

Lorentz violation in electromagnetic moments of fermions

Javier Montaño, Hector Novales, Monica Salinas, Jesus Toscano

Field theories

Two main ingredients:

Dynamic variables

Symmetries

SM fields

EW gauge bosonsQCD gauge bosonsDirac spinorsHiggs scalar

SM symmetries

Gauge symmetry Lorentz symmetry ⇒ CPT symmetry Other global symmetries

Beyond the SM

Electrodynamics: $\mathcal{L}_{\mathrm{U}(1)_{e}} = \frac{1}{4} (F_{\mu\nu})^{2} + \overline{\psi_{i}} (i \not D - m_{j}) \psi_{j}$ + electroweak stuff EW symmetry breaking

Standard Model:

$$\mathcal{L}_{\rm SM} = -\frac{1}{4} (F_{\mu\nu})^2 + i\overline{\psi} \not D \psi$$
$$-\overline{\psi_i} Y_{ij} \psi_j + \text{H.c.}$$
$$+ |D_\mu \phi|^2 - V(\phi)$$

Not perfect, but our best theory so far!!!

+ LV stuff, perhaps?

Fundamental description: • Planck Scale

- Dynamic variables and symmetries
- Lorentz violation? ⇒ Deviations from SM observables

Observer VS particle

The gravitational linear potential:*

$$L = \frac{m\dot{\boldsymbol{r}}^2}{2} - m\boldsymbol{g}\cdot\boldsymbol{r}$$

Observer LT $L \xrightarrow{\text{obs.}} L' = \frac{m\dot{r}^2}{2} - mg \cdot r = L$ Invariant Particle LT $L \xrightarrow{\text{part.}} L' = \frac{m\dot{r}^2}{2} - mg_k (R_{kj}rj) \neq L$

Non invariant

*Jay D. Tasson, What do we know about Lorentz invariance?, Rep. Prog. Phys. 77 062901 (2014).

The Lorentz-violating SME

Effective Lagrangian: SM symmetries

SM dynamic variables

Effects from high energies \implies Novel phenomena

Novel phenomena Deviations in SM observables

 $\mathcal{L}_{\rm SME} = \mathcal{L}_{\rm mSME} + \mathcal{L}_{\rm nrSME}$

Renormalizable or minimal SME: mass units = 4Non-renormalizable SME: mass units > 4

 $\mathcal{L}_{\mathrm{mSME}} = \mathcal{L}_{\mathrm{SM}} + \mathcal{L}_{\mathrm{LV}}$

The SM Lagrangian

Lorentz-violating terms: $T_{\mu_1...\mu_n} \mathcal{O}^{\mu_1...\mu_n}$

Background fields

Field content

Transformations: OT: $T_{\mu_1\mu_2...\mu_n} \mathcal{O}^{\mu_1\mu_2...\mu_n} \xrightarrow{\text{obs.}} T_{\mu_1\mu_2...\mu_n} \mathcal{O}^{\mu_1\mu_2...\mu_n}$ Invariant! PT: $T_{\mu_1...\mu_n} \mathcal{O}^{\mu_1...\mu_n} \xrightarrow{\text{part.}} T_{\mu_1...\mu_n} \Lambda^{\mu_1}{}_{\nu_1} \dots \Lambda^{\mu_n}{}_{\nu_n} \mathcal{O}^{\nu_1...\nu_n}$ Non-invariant!

The Yukawa sector*

Leptons
$$\mathcal{L}_{Y}^{SME} = -\frac{1}{2} (H_L)_{\mu\nu}^{AB} \overline{L_A} \phi \sigma^{\mu\nu} R_B$$

Quarks
$$-\frac{1}{2} (H_U)_{\mu\nu}^{AB} \overline{Q_A} \tilde{\phi} \sigma^{\mu\nu} U_B$$

Antisymmetric (spacetime)
$$-\frac{1}{2} (H_D)_{\mu\nu}^{AB} \overline{Q_A} \phi \sigma^{\mu\nu} D_B + H.c.$$

$$SSB + unitary gauge \implies \mathcal{L}_{Y}^{SME} = -\frac{1}{2}(v + H) \sum_{f=l,u,d} \overline{f_A} [(Y_f)_{\mu\nu}^{AB} P_L + (Y_f)_{\mu\nu}^{BA*} P_R] \sigma^{\mu\nu} f_B$$

Biunitary transformation: $(Y_f)_{\mu\nu} = U_L^{f\dagger}(H_f)_{\mu\nu}U_R^f$

Mass eigenspinors

Higgs field, H

* D. Colladay and V. A. Kostelecky, Lorentz-violating extension of the standard model, Phys. Rev. D 58, 116002 (1998).

$$\mathcal{L}_{Y}^{SME} = -\frac{1}{2}(v+H) \sum_{\substack{f=l,u,d}} \overline{f_A} \left[(Y_f)_{\mu\nu}^{AB} P_L + (Y_f)_{\mu\nu}^{BA*} P_R \right] \sigma^{\mu\nu} f_B$$

Parameters:

$$\begin{array}{l}
Y_{0i}^{AB} = e_i^{AB}, \\
Y_{ij}^{AB} = \epsilon_{ijk} b^{ABk},
\end{array} \longrightarrow \mathbf{e}^{AB}, \mathbf{b}^{AB}$$

 \Rightarrow Contributing Feynman diagrams!

