

Hermes León Vargas XVIII Mexican Workshop on Particles and Fields November 23, 2022

Neutrion search with the HAWC observatory

Hermes León Vargas XVIII Mexican Workshop on Particles and Fields November 23, 2022

Neutrino search with the
HAWC observatory

High Altitude Water Cherenkov

High Altitude Water Cherenkov

A long journey (~6 years)

UHE Neutrinos with HAWC

Hermes, Andrés Sandoval, Ernesto Belmont Instituto de Física, UNAM UNAM HAWC Meeting January 7, 2016

Image Landsat Data SIO, NOAA, U.S. Navy, NGA, GEBCO

First proposal to the
HAWC Collaboration
January, 2016

A long journey (~6 years)

UHE Neutrinos with HAWC

Hermes, Andrés Sandoval, Ernesto Belmont Instituto de Física, UNAM UNAM HAWC Meeting January 7, 2016

Image Landsat Image © 2015 DigitalGlobe Data SIO, NOAA, U.S. Navy, NGA, GEBCO

First proposal to the
HAWC Collaboration
January, 2016

Hermes León Vargas
Instituto de Física, UNAM
HAWC MSU Collaboration Meeting
June 29, 2016

First proof of principle with data
(10 seconds)
June, 2016

A long journey (~6 years)

UHE Neutrinos with HAWC

Hermes, Andrés Sandoval, Ernesto Belmont Instituto de Física, UNAM UNAM HAWC Meeting January 7, 2016 Data SIO, NOAA, U.S. Navy, NGA, GEBCO

First proposal to the
HAWC Collaboration
January, 2016

Hermes León Vargas
Instituto de Física, UNAM
HAWC MSU Collaboration Meeting June 29, 2016

First proof of principle with data (10 seconds)
June, 2016

Neutrino search with HAWC

PRL 88, 161102 (2002)
J Jeng et al.
$L_{T^{-}}$

- The volcano also works as a background absorber (horizontal muons and air showers)
- Use HAWC to detect the charged lepton or its collimated decay products

Atmospheric Earth-skimming neutrino detection

APJ 736:L12 (2011)
Observational search for PeV-EeV tau neutrino from GRB081203A

Astroparticle Physics 102 (2018) 77-88 Limits on the flux of tau neutrinos from 1 PeV to 3 EeV with the MAGIC telescopes

Atmospheric Earth-skimming neutrino detection

everyday science lblog
 How to use a mountain to detect neutrinos

 31 Aug 2016 Hamish Johnston

By Hamish Johnston in Beijing
This evening I had dinner with Zhen Cao, who is one of China's leading particle astrophysicists and works at the Institute of High Energy Physics of the Chinese Academy of Sciences here in Beijing.

ADVENT RESEARCH MATERIALS

physicsworld I buyers guide

Physics World Buyer's Guide Exnore the most comnrehensive divector

Prof. Zhen Cao proposed to build the Cosmic Ray Tau Neutrino Telescope (CRTNT)

Similar to ASHRA, expectation of 1 neutrino per year

Instead appointed PI of LHAASO (180 M USD)

Not-underground astrophysical neutrino detectors

General opinion: Impossible, the background is too large Some experimental proposals ${ }^{1}$ (none was built):

- GRANDE (Gamma-Ray and Neutrino DEtector).

Cherenkov detectors, 30,000 m² (1988)

- LENA (Lake Experiment on Neutrino Activities)

Cherenkov detectors (1992)

- NET

3 layers of Cherenkov detectors at Gran Sasso (1991)

- PAN (Particle Astrophysics in Norrland)

Detectors inside a lake in Sweden (1991)

- SINGAO (Southern Italy Neutrino and Gamma Astronomy Observatory)
$10000 \mathrm{~m}^{2}$ of RPCs (1988)

[^0]
Data visualization in HAWC

- Aerial view of the detector
- The display is that of a real data air shower.
- The filled circle size is proportional to the charge detected by each PMT
- The color code represents the hit time [ns]

HAWC as a particle tracker

HAWC as a particle tracker

Selection criteria (software trigger) :

