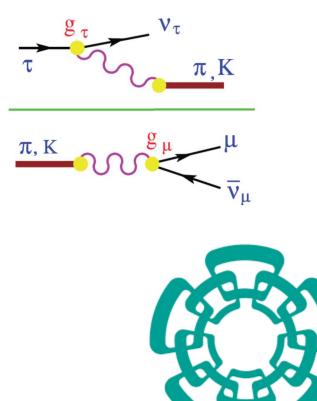
XVIIIth Mexican Workshop on Particles and Fields

XVIII MWPF Ed. Carolino, BUAP, Puebla, Mexico, Nov. 21-25, 2022

Radiative corrections in semileptonic tau decays and reliable new physics tests

W

 v_{τ}


 d_{θ}

ū

Pablo Roig Cinvestav (Mexico) **XVIIIth Mexican Workshop on Particles and Fields**

XVIII MWPF

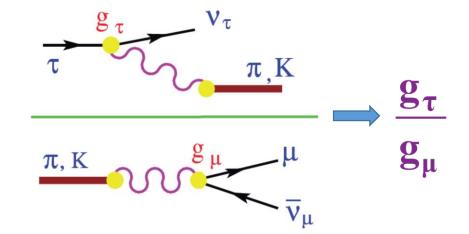
Ed. Carolino, BUAP, Puebla, Mexico, Nov. 21-25, 2022

Cinvestav

Radiative corrections in **one-meson** tau decays and reliable new physics tests

Pablo Roig Cinvestav (Mexico) In collaboration with: M.A. Arroyo-Ureña (BUAP & Cinvestav, Mexico) G. Hernández-Tomé (IF-UNAM, Mexico) G. López-Castro (Cinvestav, Mexico) I. Rosell (UCH-CEU, Valencia, Spain)

> JHEP 02 (2022) 173 [arXiv:2112.01859] PRD 104 (2021) 9, L091502 [arXiv:2107.04603]


OUTLINE

- 1) Motivation
- 2) $P \rightarrow \mu \nu_{\mu} [\gamma] \quad (P=\pi,K)$

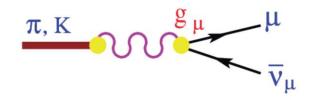
3)
$$\tau \rightarrow P \nu_{\tau} [\gamma]$$
 (P= π ,K)

4) Calculation of
$$R_{\tau/P} \equiv \frac{\Gamma(\tau \to P \nu_{\tau}[\gamma])}{\Gamma(P \to \mu \nu_{\mu}[\gamma])}$$

- 5) Results
- 6) Applications
- 7) Conclusions

- ✓ Lepton Universality (LU) as a basic tenet of the Standard Model (SM).
 - ✓ A few anomalies observed in semileptonic B meson decays*. (See talks by Irina and E. Rojas)
 - Lower energy observables currently provide the most precise test of LU**.
- ✓ We aim to test muon-tau lepton universality through the ratio (P = π , K)***:

$$R_{\tau/P} \equiv \frac{\Gamma(\tau \to P\nu_{\tau}[\gamma])}{\Gamma(P \to \mu\nu_{\mu}[\gamma])} = \left| \frac{g_{\tau}}{g_{\mu}} \right|_{P}^{2} R_{\tau/P}^{(0)} \left(1 + \delta R_{\tau/P} \right)$$

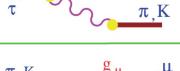

•
$$g_{\tau} = g_{\mu}$$
 according to LU

$$\checkmark \quad \mathsf{R}_{\tau/\mathsf{P}}^{(0)} \text{ is the LO result} \qquad R_{\tau/P}^{(0)} = \frac{1}{2} \frac{M_{\tau}^3}{m_{\mu}^2 m_P} \frac{(1 - m_P^2/M_{\tau}^2)^2}{(1 - m_{\mu}^2/m_P^2)^2}$$

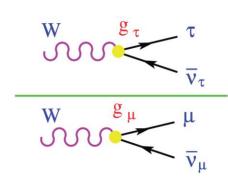
- \checkmark $\delta R_{\tau/P}$ encodes the radiative corrections.
- \checkmark $\delta R_{\tau/P}$ was calculated by Decker & Finkemeier (DF'95) $\hat{}$:
 - ✓ $\delta R_{\tau/\pi} = (0.16 \pm 0.14)\%$ and $\delta R_{\tau/K} = (0.90 \pm 0.22)\%$.
- Important phenomenological and theoretical reasons to address the analysis again.

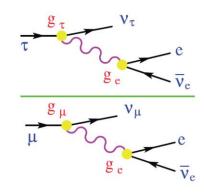
* Albrecht et al.'21 ** Bryman et al.'21 *** Marciano & Sirlin'93 ^ Decker & Finkemeier'95

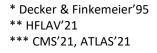
 $R_{\tau/P}$) τ v_{τ}



Improved radiative corrections for $\tau \rightarrow \pi$ (K) ν_{τ} [γ] and reliable new physics tests, P. Roig


Phenomenological disagreement in LU tests:




- ✓ $|g_{\tau}/g_{\mu}|_{\pi}$ = 0.9958 ± 0.0026 (at 1.6 σ of LU)
- ✓ $|g_{\tau}/g_{\mu}|_{\kappa} = 0.9879 \pm 0.0063$ (at 1.9 σ of LU)
- $\checkmark \quad \text{Using} \frac{\Gamma(\tau \to e \bar{\nu}_e \nu_\tau[\gamma])}{\Gamma(\mu \to e \bar{\nu}_e \nu_\mu[\gamma])}, \text{HFLAV** reported:}$
 - ✓ $|g_{\tau}/g_{\mu}| = 1.0010 \pm 0.0014$ (at 0.7 σ of LU)
- ✓ Using $\frac{\Gamma(W \to \tau \nu_{\tau})}{\Gamma(W \to \mu \nu_{\mu})}$ CMS and ATLAS*** and reported:
 - ✓ $|g_{\tau}/g_{\mu}| = 0.995 \pm 0.006$ (at 0.8 σ of LU)

