couplings have been of great interest in recent years

For an off-shell gluon the CMDM is finite

A. I. Hernández-Juárez, A. Moyotl, and G. Tavares-Velasco. New estimate of the chromomagnetic dipole moment of quarks in the standard model. Eur. Phys. J. Plus, 136(2): 262, 2021.

J. I. Aranda, T. Cisneros-Pérez, J. Montaño, B. Quezadas-Vivian, F. Ramírez-Zavaleta, and E. S. Tututi, Revisiting the top quark chromomagnetic dipole moment in the SM, Eur. Phys. J. Plus 136, 164 (2021).

 $V = Z, \gamma$

MOTIVATION

H* evidence at the LHC

ARTICLES https://doi.org/10.1038/s41567-022-01682-0

Check for updates

physics OPEN

nature

Measurement of the Higgs boson width and evidence of its off-shell contributions to ZZ production

The CMS Collaboration^{*⊠}

Evidence for off-shell Higgs boson production in the final state with two Z bosons decaying into 4 charged leptons has been reported for the FIRST TIME

The Higgs boson must to be off-shell to produce two on-shell Z bosons Vertex functions

The vertex function for the anomalous $gt\bar{t}$ can be written as

$$\Gamma^{\mu} = i\sigma_{\mu\nu}q^{\nu}\left(\frac{a_q}{2m_q} + id_q\gamma^5\right),$$

Whereas for the TNGBCs:

$$\Gamma_{ZZV^*}^{\alpha\beta\mu}\left(p_1, p_2, q\right) = \frac{i(q^2 - m_V^2)}{m_Z^2} \left[f_4^V \left(q^\alpha g^{\mu\beta} + q^\beta g^{\mu\alpha}\right) - f_5^V \epsilon^{\mu\alpha\beta\rho} \left(p_1 - p_2\right)_{\rho} \right],$$

Anomalous couplings for the ZZH vertex can be also induced

$$\Gamma_{\mu\nu}^{ZZH} = h_1^V g_{\mu\nu} + \frac{h_2^V}{m_Z^2} p_{1\nu} p_{2\mu} + \frac{h_3^V}{m_Z^2} \epsilon_{\mu\nu\alpha\beta} p_1^{\alpha} p_2^{\beta}, \qquad Two cases \qquad Z \text{ off-shell}$$

$$h_i^V \text{ in terms of the anomalous couplings}$$

TT

Vertex functions

The vertex function for the anomalous $t\overline{t}g$ can be written as

$$\Gamma^{\mu} = i\sigma_{\mu\nu}q^{\nu} \left(\frac{a_q}{2m_q} + id_q\gamma^3 \right),$$

Whereas for the TNGBC:

$$\Gamma_{ZZV^*}^{\alpha\beta\mu}\left(p_1, p_2, q\right) = \frac{i(q^2 - m_V^2)}{m_Z^2} \left[f_4^V q^{\alpha} g^{\mu\beta} + q^{\beta} g^{\mu\alpha}\right] - f_5^V q^{\mu\alpha\beta\rho} \left(p_1 - p_2\right)_{\rho} \right],$$

Anomalous couplings for the ZZH vertex can be a $\Gamma_{\mu\nu}^{ZZH} = h_{1}^{V}g_{\mu\nu} + h_{2}^{V}g_{\mu\nu} + h_{2}^{V}g_{\mu\nu} + h_{3}^{V}g_{\mu\nu} + h_{3}^{V}g_{\mu\nu\alpha\beta}p_{1}^{\alpha}p_{2}^{\beta}, \qquad For off-shell couplings$ the anomalous cuplings the anomalous couplings $h_{i}^{V} in terms of the anomalous couplings$ Vertex functions

The vertex function for the anomalous $t\bar{t}g$ can be written as

$$\Gamma^{\mu} = i\sigma_{\mu\nu}q^{\nu} \left(\frac{a_q}{2m_q} + id_q\gamma\right),$$

Whereas for the TNGBC:

$$\Gamma_{ZZV^*}^{\alpha\beta\mu}\left(p_1, p_2, q\right) = \frac{i(q^2 - m_V^2)}{m_Z^2} \left[f_4^V q^\alpha g^{\mu\beta} + q^\beta g^{\mu\alpha}\right) - f_5^V \epsilon^{\mu\alpha\beta\rho} \left(p_1 - p_2\right)_{\rho}\right],$$