Contributions to EMMs

Off-shell photon

Lorentz invariant contributions

Several more terms with Lorentz violation

Electromagnetic moments:

AMM
$$a_A^{\text{SME}} = f_A^{\text{M}}(q^2 = 0)$$

EDM $d_A^{\text{SME}} = f_A^{\text{E}}(q^2 = 0)$

Contributing diagrams

Three-point vertices and two-point insertions

Always a virtual Higgs-boson line

Contributing diagrams

Only two-point insertions

Dominant contributions from virtual-photon diagrams

The calculation

Full contribution:

- Diagonal electromagnetic form factors
- Unitary gauge —> No pseudo-Goldstones
- Passarino-Veltman tensor-reduction method
- Mathematica, Feyncalc, and Package-X
- Ward identity
- AMMs $a_A^{\rm SME}$ and EDMs $d_A^{\rm SME}$
- UV-finite electromagnetic moments

The calculation

Dominant contributions

IR divergences remain \longrightarrow To be canceled from cross section

AB

The contributions:
$$a_A^{\text{SME}} = \sum_B \left[\tilde{a}_{AB} \left(|\text{Re} \, \mathbf{e}^{AB}|^2 + |\text{Re} \, \mathbf{b}^{AB}|^2 \right) + \hat{a}_{AB} \left(|\text{Im} \, \mathbf{e}^{AB}|^2 + |\text{Im} \, \mathbf{b}^{AB}|^2 \right) \right]$$

 $d_A^{\text{SME}} = \sum_B \tilde{d}_{AB} \left(|\text{Re} \, \mathbf{e}^{AB}| |\text{Im} \, \mathbf{b}^{AB}| + |\text{Re} \, \mathbf{b}^{AB}| |\text{Im} \, \mathbf{e}^{AB}| \right)$

IR divergences

$$a_A^{\text{SME}} = \frac{e^3 v^2}{2\pi^2 m_A^2} \left(\Delta_{\text{IR}} + \log \frac{\mu^2}{m_A^2} \right) \left(|\text{Re}\,\mathbf{e}^{AA}|^2 + |\text{Re}\,\mathbf{b}^{AA}|^2 \right) + \text{IR finite}$$

$$d_A^{\text{SME}} = \frac{e^3 v^2}{4\pi^2 m_A^3} \left(\Delta_{\text{IR}} + \log \frac{\mu^2}{m_A^2} \right) |\text{Im} \, \mathbf{e}^{AA}| |\text{Re} \, \mathbf{b}^{AA}| + \text{IR finite}$$

IR divergences

Contributions are not observables

Soft final-state photon

IR divergent

Forthcoming work: cancelation of IR divergences at cross-section level

IR finite cross section

Soft final-state photon

IR divergent

SM quarks

Proton magnetic moment:		\mathbf{LVP}	Bounds
		$ \text{Re}\{\mathbf{e}^{uu},\mathbf{b}^{uu}\} $	6.828×10^{-10}
$a_p = \frac{4}{2}a_u - \frac{1}{2}a_d$	Up quark AMM	$ \mathrm{Im}\{\mathbf{e}^{uu},\mathbf{b}^{uu}\} $	1.526×10^{-9}
3 3	Down quark AMM	$ \operatorname{Re}\{\mathbf{e}^{uc},\mathbf{b}^{uc}\} $	1.921×10^{-8}
		$ \mathrm{Im}\{\mathbf{e}^{uc},\mathbf{b}^{uc}\} $	1.925×10^{-8}
Current measurement*:		$ \operatorname{Re}\{\mathbf{e}^{ut},\mathbf{b}^{ut}\} $	7.156×10^{-11}
		$ \operatorname{Im}\{\mathbf{e}^{ut},\mathbf{b}^{ut}\} $	7.156×10^{-11}
$\mu_p = 2$	$.7928473446(8) \mu_N$	$ \mathrm{Re}\{\mathbf{e}^{dd},\mathbf{b}^{dd}\} $	6.828×10^{-9}
Erro	\implies Bounds on SME	$ \mathrm{Im}\{\mathbf{e}^{dd},\mathbf{b}^{dd}\} $	1.526×10^{-8}
		$ \operatorname{Re}\{\mathbf{e}^{ds},\mathbf{b}^{ds}\} $	$3.267 imes 10^{-8}$
Most restrictive bounds $\sim 10^{-11}$		$ \mathrm{Im}\{\mathbf{e}^{ds},\mathbf{b}^{ds}\} $	3.441×10^{-8}
		$ \mathrm{Re}\{\mathbf{e}^{db},\mathbf{b}^{db}\} $	2.194×10^{-7}
Access to 2nd and 3rd quark families		$ \mathrm{Im}\{\mathbf{e}^{db},\mathbf{b}^{db}\} $	2.220×10^{-7}

*G. Schneider et al., Double-trap measurement of the proton magnetic moment at 0.3 parts per billion precision, Science **358**, 1081 (2017).