- Phenomenological disagreement in LU tests:
 - ✓ Using $\frac{\Gamma(\tau \to P\nu_{\tau}[\gamma])}{\Gamma(P \to \mu\nu_{\mu}[\gamma])}$ and DF'95*, HFLAV** reported:
 - ✓ $|g_{\tau}/g_{\mu}|_{\pi}$ = 0.9958 ± 0.0026 (at 1.6 σ of LU)
 - \checkmark $|g_{\tau}/g_{\mu}|_{\kappa} = 0.9879 \pm 0.0063$ (at 1.9 σ of LU)
 - ✓ Using $\frac{\Gamma(\tau \to e\bar{\nu}_e \nu_\tau[\gamma])}{\Gamma(\mu \to e\bar{\nu}_e \nu_\mu[\gamma])}$, HFLAV** reported:
 - ✓ $|g_{\tau}/g_{\mu}| = 1.0010 \pm 0.0014$ (at 0.7 σ of LU)
 - ✓ Using $\frac{\Gamma(W \to \tau \nu_{\tau})}{\Gamma(W \to \mu \nu_{\mu})}$ CMS and ATLAS*** and reported:
 - ✓ $|g_{\tau}/g_{\mu}| = 0.995 \pm 0.006$ (at 0.8 σ of LU)

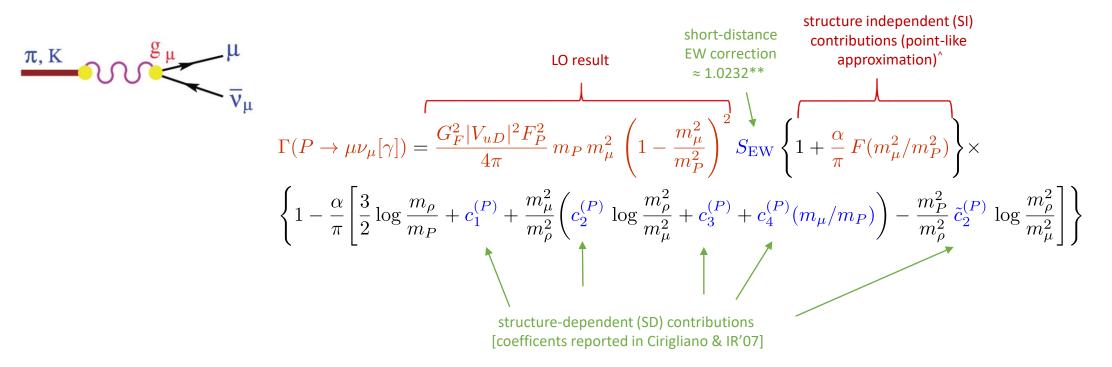
- ✓ Theoretical issues within DF'95*:
 - Hadronic form factors are different for real- and virtual-photon corrections, do not satisfy the correct QCD short-distance behavior, violate unitarity, analicity and the chiral limit at leading nontrivial orders.
 - ✓ A cutoff to regulate the loop integrals (separating long- and short-distance corrections)
 - ✓ Unrealistic uncertainties (purely O(e²p²) ChPT size).

* Decker & Finkemeier'95 ** HFLAV'21 *** CMS'21, ATLAS'21

- Phenomenological disagreement in LU tests:
 - ✓ Using $\frac{\Gamma(\tau \to P\nu_{\tau}[\gamma])}{\Gamma(P \to \mu\nu_{\mu}[\gamma])}$ and DF'95*, HFLAV** reported:
 - ✓ $|g_{\tau}/g_{\mu}|_{\pi}$ = 0.9958 ± 0.0026 (at 1.6 σ of LU)
 - \checkmark $|g_{\tau}/g_{\mu}|_{\kappa} = 0.9879 \pm 0.0063$ (at 1.9 σ of LU)
 - ✓ Using $\frac{\Gamma(\tau \to e\bar{\nu}_e \nu_\tau[\gamma])}{\Gamma(\mu \to e\bar{\nu}_e \nu_\mu[\gamma])}$, HFLAV** reported:
 - ✓ $|g_{\tau}/g_{\mu}| = 1.0010 \pm 0.0014$ (at 0.7 σ of LU)
 - ✓ Using $\frac{\Gamma(W \to \tau \nu_{\tau})}{\Gamma(W \to \mu \nu_{\mu})}$ CMS and ATLAS*** and reported:
 - ✓ $|g_{\tau}/g_{\mu}| = 0.995 \pm 0.006$ (at 0.8 σ of LU)
 - ✓ By-products of the project:
 - ✓ Radiative corrections in $\Gamma(\tau \rightarrow P\nu_{\tau}[\gamma])$.
 - ✓ CKM unitarity test via $\Gamma(\tau \rightarrow K\nu_{\tau}[\gamma])$ or via the ratio $\Gamma(\tau \rightarrow K\nu_{\tau}[\gamma]) / \Gamma(\tau \rightarrow \pi\nu_{\tau}[\gamma])$.
 - ✓ Constraints on possible non-standard interactions in $\Gamma(\tau \rightarrow Pv_{\tau}[\gamma])^{\uparrow}$.
 - * Decker & Finkemeier'95 ** HFLAV'21 *** CMS'21, ATLAS'21

- ✓ Theoretical issues within DF'95*:
 - Hadronic form factors are different for real- and virtual-photon corrections, do not satisfy the correct QCD short-distance behavior, violate unitarity, analicity and the chiral limit at leading nontrivial orders.
 - ✓ A cutoff to regulate the loop integrals (separating long- and short-distance corrections)
 - ✓ Unrealistic uncertainties (purely O(e²p²) ChPT size).

[^] González-Alonso & Martín-Camalich '16 [^] Gonzàlez-Solís et al. '20


Improved radiative corrections for $\tau \rightarrow \pi$ (K) ν_{τ} [γ] and reliable new physics tests, P. Roig

[^] Cirigliano et al.'10 '19, '21

2. $P \rightarrow \mu \nu_{\mu} [\gamma]$ (P= π ,K)

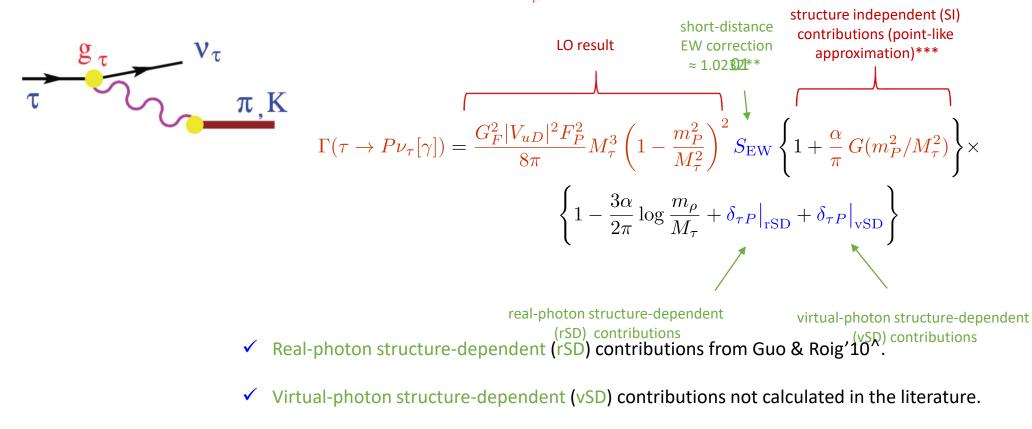
Calculated unambigously within the Standard Model (Chiral Perturbation Theory, ChPT*).