Anomalous couplings for the ZZH vertex can be also induced

$$\Gamma_{\mu\nu}^{ZZH} = h_1^V g_{\mu\nu} + \frac{h_2^V}{m_Z^2} p_{1\nu} p_{2\mu} + \frac{h_3^V}{m_Z^2} e_{\mu\nu\alpha\beta} p_1^{\alpha} p_2^{\beta}, \qquad Two \ cases \qquad Z \ off-shell$$

$$h_i^V \text{ in terms of the anomalous couplings}$$

The vertex function for the anomalous $t\bar{t}g$ can be written as

Limits on off-shell couplings at the LHC

CMDM and CEDM:

$\hat{\mu_t} = -0.024^{+0.013}_{-0.009} (\text{stat})^{+0.016}_{0.011} (\text{syst}) \quad \text{and} \quad |\hat{d_t}| < 0.03$

A. M. Sirunyan et al. (CMS), JHEP 06, 146 (2020), 1912.09540.

TNGBCs:

$$\begin{split} &-0.00066 < f_4^Z < 0.0006, \\ &-0.00055 < f_5^Z < 0.00075, \\ &-0.00078 < f_4^\gamma < 0.00071, \\ &-0.00068 < f_5^\gamma < 0.00075. \end{split}$$

A.M. Sirunyan, et al., Eur. Phys. J. C 81(3), 200 (2021).

ZZH COUPLING

Parameter in	Scenario	Observed	
units $\times 10^{-5}$		at 95% CL	Indirect bounds
£	$\Gamma_H = \Gamma_H^{SM}$	[-32,514]	
Ja2	Γ_H unconstrained	[-38,503]	through effective
f .	$\Gamma_H = \Gamma_H^{SM}$	[-46,107]	ratios
Ja3	Γ_H unconstrained	[-46, 110]	
f,	$\Gamma_H = \Gamma_H^{SM}$	[-11, 46]	
$J\Lambda_1$	Γ_H unconstrained	[-10,47]	

Limits on off-shell couplings at the LHC

We must to calculate off-shell observables

On-shell Green functions gauge invariant and gauge independent

We must to compute off-shell observables

On-shell Green functions

gauge invariant and gauge independent

We must to compute off-shell observables

We must to compute off-shell obs

On-shell Green functions

Off-shell Green functions

Not necessarily gauge invariant and gauge independent

We must to find a way to obtain well-behaved observables

An approach to obtain well-behaved off-shell Green functions out of which valid observable quantities can be extracted

Diagrammatic method that combines self-energy, vertex and box diagrams related to a physical process to remove any gauge dependent term

Pinch technique

Background field method Feynman-t Hooft gauge $(\xi_Q = 1)$

The anomalous couplings are induced at one loop $Z_{\alpha}(p_1)$ level (or more) m_i $V^*_\mu(q)$ m_i **TNGBCs** m_j $Z_{\beta}(p_2)$ $Z_{\alpha}(p_1)$ m_i $V^*_\mu(q)$ m_i $Z_{\alpha}(p_1)$ m_i $Z_{\beta}(p_2)$ m_i $V^*_\mu(q)$ m_j m_i In the SM, they can only exist at one loop level

 $Z_{\mu}(p_1)$ The anomalous couplings H(q)are induced at one loop $\bigwedge I_{Z_{\nu}(p_2)}$ level (or more) H(q) $Z_{\mu}(p_1)$ **ZZH** in the **SM** H(q) $\mathcal{N}_{Z_{\nu}(p_2)}$ $\bigvee \bigvee Z_{\nu}(p_2)$ $\sim Z_{\mu}(p_1)$ H(q) $Z_{\mu}(p_1)$ G^{\pm} $\mathcal{J}^{Z_{\mu}(p_1)}$ $\sim \sim \sim Z_{\nu}(p_2)$ H(q)H(q) G^0, H $\bigvee Z_{\nu}(p_2)$ $\mathcal{T}_{Z_{\nu}(p_2)}$ $Z_{\mu}(p_1)$ $Z_{\mu}(p_1)$ $Z_{\mu}(p_1)$ H(q) u^-, u^+ H(q)H(q) W^{\pm} $\swarrow Z_{\nu}(p_2)$ $\bigvee_{Z_{\nu}(p_2)}$ $\mathcal{L}_{Z_{\nu}(p_2)}$ More diagrams.