SM quarks

Neutron EDM:

$$d_n = \frac{4}{3}d_d - \frac{1}{3}d_u$$

Down quark EDM

Current bound*:

 $|d_n| < 1.8 \times 10^{-26} \, e \cdot \mathrm{cm}$

 \Rightarrow Bounds on SME

Most restrictive bound $\sim 10^{-12}$

Access to 2nd and 3rd quark families

*P. J. Mohr, D. B. Newell, and B. N. Taylor, *CODATA recommended values of the fundamental physical constants: 2014*, Rev. Mod. Phys. **88**, 035009 (2016).

	Bounds
$ \mathbf{e}^{uu},\mathbf{b}^{uu} $	4.308×10^{-12}
$ \mathbf{e}^{uc},\mathbf{b}^{uc} $	9.401×10^{-11}
$ \mathbf{e}^{ut},\mathbf{b}^{ut} $	1.096×10^{-9}
$ \mathbf{e}^{dd},\mathbf{b}^{dd} $	1.703×10^{-11}
$ \mathbf{e}^{ds},\mathbf{b}^{ds} $	6.449×10^{-11}
$ \mathbf{e}^{db},\mathbf{b}^{db} $	4.264×10^{-10}

SM charged leptons

Electron AMM*

 $\Delta a_e = -1.06(082) \times 10^{-12}$

Muon AMM**

 $\Delta a_{\mu} = 249(87) \times 10^{-11}$

Tau AMM \implies Poor bounds

Most restrictive bounds $\sim 10^{-11}$

LVP	Bounds
$ \operatorname{Re}\{\mathbf{e}^{ee},\mathbf{b}^{ee}\} $	1.619×10^{-11}
$ \mathrm{Im}\{\mathbf{e}^{ee},\mathbf{b}^{ee}\} $	3.620×10^{-11}
$ \mathrm{Re}\{\mathbf{e}^{e\mu},\mathbf{b}^{e\mu}\} $	2.596×10^{-10}
$ \mathrm{Im}\{\mathbf{e}^{e\mu},\mathbf{b}^{e\mu}\} $	2.609×10^{-10}
$ \mathrm{Re}\{\mathbf{e}^{e au},\mathbf{b}^{e au}\} $	1.067×10^{-9}
$ \mathrm{Im}\{\mathbf{e}^{e au},\mathbf{b}^{e au}\} $	1.067×10^{-9}
$ \mathrm{Re}\{\mathbf{e}^{\mu e},\mathbf{b}^{\mu e}\} $	1.436×10^{-7}
$ \mathrm{Im}\{\mathbf{e}^{\mu e},\mathbf{b}^{\mu e}\} $	1.451×10^{-7}
$ \mathrm{Re}\{\mathbf{e}^{\mu\mu},\mathbf{b}^{\mu\mu}\} $	1.622×10^{-7}
$ \mathrm{Im}\{\mathbf{e}^{\mu\mu},\mathbf{b}^{\mu\mu}\} $	3.628×10^{-7}
$ \mathrm{Re}\{\mathbf{e}^{\mu au},\mathbf{b}^{\mu au}\} $	7.243×10^{-7}
$ \mathrm{Im}\{\mathbf{e}^{\mu au},\mathbf{b}^{\mu au}\} $	7.686×10^{-7}

*T. Aoyama, M. Hayakawa, T. Kinoshita, and M. Nio, *Tenth-Order QED Contribution to the Electron g–2 and an Improved Value of the Fine Structure Constant*, Phys. Rev. Lett. **109**, 111807 (2012).

T. Aoyama, M. Hayakawa, T. Kinoshita, and M. Nio, *Complete Tenth-Order QED Contribution to the Muon g–2*, Phys. Rev. Lett. **109, 111808 (2012).

SM charged leptons

Electron EDM*

 $|d_e| < 8.7 \times 10^{-29} \, e \cdot \mathrm{cm}$

Muon EDM**

 $|d_{\mu}| < 1.8 \times 10^{-19} \, e \cdot \mathrm{cm}$

Tau EDM \implies Poor bounds

LVP	Bounds
$ \mathbf{e}^{ee},\mathbf{b}^{ee} $	5.282×10^{-14}
$ \mathbf{e}^{e\mu},\mathbf{b}^{e\mu} $	6.577×10^{-13}
$ \mathbf{e}^{e au},\mathbf{b}^{e au} $	2.697×10^{-12}
$ \mathbf{e}^{\mu e},\mathbf{b}^{\mu e} $	5.516×10^{-3}
$ {f e}^{\mu\mu},{f b}^{\mu\mu} $	7.143×10^{-6}
$ {f e}^{\mu au},{f b}^{\mu au} $	2.530×10^{-5}

Most restrictive bounds $\sim 10^{-14}$

J. Baron *et al.* (ACME Collaboration), Order of magnitude smaller limit on the electric dipole moment of the electron, Science **343**, 269 (2014).

G. W. Bennett et al., Improved limit on the muon electric dipole moment, Phys. Rev. D 80, 052008 (2009).

Thank you!!!