✓ Notation by Marciano & Sirlin^{**} and numbers by Cirigliano & Rosell^{***} (D=d,s for π ,K and $F_{\pi} \approx 92.2$ MeV):

- \checkmark The only model-dependence is the determination of the counterterms in $c_1^{(P)}$ and $c_3^{(P)}$:
 - Large-N_c expansion of QCD: ChPT is enlarged by including the lightest multiplets of spin-one resonances such that the relevant Green functions are well-behaved at high energies[†].

* Weinberg'79 * Gasser & Leutwyler'84 '85

** Marciano & Sirlin'93


*** Cirigliano & IR'07 I '85 ^ Kinoshita'59 [†] Ecker et al.'89 [†] Cirigliano et al.'06

Improved radiative corrections for $\tau \rightarrow \pi$ (K) ν_{τ} [γ] and reliable new physics tests, P. Roig

3. $\tau \rightarrow P \nu_{\tau} [\gamma]$ (P= π ,K)

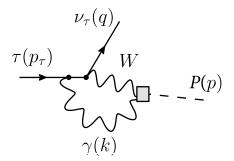
Calculated within an effective approach encoding the hadronization:

- ✓ Large-N_c expansion of QCD: ChPT is enlarged by including the lightest multiplets of spin-one resonances such that the relevant Green functions are well-behaved at high energies*.
- ✓ We follow a similar notation to $P \rightarrow \mu \nu_{\mu} [\gamma]$ (D=d,s for π ,K and $F_{\pi} \approx 92.2$ MeV):

* Ecker et al.'89 * Cirigliano et al.'06 ** Erler'02 *** Kinoshita'59 ^ Guo & Roig'10

Improved radiative corrections for $\tau \rightarrow \pi$ (K) ν_{τ} [γ] and reliable new physics tests, P. Roig

3. $\tau \rightarrow P \nu_{\tau} [\gamma]$ (P= π ,K)


✓ Virtual-photon structure-dependent contribution (vSD):

$$i\mathcal{M}[\tau \to P\nu_{\tau}]|_{\rm SD} = G_F V_{uD} e^2 \int \frac{\mathrm{d}^d k}{(2\pi)^d} \frac{\ell^{\mu\nu}}{k^2 [(p_{\tau} + k)^2 - M_{\tau}^2]} \left[i\epsilon_{\mu\nu\lambda\rho} k^{\lambda} p^{\rho} F_V^P(W^2, k^2) + F_A^P(W^2, k^2) \lambda_{1\mu\nu} + 2B(k^2) \lambda_{2\mu\nu} \right]$$

$$\ell^{\mu\nu} = \bar{u}(q)\gamma^{\mu}(1-\gamma_{5})[(\not p_{\tau}+\not k)+M_{\tau}]\gamma^{\nu}u(p_{\tau})$$

$$\lambda_{1\mu\nu} = [(p+k)^{2}+k^{2}-m_{P}^{2}]g_{\mu\nu}-2k_{\mu}p_{\nu}$$

$$\lambda_{2\mu\nu} = k^{2}g_{\mu\nu}-\frac{k^{2}(p+k)_{\mu}p_{\nu}}{(p+k)^{2}-m_{P}^{2}}$$

✓ Form factors from Guo & Roig'10 and Guevara et al.'13,'21*:

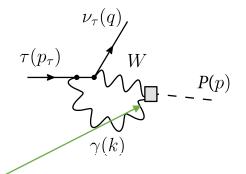
$$F_V^P(W^2, k^2) = \frac{-N_C M_V^4}{24\pi^2 F_P(k^2 - M_V^2)(W^2 - M_V^2)}$$
$$F_A^P(W^2, k^2) = \frac{F_P}{2} \frac{M_A^2 - 2M_V^2 - k^2}{(M_V^2 - k^2)(M_A^2 - W^2)}$$
$$B(k^2) = \frac{F_P}{M_V^2 - k^2}$$

- ✓ Well-behaved two- and three-point Green functions.
- Chiral and U(3) limits.
- ✓ M_V and M_A vector- and axial-vector resonance mass: $M_V = M_\rho$ and $M_A = M_{a1}$ (π case); $M_V = M_{K^*}$ and $M_A \approx M_{f1}$ (K case).

* Guo & Roig'10

* Guevara et al.'13,'21

3. $\tau \rightarrow P \nu_{\tau} [\gamma]$ (P= π ,K)


✓ Virtual-photon structure-dependent contribution (vSD):

$$i\mathcal{M}[\tau \to P\nu_{\tau}]|_{\rm SD} = G_F V_{uD} e^2 \int \!\!\frac{\mathrm{d}^d k}{(2\pi)^d} \frac{\ell^{\mu\nu}}{k^2 [(p_{\tau} + k)^2 - M_{\tau}^2]} \left[i\epsilon_{\mu\nu\lambda\rho} k^{\lambda} p^{\rho} F_V^P(W^2, k^2) + F_A^P(W^2, k^2) \lambda_{1\mu\nu} + 2B(k^2) \lambda_{2\mu\nu} \right]$$

$$\ell^{\mu\nu} = \bar{u}(q)\gamma^{\mu}(1-\gamma_{5})[(\not p_{\tau}+\not k)+M_{\tau}]\gamma^{\nu}u(p_{\tau})$$

$$\lambda_{1\mu\nu} = [(p+k)^{2}+k^{2}-m_{P}^{2}]g_{\mu\nu}-2k_{\mu}p_{\nu}$$

$$\lambda_{2\mu\nu} = k^{2}g_{\mu\nu}-\frac{k^{2}(p+k)_{\mu}p_{\nu}}{(p+k)^{2}-m_{P}^{2}}$$

✓ Form factors from Guo & Roig'10 and Guevara et al.'13,'21*;

$$F_{V}^{P}(W^{2},k^{2}) = \frac{-N_{C}M_{V}^{4}}{24\pi^{2}F_{P}(k^{2}-M_{V}^{2})(W^{2}-M_{V}^{2})}$$

$$F_{A}^{P}(W^{2},k^{2}) = \frac{F_{P}}{2}\frac{M_{A}^{2}-2M_{V}^{2}-k^{2}}{(M_{V}^{2}-k^{2})(M_{A}^{2}-W^{2})}$$

$$B(k^{2}) = \frac{F_{P}}{M_{V}^{2}-k^{2}}$$

* Guo & Roig'10

* Guevara et al.'13,'21

- ✓ Well-behaved two- and three-point Green functions.
- ✓ Chiral and U(3) limits.
- ✓ M_V and M_A vector- and axial-vector resonance mass: $M_V=M_\rho$ and $M_A=M_{a1}$ (π case); $M_V=M_{K^*}$ and $M_A\approx M_{f1}$ (K case).