The Optical Theorem

Peskin and Schroeder. An introduction to QFT. 1995

The Optical Theorem for Feynman Diagrams

Let us now investigate how this identity for the imaginary part of an S-matrix element arises in the Feynman diagram expansion. It is easily checked (in QED, for example) that each diagram contributing to an S-matrix element \mathcal{M} is purely real unless some denominators vanish, so that the $i\epsilon$ prescription for treating the poles becomes relevant. A Feynman diagram thus yields an imaginary part for \mathcal{M} only when the virtual particles in the diagram go on-shell. We will now show how to isolate and compute this imaginary part.

The Optical Theorem

Peskin and Schroeder. An introduction to QFT. 1995

The Optical Theorem for Feynman Diagrams

Let us now investigate how this identity for the imaginary part of an S-matrix element arises in the Feynman diagram expansion. It is easily checked (in QED, for example) that each diagram contributing to an S-matrix element \mathcal{M} is purely real unless some denominators vanish, so that the $i\epsilon$ prescription for treating the poles becomes relevant. A Feynman diagram thus yields an imaginary part for \mathcal{M} only when the virtual particles in the diagram go on-shell. We will now show how to isolate and compute this imaginary part.

For $q \ge 2m_f$ the two fermions go on-shell

Thus, the anomalous couplings may be complex

CMDM and CEDM:

ZZH COUPLING

$$\hat{\mu_t} = -\ 0.024^{+0.013}_{-0.009} (\text{stat})^{+0.016}_{0.011} (\text{syst}) \quad \text{and} \quad |\ \hat{d_t}| < 0.03$$

A. M. Sirunyan et al. (CMS), JHEP 06, 146 (2020), 1912.09540.

TNGBCS:

$$\begin{split} &-0.00066 < f_4^Z < 0.0006, \\ &-0.00055 < f_5^Z < 0.00075, \\ &-0.00078 < f_4^\gamma < 0.00071, \end{split}$$

A.M. Sirunyan, et al., Eur. Phys. J. C 81(3), 200 (2021).

$-0.00068 < f_5^{\gamma} < 0.00075.$

Parameter in units $\times 10^{-5}$	Sce Tr	See The imaginary parts are not See studied at the LHC		
f_{a2}	$\Gamma_H - \Gamma_H$ Γ_H unconstrained	$\begin{bmatrix} -32,011 \end{bmatrix}$ $\begin{bmatrix} -38,503 \end{bmatrix}$	through effective	
f_{a3}	$\Gamma_H = \Gamma_H^{SM}$ $\Gamma_H \text{ unconstrained}$	[-46,107] [-46,110]	ratios	
f_{Λ_1}	$\Gamma_H = \Gamma_H^{SM}$	[-11,46]		
	Γ_H unconstrained	[-10, 47]		

Top quark CMDM in the SM numerical results

A. I. Hernández-Juárez, A. Moyotl, and G. Tavares-Velasco. New estimate of the chromomagnetic dipole moment of quarks in the standard model. Eur. Phys. J. Plus, 136(2):262, 2021.

TNGBCs: ZZZ^* in the SM

G.J. Gounaris, J. Layssac, F.M. Renard, Phys. Rev. D62, 073013 (2000).

 $Z_{\alpha}(p_1)$

 $Z_{\beta}(p_2)$

 ZZH^* in the SM

 ZZH^* in the SM

In general, the imaginary part are of the same order of the real part

The imaginary parts may be relevant and their implications not fully understand

 $\sigma_{p\overline{p} \rightarrow t\overline{t}}$ considering only real CMDM and CEDM:

٠

$$\frac{d\hat{\sigma}_{q\bar{q}}}{d\hat{t}} = \frac{\pi\alpha_s^2}{\hat{s}^2} \frac{8}{9} \left(\frac{1}{2} - v + z + 2\hat{\mu}'_t + (\hat{\mu}'^2_t - \hat{d}'^2_t) + (\hat{\mu}'^2_t + \hat{d}'^2_t)\frac{v}{z}\right) ,$$

$$\begin{aligned} \frac{d\hat{\sigma}_{GG}}{d\hat{t}} &= \frac{\pi\alpha_s^2}{\hat{s}^2} \frac{1}{12} \Big[\left(\frac{4}{v} - 9\right) \left(\frac{1}{2} - v + 2z(1 - \frac{z}{v}) + 2\hat{\mu}'_t(1 + \hat{\mu}'_t)\right) \\ &+ (\hat{\mu}'_t{}^2 + \hat{d}'_t{}^2) \left(\frac{7}{z}(1 + 2\hat{\mu}'_t) + \frac{1}{2v}(1 - 5\hat{\mu}'_t)\right) + (\hat{\mu}'_t{}^2 + \hat{d}'_t{}^2)^2 \left(-\frac{1}{z} + \frac{1}{v} + \frac{4v}{z^2}\right) \Big].\end{aligned}$$