- Chain of hits in neighboring PMTs (same columns or closest columns), comprising at least 2 WCDs, with propagation consistent with speed of light
- Store WCD information ($\langle T\rangle, \Sigma P E s$, NHits) \longrightarrow pixel for tracking

Real data "small" events

Data sample \& selection

Data obtained using the air shower trigger:

- 216 runs
- ~6 months of live time
- $\mathbf{\sim} \mathbf{2 6 0}$ TB processed ($>7 \times 10^{6}$ CPU hours, using two clusters: UMD \& UNAM)

WCD selection cuts:

- Minimum PMT charge: 4 PEs
- Minimum number of PMT with signal inside each WCD: 2/4
- Removal of hits identified as part of an air shower
- Isolation cuts on each track candidate

Background sources:

- Vertical muons hitting HAWC from above ($10^{4} \mathrm{~m}^{-2} \mathrm{~min}^{-1}$)
- Each HAWC WCD has a diameter of 7.3 m
- The PMT rate is approximately $24 \& 39 \mathrm{kHz}$
- Artificial tracks due to combinatorial background

Additional selection criteria

$$
\begin{array}{l|}
\hline \mathrm{H}_{\mathrm{A}}=\mathrm{N}_{\mathrm{WCDs}} / \mathrm{N}_{\text {WCDs }}^{\text {Track }}, \\
\text { Additional cut to } \\
\text { select propagation at } \\
\sim
\end{array}
$$

1) Combinatorial background

Several vertical muons can produce patterns that are similar to an horizontal muon
-- Muon trajectory

- WCD that contain active PMTs at $<\mathrm{Ti}>$
4... Reconstructed trajectory

1) Combinatorial background

Several vertical muons can produce patterns that are similar to an horizontal muon
-- Muon trajectory

- WCD that contain active PMTs at $<\mathrm{Ti}>$
4.... Reconstructed trajectory

1) Combinatorial background

Several vertical muons can produce patterns that are similar to an horizontal muon
-- Muon trajectory

- WCD that contain active PMTs at $\left\langle T T i l_{T 2} \quad \mu_{T 1}\right.$
4..." Reconstructed trajectory

1) Combinatorial background

Several vertical muons can produce patterns that are similar to an horizontal muon

$\mathrm{T} 3>\mathrm{T} 2>\mathrm{T} 1>\mathrm{T} 0$

$13>12>\mathrm{Tl}>\mathrm{T} 0$

1) Combinatorial background

Several vertical muons can produce patterns that are similar to an horizontal muon

$\mathrm{T} 3>\mathrm{T} 2>\mathrm{T} 1>\mathrm{T} 0$

- - Muon trajectory

$13>12>\mathrm{Tl}>\mathrm{T} 0$ -.... Reconstructed trajectory

1) Combinatorial background

Several vertical muons can produce patterns that are similar to an horizontal muon
T3 > T2 > T1 > T0
-- Muon trajectory

1) Combinatorial background

Several vertical muons can produce patterns that are similar to an horizontal muon
$-\rightarrow$ Muon trajectory
$\mathrm{T} 3>\mathrm{T} 2>\mathrm{T} 1>\mathrm{T} 0$

- WCD that contain active PMTs at ${ }^{i}<!$
4... Reconstructed trajectory

1) Combinatorial background

Several vertical muons can produce patterns that are similar to an horizontal muon

- - Muon trajectory

$\mathrm{T} 3>\mathrm{T} 2>\mathrm{T} 1>\mathrm{T} 0$

- WCD that contain active PMTs at ${ }^{i}<!T i i_{T 2} \quad \mu_{T 1}$
4... Reconstructed trajectory

For the analysis we used only tracks with $N_{P i x e l}^{T r a c k} \geq 4$

Some examples of real data horizontal muons

Hits outside a linear track

The tracks are not completely isolated, i.e. there are collinear hits

Hits outside a linear track

Does it happen in simulations?

The red circles indicate the path of the simulated muons

Does it happen in simulations?