4. Calculation of $R_{\tau/P} = R_{\tau/P}^{(0)} (1 + \delta R_{\tau/P}) = R_{\tau/P}^{(0)} (1 + \delta_{\tau P} - \delta_{P \mu})$

1. Structure-independent contribution (point-like approximation): SI.

$$\checkmark \text{ We confirm the results by DF'95*.} \qquad \delta R_{\tau/P} \Big|_{\mathrm{SI}} = \frac{\alpha}{2\pi} \left\{ \frac{3}{2} \log \frac{M_{\tau}^2 m_P^2}{m_{\mu}^4} + \frac{3}{2} + g \left(\frac{m_P^2}{M_{\tau}^2} \right) - f \left(\frac{m_{\mu}^2}{m_P^2} \right) \right\}$$

$$\begin{aligned} f(x) &= 2\left(\frac{1+x}{1-x}\log x - 2\right)\log(1-x) - \frac{x(8-5x)}{2(1-x)^2}\log x + 4\frac{1+x}{1-x}\operatorname{Li}_2(x) - \frac{x}{1-x}\left(\frac{3}{2} + \frac{4}{3}\pi^2\right) \\ g(x) &= 2\left(\frac{1+x}{1-x}\log x - 2\right)\log(1-x) - \frac{x(2-5x)}{2(1-x)^2}\log x + 4\frac{1+x}{1-x}\operatorname{Li}_2(x) + \frac{x}{1-x}\left(\frac{3}{2} - \frac{4}{3}\pi^2\right) \end{aligned}$$

$$\delta R_{\tau/\pi}|_{SI}$$
 = 1.05% and $\delta R_{\tau/K}|_{SI}$ = 1.67%

τ π,Κ

 $\overset{\pi, K}{\longrightarrow} \overset{g_{\mu}}{\longrightarrow} \overset{\mu}{\nabla_{\mu}}$

Real-photon structure-dependent contribution: rSD.

✓ $\delta_{P\mu}|_{rSD}$ from Cirigliano & IR'07**: $\delta_{\pi\mu}|_{rSD}$ = -1.3·10⁻⁸ and $\delta_{K\mu}|_{rSD}$ = -1.7·10⁻⁵.

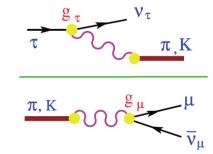
✓ $\delta_{\tau P}|_{rSD}$ from Guo & Roig'10***: $\delta_{\tau \pi}|_{rSD}$ = 0.15% and $\delta_{\tau K}|_{rSD}$ = (0.18 ± 0.05)%.

 $\delta R_{\tau/\pi}|_{rSD}$ = 0.15% and $\delta R_{\tau/K}|_{rSD}$ = (0.18 ± 0.15)%

* Decker & Finkemeier'95 ** Cirigliano & Rosell'07

*** Guo & Roig'10

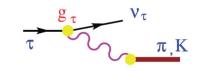
Improved radiative corrections for $\tau \rightarrow \pi$ (K) ν_{τ} [γ] and reliable new physics tests, P. Roig

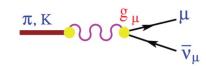

4. Calculation of $R_{\tau/P} = R_{\tau/P}^{(0)} (1 + \delta R_{\tau/P}) = R_{\tau/P}^{(0)} (1 + \delta_{\tau P} - \delta_{P \mu})$

3. Virtual-photon structure-dependent contribution: vSD.

✓ $\delta_{P\mu}|_{vSD}$ from Cirigliano & IR'07*: $\delta_{\pi\mu}|_{vSD}$ = (0.54 ± 0.12)% and $\delta_{K\mu}|_{vSD}$ = (0.43 ± 0.12)%.

✓ $\delta_{\tau P}|_{vSD}$, new calculation: $\delta_{\tau \pi}|_{vSD}$ = (-0.48 ± 0.56)% and $\delta_{\tau K}|_{vSD}$ =(-0.45 ± 0.57)%.


 $\delta R_{\tau/\pi}|_{vSD}$ = (-1.02 ± 0.57)% and $\delta R_{\tau/K}|_{vSD}$ = (-0.88 ± 0.58)%



4. Calculation of $R_{\tau/P} = R_{\tau/P}^{(0)} (1 + \delta R_{\tau/P}) = R_{\tau/P}^{(0)} (1 + \delta_{\tau P} - \delta_{P \mu})$

- **3.** Virtual-photon structure-dependent contribution: vSD.
 - ✓ $\delta_{P\mu}|_{vSD}$ from Cirigliano & IR'07*: $\delta_{\pi\mu}|_{vSD}$ = (0.54 ± 0.12)% and $\delta_{K\mu}|_{vSD}$ = (0.43 ± 0.12)%.
 - ✓ $\delta_{\tau P}|_{vSD}$, new calculation: $\delta_{\tau \pi}|_{vSD}$ = (-0.48 ± 0.56)% and $\delta_{\tau K}|_{vSD}$ =(-0.45 ± 0.57)%.

 $\delta R_{\tau/\pi}|_{vSD}$ = (-1.02 ± 0.57)% and $\delta R_{\tau/K}|_{vSD}$ = (-0.88 ± 0.58)%