P. Haberl, O. Nachtmann, and A. Wilch, Phys. Rev. D 53, 4875 (1996), hep-ph/9505409.

Complex CMDM and CEDM: $\hat{\mu}_t = \operatorname{Re}[\hat{\mu}_t] + i\operatorname{Im}[\hat{\mu}_t], \quad \hat{d}_t = \operatorname{Re}[\hat{d}_t] + i\operatorname{Im}[\hat{d}_t].$

$$\frac{d\hat{\sigma}_{q\bar{q}}}{d\hat{t}} = \frac{\pi\alpha_s^2}{\hat{s}^2} \frac{8}{9} \Big[\frac{1}{2} - v + z + 2\operatorname{Re}[\hat{\mu}_t] + \left(\operatorname{Re}[\hat{\mu}_t]^2 + \operatorname{Im}[\hat{\mu}_t]^2 - \operatorname{Re}[\hat{d}_t]^2 \right) \\ - \operatorname{Im}[\hat{d}_t]^2 \Big) + \left(\operatorname{Re}[\hat{\mu}_t]^2 + \operatorname{Im}[\hat{\mu}_t]^2 + \operatorname{Re}[\hat{d}_t]^2 + \operatorname{Im}[\hat{d}_t]^2 \right) \frac{v}{z} \Big],$$

$$\begin{split} \frac{d\hat{\sigma}_{gg}}{d\hat{t}} &= \frac{\pi\alpha_s^2}{\hat{s}^2} \frac{1}{12} \Big[\Big(\frac{4}{v} - 9 \Big) \Big(\frac{1}{2} - v - 2z \big(1 - \frac{z}{v} \big) + 2 \operatorname{Rc}[\hat{\mu}_t] \Big) + \frac{1}{512vz} \Big\{ v \Big(55 \operatorname{Rc}[\hat{d}_t]^2 + \operatorname{Rc}[\hat{\mu}_t]^2 (55 - 144z) \Big) \\ &+ z \Big(4 \operatorname{Re}[\hat{d}_t]^2 + 70 \operatorname{Re}[\hat{\mu}_t]^2 \Big) + \frac{1}{vz} \Big\{ -16v^3 \Big(4 \Big(\operatorname{Re}[\hat{\mu}_t]^2 \operatorname{Im}[\hat{d}_t]^2 - 4 \operatorname{Re}[\hat{\mu}_t] \operatorname{Im}[\hat{\mu}_t] \operatorname{Re}[\hat{d}_t] \operatorname{Im}[\hat{d}_t] \\ &+ \operatorname{Im}[\hat{\mu}_t]^2 \operatorname{Rc}[\hat{d}_t]^2 \Big) + 9z \Big(\operatorname{Im}[\hat{\mu}_t]^2 + \operatorname{Im}[\hat{d}_t]^2 \Big) \Big) + v^2 z \Big(-512 \operatorname{Rc}[\hat{\mu}_t] \operatorname{Im}[\hat{\mu}_t] \operatorname{Rc}[\hat{d}_t] \operatorname{Im}[\hat{d}_t] \\ &+ \operatorname{Im}[\hat{d}_t]^2 \Big(16 \operatorname{Re}[\hat{\mu}_t] \Big(15 \operatorname{Re}[\hat{\mu}_t] + 7 \Big) + 288z + 63 \Big) + 3 \operatorname{Im}[\hat{\mu}_t] \Big(80 \operatorname{Re}[\hat{d}_t] + 48z + 21 \Big) \Big) \\ &- 2vz^2 \Big(92 \operatorname{Im}[\hat{\mu}_t] \operatorname{Rc}[\hat{d}_t] \operatorname{Im}[\hat{d}_t] + \Big(1 - 8 \operatorname{Rc}[\hat{d}_t]^2 \Big) \operatorname{Im}[\hat{\mu}_t]^2 + 2 \operatorname{Im}[\hat{d}_t]^2 \Big(- \operatorname{Rc}[\hat{\mu}_t] \Big(4 \operatorname{Rc}[\hat{\mu}_t] + 41 \Big) \\ &+ 72z + 17 \Big) \Big) + 128 \operatorname{Im}[\hat{d}_t] z^3 \Big\} \Big\} + \operatorname{Re}[\hat{\mu}_t] \Big\{ \operatorname{Re}[\hat{\mu}_t]^2 + \operatorname{Im}[\hat{\mu}_t]^2 + \operatorname{Re}[\hat{d}_t] \Big\} \Big\{ \frac{14}{z} - \frac{5}{2v} \Big\} \\ &+ \Big\{ \Big(\operatorname{Re}[\hat{\mu}_t]^2 + \operatorname{Im}[\hat{\mu}_t]^2 \Big)^2 + 2 \Big(\operatorname{Re}[\hat{\mu}_t]^2 \operatorname{Re}[\hat{d}_t]^2 + \operatorname{Im}[\hat{\mu}_t]^2 \Big) + \Big(\operatorname{Re}[\hat{d}_t]^2 + \operatorname{Im}[\hat{d}_t]^2 \Big)^2 \Big\} \\ &\times \Big(-\frac{1}{z} + \frac{1}{v} + \frac{4v}{z^2} \Big) \Big], \end{split}$$