The red circles indicate the path of the simulated muons

Cherenkov light sources

The injected particles are only positive muons

Cherenkov light sources

As the muon energy increases, it produces
more secondary
particles

Cherenkov light sources

As the muon energy increases, it produces more secondary particles

Hits outside a linear track

These simulations do not include noise from vertical muons

Excess WCDs: WCDs ${ }^{\top}$ - WCDs ${ }^{P}$
WCDs^{\top} : Number of WCDs with at least 1 simulated PE
WCDsp: Number of WCDs that intersect the path of the simulated muon

Tracks with discontinuities

Tracks with discontinuities

Tracks with discontinuities

- Discontinuity: hits in N11
- PMTs N11A-D taking good quality data in the current run
- No signals at the lowest level data (raw)

Tracks with discontinuities

諲• Run: 6998

- July 24, 2017, 06:08:06 UTC, 01:08:06 MX
- Discontinuity: hits in 110
- PMTs I10A-D taking good quality data in the current run
- No signals at the lowest level data (raw)

Light production fluctuations (muons)

- The muon energy loss is not uniform
- Each HAWC WCD has a diameter of 7.3 m

Red $=$ negative
Blue $=$ positive

100 GeV electron in ice
$\stackrel{100 \mathrm{~cm}}{ }$
L. Rädel, C. Wiebusch, Astroparticle Physics (2013) 102-113

Light production fluctuations (muons)

- The muon energy loss is not uniform
- Each HAWC WCD has a diameter of 7.3 m

Red $=$ negative
Blue $=$ positive

100 GeV electron in ice
L. Rädel, C. Wiebusch, Astroparticle Physics (2013) 102-113

Water

Does it happen in simulations?

Real data tracks pointing to the mountain

禺

禺

2) Scattered muon background

Individual muons can be scattered towards horizontal directions

- - Muon trajectory
- WCD that contain active PMTs at $<\mathrm{Ti}>$
4... Reconstructed trajectory

Pico
de Orizaba

2) Scattered muon background

Individual muons can be scattered towards horizontal directions

- - Muon trajectory
- WCD that contain active PMTs at $<\mathrm{Ti}>$
4... Reconstructed trajectory

2) Scattered muon background

Individual muons can be scattered towards horizontal directions

- - Muon trajectory
- WCD that contain active PMTs at $<\mathrm{Ti}\rangle$
4... Reconstructed trajectory
- This background is strongly energy dependent, i.e. $<20 \mathrm{GeV}^{1}$
- The scattering probability depends on the initial propagation elevation, i.e. muons closer to the horizon are more easily scattered
${ }^{1}$ The muon background from backscattered cosmic-ray muon in a Surface Neutrino detector.

Scattering model

- Profile of the volcano as seen from the center of HAWC

Conversion from geometry to LOSM using the average density of andesitic rocks $\sim 2.6 \mathrm{~g} / \mathrm{cm}^{3}$

- The base of the volcano provides a region with very large LOSM
- The analysis is restricted to low elevations [$0^{\circ}, 2^{\circ}$]

Scattering model

Particle Data Group
Prog. Theor. Exp. Phys. 2022, 083C01 (2022)

Scattering model

- The scattered muons that end in the analysis region come from the region not shielded by the volcano (purple shade).
- The scattering probability was evaluated using the GEANT4 simulation of HAWC.

Scattering model

- The scattered muons that end in the analysis region come from the region not shielded by the volcano (purple shade).
- The scattering probability was evaluated using the GEANT4 simulation of HAWC.
- Used data from Aragats ${ }^{1}$ and the model from P. Lipari2 to parametrize the zenith dependence of the muon intensity