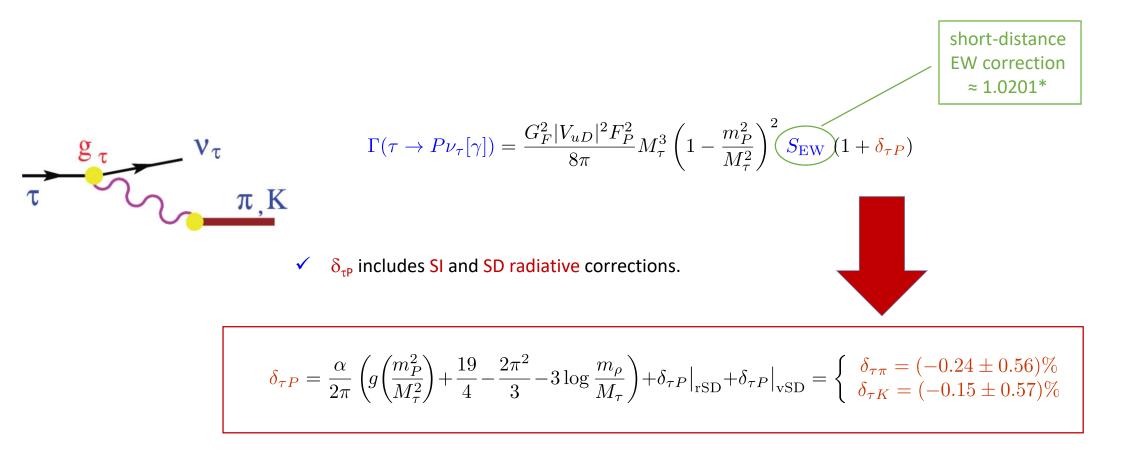
- ✓ Uncertainties dominated by $\delta_{\tau P}|_{vSD}$:
 - P decays within ChPT [counterterms can be determined by matching ChPT with the resonance effective approach at higher energies], whereas τ decays within resonance effective approach [no matching to determine the counterterms].
 - ✓ Estimation of the model-dependence by comparing our results with a less general scenario where only well-behaved two-point Green functions and a reduced resonance Lagrangian is used: ±0.22% and ±0.24% for the pion and the kaon case.
 - Estimation of the counterterms by considering the running between 0.5 and 1.0 GeV: ±0.52% (similar procedure in Marciano & Sirlin'93). Conservative estimate, since vSD counterterms affecting in P decays imply similar corrections to our estimation of the vSD counterterms in τ decays.

* Cirigliano & Rosell'07

5. Results

Contribution	$\delta R_{ au/\pi}$	$\delta R_{ au/K}$	Ref.
SI	+1.05%	+1.67%	*
rSD	+0.15%	$+(0.18\pm0.05)\%$	**
vSD	$-(1.02\pm0.57)\%$	$-(0.88\pm0.58)\%$	new
Total	$+(0.18\pm0.57)\%$	$+(0.97\pm0.58)\%$	new

Errors are not reported if they are lower than 0.01%.

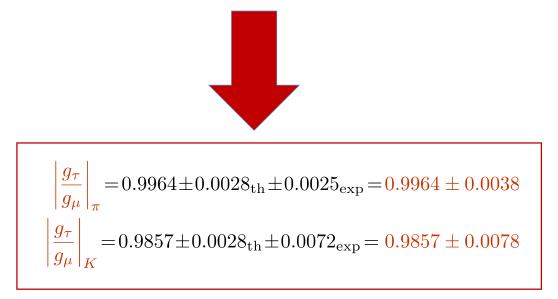

Central values agree remarkably with DF'95, merely a coincidence: $\delta R_{\tau/\pi} = (0.16 \pm 0.14)\%$ and $\delta R_{\tau/K} = (0.90 \pm 0.22)\%$, **but** in that work:

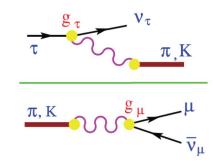
- ✓ problematic hadronization: form factors are different for real- and virtual-photon corrections, do not satisfy the correct QCD short-distance behavior, violate unitarity, analicity and the chiral limit at leading non-trivial orders.
- ✓ a cutoff to regulate the loop integrals, splitting unphysically long- and short-distance regimes.
- ✓ unrealistic uncertainties (purely O(e²p²) ChPT size).

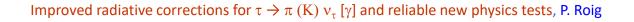
* Decker & Finkemeier'95 ** Cirigliano & Rosell'07

** Guo & Roig'10

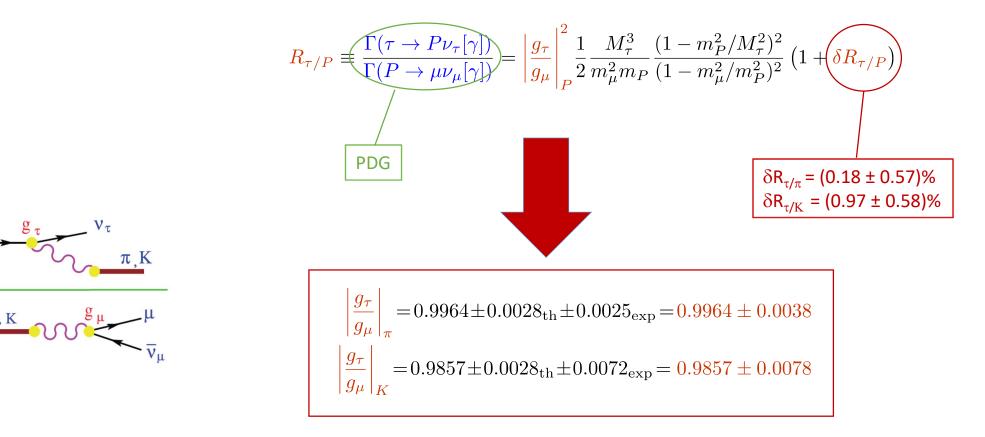
6. Application I: Radiative corrections in $\Gamma(\tau \rightarrow Pv_{\tau}[\gamma])$



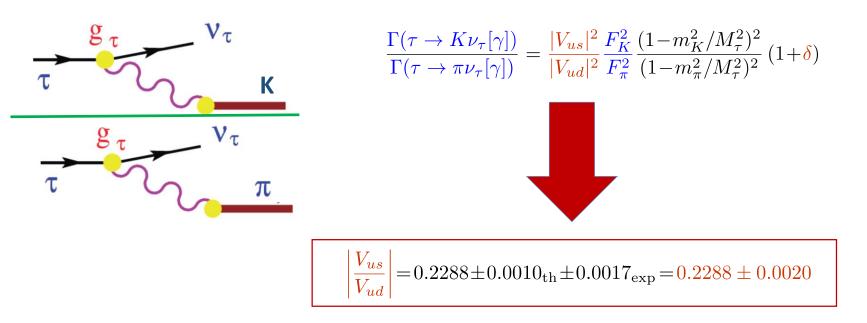

* Erler'02


Improved radiative corrections for $\tau \rightarrow \pi~(K)~\nu_{\tau}~[\gamma]$ and reliable new physics tests, P. Roig