Complex CMDM and CEDM: $\hat{\mu}_t = \operatorname{Re}[\hat{\mu}_t] + i\operatorname{Im}[\hat{\mu}_t], \quad \hat{d}_t = \operatorname{Re}[\hat{d}_t] + i\operatorname{Im}[\hat{d}_t],$

$$\frac{d\hat{\sigma}_{q\bar{q}}}{d\hat{t}} = \frac{\pi\alpha_s^2}{\hat{s}^2} \frac{8}{9} \Big[\frac{1}{2} - v + z + 2\operatorname{Re}[\hat{\mu}_t] + \left(\operatorname{Re}[\hat{\mu}_t]^2 + \operatorname{Im}[\hat{\mu}_t]^2 - \operatorname{Re}[\hat{d}_t]^2 \right) \Big]$$

More terms appear when the anomalous $]^2 \Big) \frac{v}{z} \Big]$, couplings are considered as complex explicitly

$$\begin{split} \frac{d\hat{\sigma}_{gg}}{d\hat{t}} &= \frac{\pi\alpha_s^2}{\hat{s}^2} \frac{1}{12} \Big[\Big(\frac{4}{v} - 9 \Big) \Big(\frac{1}{2} - v - 2z \big(1 - \frac{z}{v} \Big) + 2 \operatorname{Re}[\hat{\mu}_t] \Big) + \frac{1}{512vz} \Big\{ v \Big(55 \operatorname{Re}[\hat{d}_t]^2 + \operatorname{Re}[\hat{\mu}_t]^2 (55 - 144z) \Big) \\ &+ z \Big(4 \operatorname{Re}[\hat{d}_t]^2 + 70 \operatorname{Re}[\hat{\mu}_t]^2 \Big) + \frac{1}{vz} \Big\{ -16v^3 \Big(4 \Big(\operatorname{Re}[\hat{\mu}_t]^2 \operatorname{Im}[\hat{d}_t]^2 - 4 \operatorname{Re}[\hat{\mu}_t] \operatorname{Im}[\hat{\mu}_t] \operatorname{Re}[\hat{d}_t] \operatorname{Im}[\hat{d}_t] \Big] \\ &+ \operatorname{Im}[\hat{\mu}_t]^2 \operatorname{Re}[\hat{d}_t]^2 \Big) + 9z \Big(\operatorname{Im}[\hat{\mu}_t]^2 + \operatorname{Im}[\hat{d}_t]^2 \Big) \Big) + v^2 z \Big(-512 \operatorname{Re}[\hat{\mu}_t] \operatorname{Im}[\hat{\mu}_t] \operatorname{Re}[\hat{d}_t] \operatorname{Im}[\hat{d}_t] \\ &+ \operatorname{Im}[\hat{d}_t]^2 \Big(16 \operatorname{Re}[\hat{\mu}_t] \Big(15 \operatorname{Re}[\hat{\mu}_t] + 7 \Big) + 288z + 63 \Big) + 3 \operatorname{Im}[\hat{\mu}_t] \Big(80 \operatorname{Re}[\hat{d}_t] + 48z + 21 \Big) \Big) \\ &- 2vz^2 \Big(92 \operatorname{Im}[\hat{\mu}_t] \operatorname{Re}[\hat{d}_t] \operatorname{Im}[\hat{d}_t] + \Big(1 - 8 \operatorname{Re}[\hat{d}_t]^2 \Big) \operatorname{Im}[\hat{\mu}_t]^2 + 2 \operatorname{Im}[\hat{d}_t]^2 \Big(- \operatorname{Re}[\hat{\mu}_t] \Big(4 \operatorname{Re}[\hat{\mu}_t] + 41 \Big) \\ &+ 72z + 17 \Big) \Big) + 128 \operatorname{Im}[\hat{d}_t] z^3 \Big\} \Big\} + \operatorname{Re}[\hat{\mu}_t] \Big\{ \operatorname{Re}[\hat{\mu}_t]^2 + \operatorname{Im}[\hat{\mu}_t]^2 + \operatorname{Re}[\hat{d}_t] \Big\} \Big\{ \frac{14}{z} - \frac{5}{2v} \Big\} \\ &+ \Big\{ \Big(\operatorname{Re}[\hat{\mu}_t]^2 + \operatorname{Im}[\hat{\mu}_t]^2 \Big)^2 + 2 \Big(\operatorname{Re}[\hat{\mu}_t]^2 \operatorname{Re}[\hat{d}_t]^2 + \operatorname{Im}[\hat{\mu}_t]^2 \Big) + \Big(\operatorname{Re}[\hat{d}_t]^2 + \operatorname{Im}[\hat{d}_t]^2 \Big)^2 \Big\} \\ &\times \Big(- \frac{1}{z} + \frac{1}{v} + \frac{4v}{z^2} \Big) \Big], \end{split}$$