Scattering model

We calculate the scattered intensity in steps of 1° in azimuth and integrate over the region not shielded by the volcano

$$
\mathrm{F}_{\mathrm{Scatt}}^{\phi}(\mathrm{E}=5 \mathrm{GeV})=\frac{\pi}{180} \int_{\theta_{\mathrm{i}}}^{\theta_{\mathrm{f}}} \mathrm{I}_{\text {hor }}(\mathrm{E}=5 \mathrm{GeV}, \theta) \times \mathrm{P}_{\mathrm{scatt}}(\mathrm{E}=5 \mathrm{GeV}, \theta) \times \sin \theta \mathrm{d} \theta
$$

$$
\theta_{i}
$$

Scattering model

We calculate the scattered intensity in steps of 1° in azimuth and integrate over the region not shielded by the volcano

$$
\mathrm{F}_{\text {Scatt }}^{\phi}(\mathrm{E}=5 \mathrm{GeV})=\frac{\pi}{180} \int_{\theta_{\mathrm{i}}}^{\theta_{\mathrm{f}}} \mathrm{I}_{\text {hor }}(\mathrm{E}=5 \mathrm{GeV}, \theta) \times \mathrm{P}_{\text {scatt }}(\mathrm{E}=5 \mathrm{GeV}, \theta) \times \sin \theta \mathrm{d} \theta
$$

Scattering model

We calculate the scattered intensity in steps of 1° in azimuth and integrate over the region not shielded by the volcano

$$
\mathrm{F}_{\text {Scatt }}^{\phi}(\mathrm{E}=5 \mathrm{GeV})=\frac{\pi}{180} \int_{\theta_{\mathrm{i}}}^{\theta_{\mathrm{f}}} \mathrm{I}_{\text {hor }}(\mathrm{E}=5 \mathrm{GeV}, \theta) \times \mathrm{P}_{\text {scatt }}(\mathrm{E}=5 \mathrm{GeV}, \theta) \times \sin \theta \mathrm{d} \theta
$$

$$
\theta_{i}
$$

For region I (6° in azimut):

Scattering model

We calculate the scattered intensity in steps of 1° in azimuth and integrate over the region not shielded by the volcano

$$
\mathrm{F}_{\text {Scatt }}^{\phi}(\mathrm{E}=5 \mathrm{GeV})=\frac{\pi}{180} \int_{\theta_{\mathrm{i}}}^{\theta_{\mathrm{f}}} \mathrm{I}_{\text {hor }}(\mathrm{E}=5 \mathrm{GeV}, \theta) \times \mathrm{P}_{\text {scatt }}(\mathrm{E}=5 \mathrm{GeV}, \theta) \times \sin \theta \mathrm{d} \theta
$$

θ_{i}

For region I (6° in azimut):

Scattering model

We calculate the scattered intensity in steps of 1^{0} in azimuth and integrate over the region not shielded by the volcano

$$
\mathrm{F}_{\mathrm{Scatt}}^{\phi}(\mathrm{E}=5 \mathrm{GeV})=\frac{\pi}{180} \int_{\theta_{\mathrm{i}}}^{\theta_{\mathrm{f}}} \mathrm{I}_{\text {hor }}(\mathrm{E}=5 \mathrm{GeV}, \theta) \times \mathrm{P}_{\mathrm{scatt}}(\mathrm{E}=5 \mathrm{GeV}, \theta) \times \sin \theta \mathrm{d} \theta
$$

Scattering model

We calculate the scattered intensity in steps of 1° in azimuth and integrate over the region not shielded by the volcano

$$
\mathrm{F}_{\text {Scatt }}^{\phi}(\mathrm{E}=5 \mathrm{GeV})=\frac{\pi}{180} \int_{\theta_{\mathrm{i}}}^{\theta_{\mathrm{f}}} \mathrm{I}_{\text {hor }}(\mathrm{E}=5 \mathrm{GeV}, \theta) \times \mathrm{P}_{\text {scatt }}(\mathrm{E}=5 \mathrm{GeV}, \theta) \times \sin \theta \mathrm{d} \theta
$$

For region I (6° in azimut):

And adding the contributions for energies above the detection threshold:

$$
\mathrm{F}_{\text {Scatt }}^{\mathrm{I}}=\sum_{\mathrm{E}=2.3 \ldots}^{\mathrm{E}=100 \mathrm{GeV}} \mathrm{~F}_{\text {Scatt }}^{\mathrm{I}}(\mathrm{E})
$$

$$
\operatorname{Intensity}(\mathrm{i})=\frac{\mathrm{F}_{\text {Scatt }}^{\mathrm{i}}}{\Omega_{\mathrm{i}}}
$$

Scattering model

The muon intensity is consistent with the scattering model in the 3 analysis regions

The signals are dominated by the background from scattered muons

How to find signals from neutrino interactions?