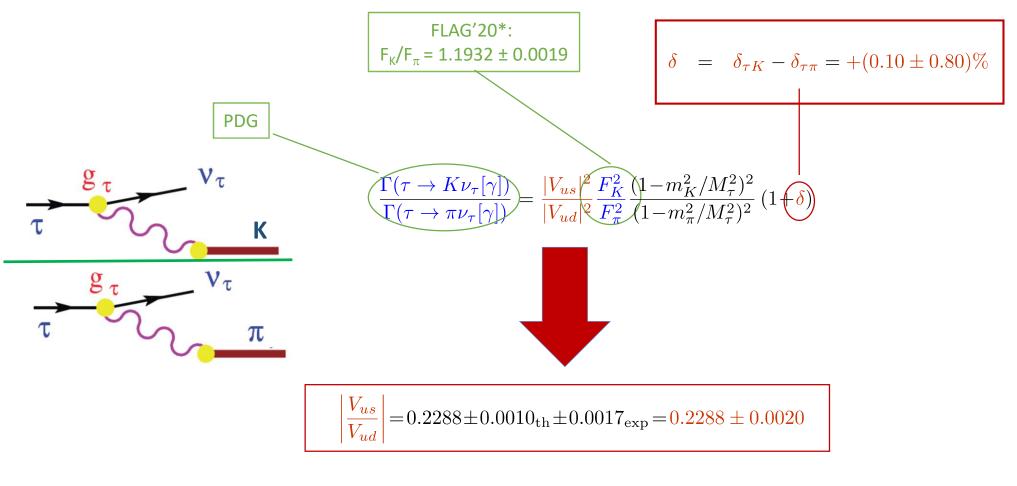
6. Application II: lepton universality test


$$R_{\tau/P} \equiv \frac{\Gamma(\tau \to P\nu_{\tau}[\gamma])}{\Gamma(P \to \mu\nu_{\mu}[\gamma])} = \left| \frac{g_{\tau}}{g_{\mu}} \right|_{P}^{2} \frac{1}{2} \frac{M_{\tau}^{3}}{m_{\mu}^{2}m_{P}} \frac{(1 - m_{P}^{2}/M_{\tau}^{2})^{2}}{(1 - m_{\mu}^{2}/m_{P}^{2})^{2}} \left(1 + \delta R_{\tau/P}\right)$$

6. Application II: lepton universality test



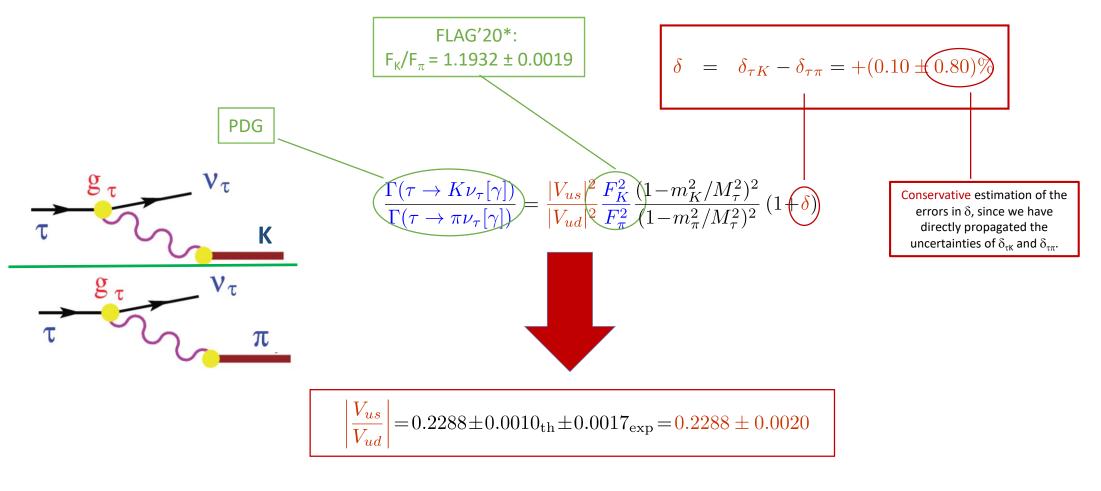
- \checkmark π case: at 0.9 σ of LU vs. 1.6 σ of LU in HFLAV'21* using DF'95**
- ✓ K case: at 1.8 σ of LU vs. 1.9 σ of LU in HFLAV'21* using DF'95**


* HFLAV'21 ** Decker & Finkemeier'95

Improved radiative corrections for $\tau \rightarrow \pi$ (K) ν_{τ} [γ] and reliable new physics tests, P. Roig

6. Application III: CKM unitarity test in the ratio $\Gamma(\tau \rightarrow K\nu_{\tau}[\gamma]) / \Gamma(\tau \rightarrow \pi\nu_{\tau}[\gamma])$

6. Application III: CKM unitarity test in the ratio $\Gamma(\tau \rightarrow Kv_{\tau}[\gamma]) / \Gamma(\tau \rightarrow \pi v_{\tau}[\gamma])$



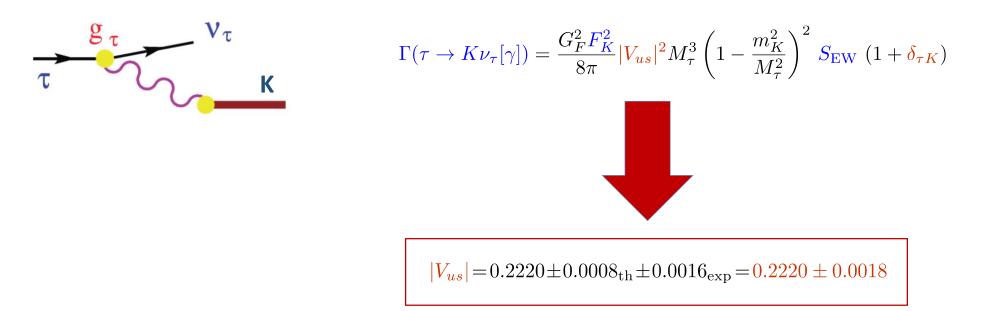
✓ 2.1 σ away from CKM unitarity, considering $|V_{ud}| = 0.97373 \pm 0.00031^{**}$.

✓ To be compared with $|V_{us}/V_{ud}|=0.2291\pm0.0009^{***}$, obtained with kaon semileptonic decays. Our error does not reach this level due to lack of statistics in τ decays.