Complex CMDM and CEDM: $\hat{\mu}_t = \operatorname{Re}[\hat{\mu}_t] + i\operatorname{Im}[\hat{\mu}_t], \quad \hat{d}_t = \operatorname{Re}[\hat{d}_t] + i\operatorname{Im}[\hat{d}_t].$

$$\begin{aligned} \frac{d\hat{\sigma}_{q\bar{q}}}{d\hat{t}} &= \frac{\pi\alpha_s^2}{\hat{s}^2} \frac{8}{9} \Big[\frac{1}{2} - v + z + 2\operatorname{Re}\left[\hat{\mu}_t\right] + \left(\operatorname{Re}\left[\hat{\mu}_t\right]^2 + \operatorname{Im}\left[\hat{\mu}_t\right]^2 - \operatorname{Re}\left[\hat{d}_t\right]^2 \right] \\ & \text{More terms appear when the anomalous couplings are considered as complex explicitly} \Big]^2 \Big) \frac{v}{z} \Big], \\ \frac{d\hat{\sigma}_{gg}}{d\hat{t}} &= \frac{\pi\alpha_s^2}{\hat{s}^2} \frac{1}{12} \Big[\left(\frac{4}{v} - 9\right) \left(\frac{1}{2} - v - 2z(1 - \frac{z}{v}) + 2\operatorname{Re}\left[\hat{\mu}_t\right] \right) + \frac{1}{512vz} \Big\{ v \left(55\operatorname{Re}\left[\hat{d}_t\right]^2 + \operatorname{Re}\left[\hat{\mu}_t\right]^2 \left(55 - 144z\right) \right) \\ &+ z \Big(4\operatorname{Re}\left[\hat{d}_t\right]^2 + 70\operatorname{Re}\left[\hat{\mu}_t\right]^2 \Big) + \frac{1}{vz} \Big\{ - 16v^3 \Big(4\left(\operatorname{Re}\left[\hat{\mu}_t\right]^2 \operatorname{Im}\left[\hat{d}_t\right]^2 - 4\operatorname{Re}\left[\hat{\mu}_t\right] \operatorname{Im}\left[\hat{\mu}_t\right] \operatorname{Re}\left[\hat{d}_t\right] \operatorname{Im}\left[\hat{d}_t\right] \\ &- 2vz^2 \Big(92\operatorname{Im}\left[\hat{\mu}_t\right] \operatorname{Re}\left[d_t\right] \operatorname{Im}\left[\hat{d}_t\right] + \left(1 - 8\operatorname{Re}\left[\hat{d}_t\right]^2 \Big) \operatorname{Im}\left[\hat{\mu}_t\right]^2 + 2\operatorname{Im}\left[\hat{d}_t\right]^2 \Big(- \operatorname{Re}\left[\hat{\mu}_t\right] \Big(4\operatorname{Re}\left[\hat{\mu}_t\right] + 41 \\ &+ 72z + 17 \Big) \Big) + 128\operatorname{Im}\left[\hat{d}_t\right] z^3 \Big\} \Big\} + \operatorname{Re}\left[\hat{\mu}_t\right] \Big\{ \operatorname{Re}\left[\hat{\mu}_t\right]^2 + \operatorname{Im}\left[\hat{\mu}_t\right]^2 + \operatorname{Re}\left[\hat{d}_t\right] \Big\} \Big\{ \frac{14}{z} - \frac{5}{2v} \Big\} \\ &+ \Big\{ \left(\operatorname{Re}\left[\hat{\mu}_t\right]^2 + \operatorname{Im}\left[\hat{\mu}_t\right]^2\right)^2 + 2\left(\operatorname{Re}\left[\hat{\mu}_t\right]^2 \operatorname{Re}\left[\hat{d}_t\right]^2 + \operatorname{Im}\left[\hat{\mu}_t\right]^2 \Big) + \left(\operatorname{Re}\left[\hat{d}_t\right]^2 + \operatorname{Im}\left[\hat{d}_t\right]^2 \Big)^2 \Big\} \\ &\times \left(-\frac{1}{z} + \frac{1}{v} + \frac{4v}{z^2} \right) \Big], \end{aligned}$$