The strategy is to increase the detection threshold to remove the scattered background and keep neutrino-induced muons

How to find signals from neutrino interactions?

The strategy is to increase the detection threshold to remove the scattered background and keep neutrino-induced muons

LVD: Large Volume Detector Astroparticle Physics 3 (1995)
Muons with energy > ~100 GeV will be free from the scattered background \longrightarrow neutrino-induced muons

How to find signals from neutrino interactions?

Select muons with energy muons above that from those that are scattered (100 GeV)

$\mathrm{A}_{\mathrm{i}}=\frac{\mathrm{N}_{\text {Trigg }}}{\mathrm{N}_{\mathrm{Gen}}} \times \mathrm{A}_{\mathrm{Gen}}$ The detection effective area. energy.			
Bin	<LOSM> [km.w.e.]	. $\quad \mathrm{A} \Omega\left[\mathrm{m}^{2} \mathrm{sr}\right]$	Tracks
Full	$17.70_{-9.23}^{+3.35}$	$5.1 \times 10^{-2} \pm 9.2 \times 10^{-3}$	122
I	$9.54_{-1.92}^{+1.95}$	$4.1 \times 10^{-3} \pm 7.5 \times 10^{-4}$	21
II	$20.97_{-0.13}^{+0.09}$	$3.0 \times 10^{-2} \pm 5.4 \times 10^{-3}$	26

At higher energies, more PMTs are activated by the muons

How to find signals from neutrino interactions?

Compare the ratio $\frac{\mathrm{N}_{\text {Trigg }}}{\mathrm{N}_{\mathrm{G} \text { en }}}$ for muons at the most probable energy $(\sim 5 \mathrm{GeV})$ to those at 100 GeV .

$$
\frac{\frac{\mathrm{N}_{\text {Trigg }}}{\mathrm{N}_{\text {Gen }}}(100 \mathrm{GeV})}{\frac{\mathrm{N}_{\text {Trigg }}}{\mathrm{N}_{\text {Gen }}}(5 \mathrm{GeV})} \sim 118
$$

This gives a conservative estimate of the increase in the
effective area if the detection threshold is 100 GeV

How to find signals from neutrino interactions?

Compare the ratio $\frac{N_{\text {Trigg }}}{N_{\text {Gen }}}$ for muons at the most probable energy ($\sim 5 \mathrm{GeV}$) to those at 100 GeV .

$$
\frac{\frac{\mathrm{N}_{\text {Trigg }}}{\mathrm{N}_{\text {Gen }}}(100 \mathrm{GeV})}{\frac{\mathrm{N}_{\text {Trigg }}}{\mathrm{N}_{\text {Gen }}}(5 \mathrm{GeV})} \sim 118
$$

This gives a conservative estimate of the increase in the
effective area if the detection threshold is 100 GeV
$\frac{\mathrm{A} \Omega\left[\mathrm{m}^{2} \mathrm{sr}\right]}{5.1 \times 10^{-2} \pm 9.2 \times 10^{-3}} \longrightarrow \approx 6 \mathrm{~m}^{2} \mathrm{sr}$
$N=I_{\mu}^{v} \times \Delta T \times A \Omega$ and using the neutrino-induced muon intensity from LVD

$$
I_{\mu}^{v}=8.3 \times 10^{-9} \mathrm{~m}^{-2} \mathrm{~s}^{-1} \mathrm{sr} r^{-1} \quad \mathrm{~N}(1 \text { year }) \approx 1.6
$$

This number may seem too low but:

- An above ground detector is much less expensive than those underground
- If we observe a very high energy signal, is more likely to be a tau lepton (due to the lepton energy loss)