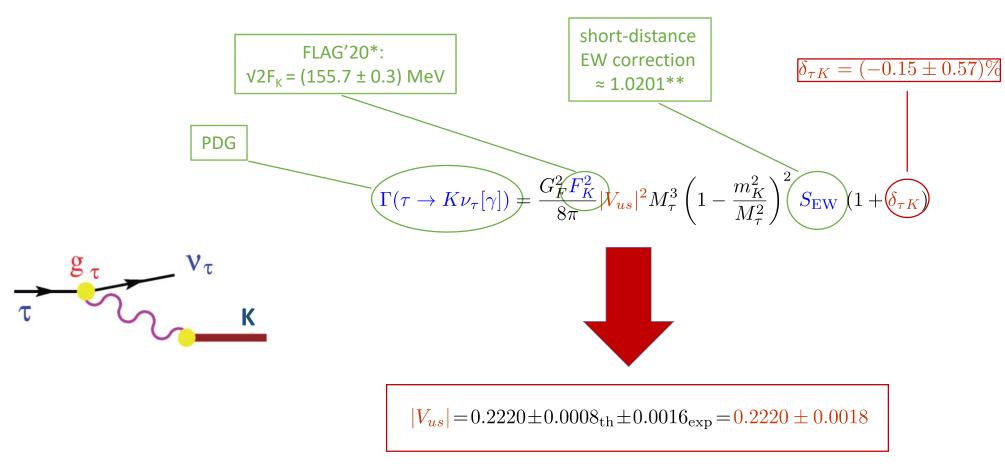
* FLAG'20 ** Hardy & Towner'20 *** Seng et al.'21

6. Application III: CKM unitarity test in the ratio $\Gamma(\tau \rightarrow K\nu_{\tau}[\gamma]) / \Gamma(\tau \rightarrow \pi\nu_{\tau}[\gamma])$

✓ 2.1 σ away from CKM unitarity, considering $|V_{ud}| = 0.97373 \pm 0.00031^{**}$.


✓ To be compared with $|V_{us}/V_{ud}|=0.2291\pm0.0009^{***}$, obtained with kaon semileptonic decays. Our error does not reach this level due to lack of statistics in τ decays.

Improved radiative corrections for $\tau \rightarrow \pi$ (K) ν_{τ} [γ] and reliable new physics tests, P. Roig

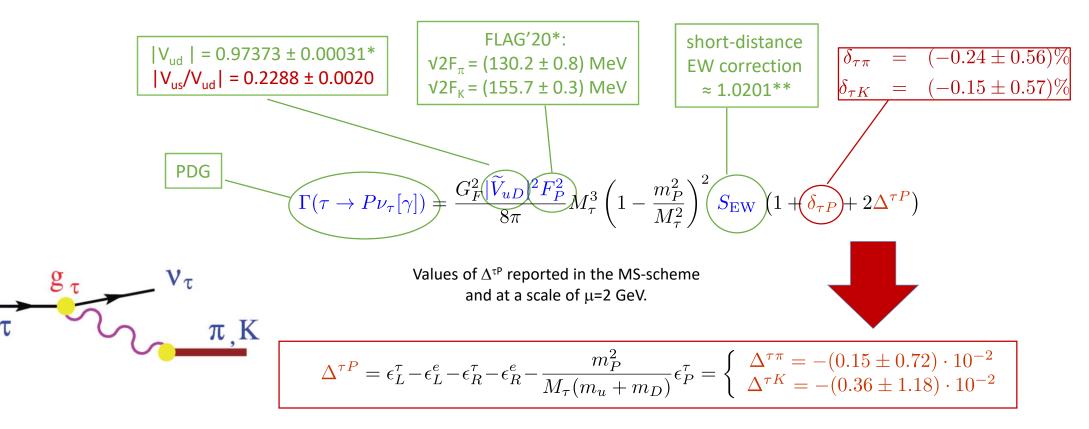

* FLAG'20

** Hardy & Towner'20 *** Seng et al.'21

6. Application IV: CKM unitarity test in $\Gamma(\tau \rightarrow K\nu_{\tau}[\gamma])$

6. Application IV: CKM unitarity test in $\Gamma(\tau \rightarrow K\nu_{\tau}[\gamma])$

✓ 2.6σ away from CKM unitarity, considering |V_{ud} |=0.97373±0.00031***.


* FLAG'20 ** Erler'02 *** Hardy & Towner'20 ^ HFLAV'21 † Seng et al.'21 To be compared with |V_{us}|=0.2234±0.0015[^] or |V_{us}|=0.2231±0.0006[†], obtained this last one with kaon semileptonic decays. Our error does not reach this level due to lack of statistics in τ decays.

6. Application V: constraining non-standard interactions in $\Gamma(\tau \rightarrow Pv_{\tau}[\gamma])$

$$\begin{split} \mathbf{g}_{\tau} \mathbf{v}_{\tau} \mathbf{K} & \Gamma(\tau \to P\nu_{\tau}[\gamma]) = \frac{G_F^2 |\tilde{V}_{uD}|^2 F_P^2}{8\pi} M_{\tau}^3 \left(1 - \frac{m_P^2}{M_{\tau}^2}\right)^2 S_{\text{EW}} \left(1 + \delta_{\tau P} + 2\Delta^{\tau P}\right) \\ & \text{Values of } \Delta^{\tau P} \text{ reported in the MS-scheme} \\ & \text{and at a scale of } \mu = 2 \text{ GeV.} \end{split}$$

$$\begin{split} \Delta^{\tau P} = \epsilon_L^{\tau} - \epsilon_L^e - \epsilon_R^{\tau} - \epsilon_R^e - \frac{m_P^2}{M_{\tau}(m_u + m_D)} \epsilon_P^{\tau} = \begin{cases} \Delta^{\tau \pi} = -(0.15 \pm 0.72) \cdot 10^{-2} \\ \Delta^{\tau K} = -(0.36 \pm 1.18) \cdot 10^{-2} \end{cases}$$

6. Application V: constraining non-standard interactions in $\Gamma(\tau \rightarrow Pv_{\tau}[\gamma])$

- ✓ To be compared with $\Delta^{\tau\pi} = -(0.15 \pm 0.67) \cdot 10^{-2}$ of Cirigliano et al.'19[^].
- ✓ To be compared with $\Delta^{\tau\pi}$ = -(0.12 ± 0.68)·10⁻² and $\Delta^{\tau K}$ = (-0.41 ± 0.93)·10⁻² of González-Solís et al.'20⁺.

* Hardy & Towner'20 ** FLAG'20 *** Erler'02 [^] Cirigliano et al.'19
[†] Gonzàlez-Solís et al. '20

7. Conclusions

The observable and our result:

$$R_{\tau/P} \equiv \frac{\Gamma(\tau \to P\nu_{\tau}[\gamma])}{\Gamma(P \to \mu\nu_{\mu}[\gamma])} = \left|\frac{g_{\tau}}{g_{\mu}}\right|_{P}^{2} R_{\tau/P}^{(0)} \left(1 + \delta R_{\tau/P}\right) \longrightarrow \begin{cases} \delta R_{\tau/\pi} = (0.18 \pm 0.57)\% \\ \delta R_{\tau/K} = (0.97 \pm 0.58)\% \end{cases}$$

Framework: ChPT for π decays and a resonance extension of ChPT for τ decays.