Off-shell particles in "decays"

$$gg \to H^* \to ZZ \to 4l$$

Complex mass scheme:

$$q\overline{q} \to Z^* \to ZH$$

For off-shell gauge bosons an extra polarization must be considered

We study the process:

 $gg \to H^* \to ZZ \to 4l$

We study the process:

$$gg \to H^* \to ZZ \to 4l$$

$$\Gamma_{H^* \to ZZ}$$

We study the process:

$$gg \to H^* \to ZZ \to 4l$$

$$\Gamma_{H^* \to ZZ}$$

We considere the anomalous couplings as complex

 $h_i^V = \operatorname{Re}[h_i^V] + i\operatorname{Im}[h_i^V]$

We study the process:

$$gg \to H^* \to ZZ \to 4l$$

$$\Gamma_{H^* \to ZZ}$$

We considere the anomalous couplings as complex

$$h_i^V = \operatorname{Re}[h_i^V] + i\operatorname{Im}[h_i^V]$$

We do not find relevant deviations from the case with only real anomalous couplings

We study the process:

 $gg \rightarrow H^* \rightarrow ZZ \rightarrow 4l$

 $\Gamma_{H^* \to Z_+ Z_+} + \Gamma_{H^* \to Z_- Z_-} + \Gamma_{H^* \to Z_0 Z_0}$

We study the process:

$$gg \rightarrow H^* \rightarrow ZZ \rightarrow 4l$$

 $\Gamma_{H^* \to Z_+ Z_+} + \Gamma_{H^* \to Z_- Z_-} + \Gamma_{H^* \to Z_0 Z_0}$

We considere the anomalous couplings as complex

 $h_i^V = \operatorname{Re}[h_i^V] + i\operatorname{Im}[h_i^V]$

The imaginary parts seem to be relevant

$$\Gamma^{ZZH}_{\mu\nu} = h_1^V g_{\mu\nu} + \frac{h_2^V}{m_Z^2} p_{1\nu} p_{2\mu} + \frac{h_3^V}{m_Z^2} \epsilon_{\mu\nu\alpha\beta} p_1^{\alpha} p_2^{\beta},$$

We considere the anomalous couplings as complex

 $h_i^V = \operatorname{Re}[h_i^V] + i\operatorname{Im}[h_i^V]$

$$\Gamma^{ZZH}_{\mu\nu} = h_1^V g_{\mu\nu} + \frac{h_2^V}{m_Z^2} p_{1\nu} p_{2\mu} + \frac{h_3^V}{m_Z^2} \epsilon_{\mu\nu\alpha\beta} p_1^{\alpha} p_2^{\beta},$$