Tau neutrino direct detections

- Discovered in 2000 at FNAL

DONUT Detector

- Penultimate SM particle to be discovered
- 4 events, 3.5σ
- 2007: 9 tau neutrino candidates
- 2018: OPERA reports 10 candidates
- 2 more by IceCube (4 Nov, 2022)

21 direct detections so far

Field of view with HAWC

Arrival direction, in celestial coordinates, for the 122 detected events

Results from ICRC 2019

Results from ICRC 2019

H. León Vargas

ICRC 2019 Proceedings

Results from ICRC 2019

H. León Vargas

ICRC 2019 Proceedings
An average muon deposits < 30 PEs

Results from ICRC 2019

—— primary
—— charged particle
\ldots

1 L. Rädel, C. Wiebusch, Astroparticle Physics (2013) 102-113
H. León Vargas

ICRC 2019 Proceedings
This signal deposits $\times 50$ the average energy loss

Conclusions

- The HAWC observatory was designed to detect air showers produced by TeV gamma rays
- 8 years ago I started to investigate the possibility of using the "Earthskimming" neutrino detection method using HAWC
- I developed all the tools needed for this study. The conclusion:

Contents lists available at ScienceDirect

Astroparticle Physics

journal homepage: www.elsevier.com/locate/astropartphys

Characterization of the background for a neutrino search with the HAWC observatory
A. Albert ${ }^{1}$, R. Alfaro ${ }^{2}$, C. Alvarez ${ }^{3}$, J.R. Angeles Camacho ${ }^{2}$, J.C. Arteaga-Velázquez ${ }^{4}$, K.P. Arunbabu ${ }^{5}$, E. Belmont-Moreno ${ }^{2}$, K.S. Caballero-Mora ${ }^{3}$, T. Capistrán ${ }^{6}$, A. Carramiñana ${ }^{7}$, S. Casanova ${ }^{8}$, U. Cotti ${ }^{4}$, J. Cotzomi ${ }^{9}$, S. Coutiño de León ${ }^{7}$, E. De la Fuente ${ }^{10,11}$,
R. Diaz Hernandez ${ }^{7}$, M.A. DuVernois ${ }^{12}$, M. Durocher ${ }^{1}$, C. Espinoza ${ }^{2}$, K.L. Fan ${ }^{13}$, N. Fraija ${ }^{6}$,
D. Garcia ${ }^{2}$, J.A. García-González ${ }^{14}$, F. Garfias ${ }^{6}$, M.M. González ${ }^{6}$, J.A. Goodman ${ }^{13}$, D. Huang ${ }^{15}$
F. Hueyotl-Zahuantitla ${ }^{3}$, P. Hüntemeyer ${ }^{15}$, A. Iriarte ${ }^{6}$, A. Jardin-Blicq ${ }^{16,17,18}$, D. Kieda ${ }^{19}$,
A. Lara ${ }^{5}$, W.H. Lee ${ }^{6}$, H. León Vargas ${ }^{2, *}$, A.L. Longinotti ${ }^{6}$, G. Luis-Raya ${ }^{20}$, K. Malone ${ }^{1}$,
A. Lara ${ }^{5}$, W.H. Lee ${ }^{6}$, H. Leon Vargas ${ }^{22}$, A.L. Longinotti ${ }^{\text {, }}$, G. Luis-Raya ${ }^{23}$, K. Malone ${ }^{23}$, ${ }^{21}$, J.A. Matthews ${ }^{2}$, Miranda-Romagnoli ${ }^{2}$, Morales-Soto ${ }^{4}$,
E. Moreno ${ }^{9}$, A. Nayerhoda ${ }^{8}$, L. Nellen ${ }^{24}$, R. Noriega-Papaqui ${ }^{23}$, N. Omodei ${ }^{25}$, A. Peisker ${ }^{26}$, E.G. Pérez-Pérez ${ }^{20}$, C.D. Rho ${ }^{27}$, D. Rosa-González ${ }^{7}$, A. Sandoval ${ }^{2}$, J. Serna-Franco ${ }^{2}$, R.W. Springer ${ }^{19}$, K. Tollefson ${ }^{26}$, I. Torres ${ }^{7}$, R. Torres-Escobedo ${ }^{10,28}$, F. Ureña-Mena ${ }^{7}$,
L. Villaseñor ${ }^{9}$, H. Zhou ${ }^{28}$, C. de León ${ }^{4}$

Phyysics Diviston, Los Alamos National Laboratary, Los Alamos, NM, USA
Inssituto de Fsicica, Univeridad Nacional Autbonoma de Mérico, Ciudad de Mérico, Mexico
${ }^{3}$ Unnersidad Autionnoma de Chiqpas, Tinata Gutiérerz, Chiapas, Mexico

Instiruto de Astronomia, Univeridad Nacional Autbinoma a de Mexico, Cuadad de Mexico, Mexico

institute of Nuclar Physics Palish Acadeny of Sciences, PL-31342 IFL-PAN, Krakow, Poland

${ }^{12}$ Deparorment of Physics and Wixconsin leceubbe Particle Astrophysics Center, University of Wisansin-Madison, Madison, WI, USA
${ }^{3}$ Deparrment of Physics, Univerity of Maryliend, College Parrk, MD, USA

${ }^{\circ}$ Deparmentrt of Physics and Astronomy, University of Utath, Salt Lake City, UT, USA
Unitersidad Potiectica de Pachucca, Pachuca, Hgo, Mexico

${ }^{20}$ Departenent of Physks and Astronomy, Unverstiy of New Mexco
${ }^{3}$ Inssituto de Clencias. Nucleares, Universidad Nacional Auutonoma de Mexico, Cludad de Mexico, Mexico
Department of Physics, Stanford University, Stanforrd, CA 94305-4060, USA
Deparornent of Physics and Astronony, Mlchicion Satate Universicy, East Lansing ML, USA
University of Sooul, Seoul, Republic of Korrea
${ }^{23}$ Tsung-Doo Lee Instiuce \& School of Physics and Astronomy, Shonghai Jino Tong Universtig, Shanghail, Peoplés Reppulice of China

ARTICLE INFO
Kepurds
Muons
ABSTRACT
The close location of the HAWC observatory to the largest volcano in Mexico allows to perform a search for neutrino-induced horizontal muon and tau charged leptons. The section of the volcano located at the

- Corresponding author

E-mail address hleonvar@fisica.unam.mx (H. León Vargas).
hittps://doi.org/10.1016/J.astropartphys.2021.102670
Received 19 August 2021; Received in revised form 29 October 2021; Accepted 24 November 2021
Avaiable online 18 December 2021 .

Conclusions

- The HAWC observatory was designed to detect air showers produced by TeV gamma rays
- 8 years ago I started to investigate the possibility of using the "Earthskimming" neutrino detection method using HAWC
- I developed all the tools needed for this study. The conclusion: It is not impossible, just really hard

* Corresponding author.