We considere the anomalous couplings as complex

$$h_i^V = \operatorname{Re}[h_i^V] + i\operatorname{Im}[h_i^V]$$

Asymmetry

$$\mathbf{A}_{+-} = \frac{\Gamma_{H^* \to Z_+ Z_+} - \Gamma_{H^* \to Z_- Z_-}}{\Gamma_{H^* \to Z_+ Z_+} + \Gamma_{H^* \to Z_- Z_-}}$$

$$\Gamma^{ZZH}_{\mu\nu} = h_1^V g_{\mu\nu} + \frac{h_2^V}{m_Z^2} p_{1\nu} p_{2\mu} + \frac{h_3^V}{m_Z^2} \epsilon_{\mu\nu\alpha\beta} p_1^{\alpha} p_2^{\beta},$$

We considere the anomalous couplings as complex

$$h_i^V = \operatorname{Re}[h_i^V] + i\operatorname{Im}[h_i^V]$$

Asymmetry

 $\mathbf{A}_{+-} \sim \operatorname{Re}[h_1^H]\operatorname{Im}[h_3^H] - \operatorname{Re}[h_3^H]\operatorname{Im}[h_1^H]$

$$\Gamma^{ZZH}_{\mu\nu} = h_1^V g_{\mu\nu} + \frac{h_2^V}{m_Z^2} p_{1\nu} p_{2\mu} + \frac{h_3^V}{m_Z^2} \epsilon_{\mu\nu\alpha\beta} p_1^{\alpha} p_2^{\beta},$$

We considere the anomalous couplings as complex

$$h_i^V = \operatorname{Re}[h_i^V] + i\operatorname{Im}[h_i^V]$$

Asymmetry

 $A_{+-} \sim \text{Re}[h_1^H] \text{Im}[h_3^H] - \text{Re}[h_3^H] \text{Im}[h_1^H] \longrightarrow A_{+-} = 0$ in the SM

$$\Gamma^{ZZH}_{\mu\nu} = h_1^V g_{\mu\nu} + \frac{h_2^V}{m_Z^2} p_{1\nu} p_{2\mu} + \frac{h_3^V}{m_Z^2} \epsilon_{\mu\nu\alpha\beta} p_1^{\alpha} p_2^{\beta},$$

We considere the anomalous couplings as complex

$$h_i^V = \operatorname{Re}[h_i^V] + i\operatorname{Im}[h_i^V]$$

Asymmetry

$$A_{+-} \sim \operatorname{Re}[h_1^H]\operatorname{Im}(h_3^H) - \operatorname{Re}[h_3^H]\operatorname{Im}[h_1^H] \longrightarrow A_{+-} = 0$$
 in the SM
CP-violation

$$\Gamma^{ZZH}_{\mu\nu} = h_1^V g_{\mu\nu} + \frac{h_2^V}{m_Z^2} p_{1\nu} p_{2\mu} + \frac{h_3^V}{m_Z^2} \epsilon_{\mu\nu\alpha\beta} p_1^{\alpha} p_2^{\beta},$$

We considere the anomalous couplings as complex

$$h_i^V = \operatorname{Re}[h_i^V] + i\operatorname{Im}[h_i^V]$$

$$\Gamma_{\mu\nu}^{ZZH} = h_1^V g_{\mu\nu} + \frac{h_2^V}{m_Z^2} p_{1\nu} p_{2\mu} + \frac{h_3^V}{m_Z^2} \epsilon_{\mu\nu\alpha\beta} p_1^{\alpha} p_2^{\beta},$$

We considere the anomalous couplings as complex
$$h_i^V = \operatorname{Re}[h_i^V] + i\operatorname{Im}[h_i^V]$$

Asymmetry
$$A_{+-} \sim \operatorname{Re}[h_1^H(\operatorname{Im}[h_3^H]) - \operatorname{Re}[h_3^H(\operatorname{Im}[h_1^H])] \longrightarrow A_{+-} = 0 \text{ in the SM}$$

CP-violation

To obtain $A_{+-} \neq 0$ it is necessary CP-violation and complex anomalous couplings

$$gg \to H^* \to ZZ \to 4l$$

Summary

- Complex anomalous couplings can be obtained from offshell couplings.
- The imaginary parts may be relevant in some process and may be not well-understood.
- Polarizations of gauge bosons may be sensitive to the imaginary part and also to CP-violation.
- There are any processes where the imaginary parts have not been studied: $e^-e^+ \rightarrow Z^*(\gamma^*) \rightarrow ZZ \rightarrow 4l$

Gracias!