 E-mail address: hleonvar@fisica.unam.mx (H. León Vargas).
ELSEVIER

Characterization of the background for a neutrino search with the HAWC observatory
A. Albert ${ }^{1}$, R. Alfaro ${ }^{2}$, C. Alvarez ${ }^{3}$, J.R. Angeles Camacho ${ }^{2}$, J.C. Arteaga-Velázquez ${ }^{4}$, K.P. Arunbabu ${ }^{5}$, E. Belmont-Moreno ${ }^{2}$, K.S. Caballero-Mora ${ }^{3}$, T. Capistrán ${ }^{6}$, A. Carramiñana ${ }^{7}$, S. Casanova ${ }^{8}$, U. Cotti ${ }^{4}$, J. Cotzomi ${ }^{9}$, S. Coutiño de León ${ }^{7}$, E. De la Fuente ${ }^{10,11}$,
R. Diaz Hernandez ${ }^{7}$, M.A. DuVernois ${ }^{12}$, M. Durocher ${ }^{1}$, C. Espinoza ${ }^{2}$, K.L. Fan ${ }^{13}$, N. Fraija ${ }^{6}$,
D. Garcia ${ }^{2}$, J.A. García-González ${ }^{14}$, F. Garfias ${ }^{6}$, M.M. González ${ }^{6}$, J.A. Goodman ${ }^{13}$, D. Huang ${ }^{15}$,
F. Hueyotl-Zahuantitla ${ }^{3}$, P. Hüntemeyer ${ }^{15}$, A. Iriarte ${ }^{6}$, A. Jardin-Blicq ${ }^{16,17,18}$, D. Kieda ${ }^{19}$,
A. Lara ${ }^{5}$, W.H. Lee ${ }^{6}$, H. León Vargas ${ }^{2, *}$, A.L. Longinotti ${ }^{6}$, G. Luis-Raya ${ }^{20}$, K. Malone ${ }^{1}$,
J. Martínez-Castro ${ }^{21}$, J.A. Matthews ${ }^{22}$, P. Miranda-Romagnoli ${ }^{23}$, J.A. Morales-Soto ${ }^{4}$,
E. Moreno ${ }^{9}$, A. Nayerhoda ${ }^{8}$, L. Nellen ${ }^{24}$, R. Noriega-Papaqui ${ }^{23}$, N. Omodei ${ }^{25}$, A. Peisker ${ }^{26}$, E.G. Pérez-Pérez ${ }^{20}$, C.D. Rho ${ }^{27}$, D. Rosa-González ${ }^{7}$, A. Sandoval ${ }^{2}$, J. Serna-Franco ${ }^{2}$,
R.W. Springer ${ }^{19}$, K. Tollefson ${ }^{26}$, I. Torres ${ }^{7}$, R. Torres-Escobedo ${ }^{10,28}$, F. Ureña-Mena ${ }^{7}$,
L. Villaseñor ${ }^{9}$, H. Zhou ${ }^{28}$, C. de León ${ }^{4}$

Physics Divsiton Los Alamos Nationar Labororatary, Los Alamos, NM, USA

${ }^{18}$ National Astronomical Research Instituce of Thailond (Public Organization), Don Koen, Maekim, Chiang Mai Solso, Thailend
${ }^{19}$ Deparerment of Physics and Astronomy, University of Utath, Salt Lake City, UT, USA
${ }^{4}$ Universtad Podieconka de Pachuca, Pachuca, Hgo, Mexico

Univeridad A Atubinoma del Estado de Hiddego, Pactura, Mexico

28 Dparmerment of Physics, Stanford University, Stanford, CA 94305 -40060, USA
University of Soull Sounll Rerpublic of Korrea
25 University of Seoul, Seoul, Republic of Korea
ARTICLE INFO ABSTRACT

Kepwordse Huons

The close location of the HAWC observatory to the largest volcano in Mexico allows to perform a search
for neutrino-induced horizontal muon and tau charged leptons. The section of the volcano located at the

- Corresponding author

E-mail address: hleonvar@fisica.unam.mx (H. León Vargas).
https://doi.org/10.1016//.astropartphys.2021.102670
Received 19 August 2021; Received in revised form 29 October 2021; Accepted 24 November 2021 Available online 18 December 2021
$0927-6505 / \ominus 2021$ Elsevier B.V. All rights reserved.

Horizontal signals

At the HAWC energy neutrinos come from pion and kaons. Vertical mesons interact before decay, this changes when the mesons propagate horizontally.

Super-Kamiokande. Phys. Rev. D 71 (2005) 112005

Kamiokande II+III.
Phys. Rev. Lett. 81 (1998) 10

The increase of the neutrino flux was predicted and observed. The factor of 2 is a rough approximation. LVD calculated a value of 2.3 ± 0.2.

Notice how the measurements do not go as horizontal as we do

Horizontal signals

Other experiments have measured an excess of horizontal events

IceCube. Phys. Rev. D. 83 (2011) 012001.

Amanda-II. Phys. Rev. D. 76 (2007) 042008.

[^0]: ${ }^{1}$ C. Spiering. The European Physical Journal H 37 (2012) 515-565