- Consistent with DF'95*, but with more robust assumptions and yielding a reliable uncertainty.
- ✓ Applications:

π, κ

- ✓ Theoretical determination of radiative corrections in $\Gamma(\tau \rightarrow P\nu_{\tau}[\gamma])$.
- ✓ $|g_{\tau}/g_{\mu}|_{P}$ at 0.9 σ (π) and 1.8 σ (K) of LU, reducing HFLAV'21** disagreement with LU.
- ✓ CKM unitarity in $\Gamma(\tau \rightarrow K \nu_{\tau}[\gamma]) / \Gamma(\tau \rightarrow \pi \nu_{\tau}[\gamma])$: $|V_{us}/V_{ud}| = 0.2288 \pm 0.0020$, at 2.1 σ from unitarity.
- ✓ CKM unitarity in $\Gamma(\tau \rightarrow Kv_{\tau}[\gamma])$: $|V_{us}| = 0.2220 \pm 0.0018$, at 2.6 σ from unitarity.
- ✓ Constraining non-standard interactions in $\Gamma(\tau \rightarrow P\nu_{\tau}[\gamma])$: update of $\Delta^{\tau P}$.
- ✓ Our results have been incorporated in the very recent HFLAV'22.

```
* Decker & Finkemeier'95
** HFLAV'21
```

7. Conclusions Reliable NP tests for present & future exps.

$$R_{\tau/P} \equiv \frac{\Gamma(\tau \to P\nu_{\tau}[\gamma])}{\Gamma(P \to \mu\nu_{\mu}[\gamma])} = \left| \frac{g_{\tau}}{g_{\mu}} \right|_{P}^{2} R_{\tau/P}^{(0)} \left(1 + \delta R_{\tau/P} \right) \longrightarrow \begin{cases} \delta R_{\tau/\pi} = (0.18 \pm 0.57)\% \\ \delta R_{\tau/K} = (0.97 \pm 0.58)\% \end{cases}$$

Framework: ChPT for π decays and a resonance extension of ChPT for τ decays.

- Consistent with DF'95*, but with more robust assumptions and yielding a reliable uncertainty.
- ✓ Applications:

 \checkmark

π, κ

The observable and **our result**:

✓ Theoretical determination of radiative corrections in $\Gamma(\tau \rightarrow P\nu_{\tau}[\gamma])$.

✓ $|g_{\tau}/g_{\mu}|_{P}$ at 0.9 σ (π) and 1.8 σ (K) of LU, reducing HFLAV'21** disagreement with LU.

- ✓ CKM unitarity in $\Gamma(\tau \rightarrow K \nu_{\tau}[\gamma]) / \Gamma(\tau \rightarrow \pi \nu_{\tau}[\gamma])$: $|V_{us}/V_{ud}| = 0.2288 \pm 0.0020$, at 2.1 σ from unitarity.
- ✓ CKM unitarity in $\Gamma(\tau \rightarrow Kv_{\tau}[\gamma])$: $|V_{us}| = 0.2220 \pm 0.0018$, at 2.6 σ from unitarity.
- ✓ Constraining non-standard interactions in $\Gamma(\tau \rightarrow P\nu_{\tau}[\gamma])$: update of $\Delta^{\tau P}$.
- ✓ Our results have been incorporated in the very recent HFLAV'22.

* Decker & Finkemeier'95 ** HFLAV'21

Comparison with Decker & Finkemeier'95 (DF'95) in the π case

Contribution	$\delta R_{\tau\pi}$ by DF'95 [$\mu_{\rm cut}$ =1.5 GeV]	our $\delta R_{ au\pi}$
SI	$+0.84\%^{*}$	+1.05%
rSD	+0.05%	+0.15%
vSD	$-0.49\%^{*}$	$-(1.02\pm0.57)\%$
short-distance	$-0.25\%^{*}$	0
Total	$+(0.16\pm0.14)\%^{*}$	$+(0.18\pm0.57)\%$

- ✓ Virtual corrections by DF'95 are μ_{cut} -dependent, since long- and short-distance photonic contributions were separated unphysically: figures with an asterisk are cutoff-dependent.
- The quoted error in the radiative correction of DF'95 arises from uncertainties in hadronic parameters of SD contributions and from variations in the cutoff parameter, μ_{cut}.
- ✓ For the SI contribution in DF'95 we have added to the result obtained in the point-like approximation (1.05%) the term coming from cutting off the loops at μ_{cut} (−0.21%).
- V Different contributions of $\delta R_{\tau/K}$ are not provided in DF'95, which prevents a comparison.
- ✓ Although central values for the sum of all the corrections agree remarkably, this is a coincidence, since central values for the SD corrections are largely different within both approaches.

XVIIIth Mexican Workshop on Particles and Fields

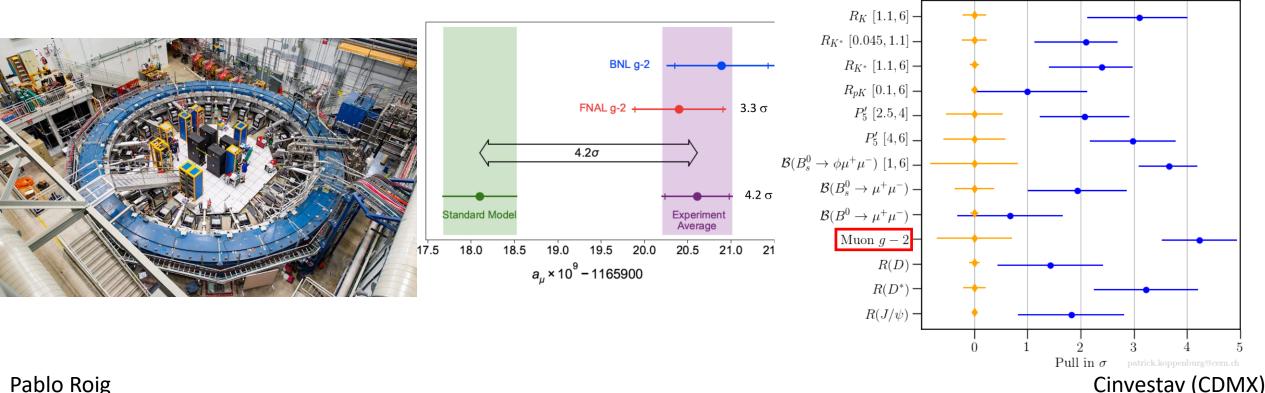
XVIII MWPF Ed. Carolino, BUAP, Puebla, Mexico, Nov. 21-25, 2022

πκ, Radiative corrections in two-meson tau decays and reliable new physics tests

Hadrons

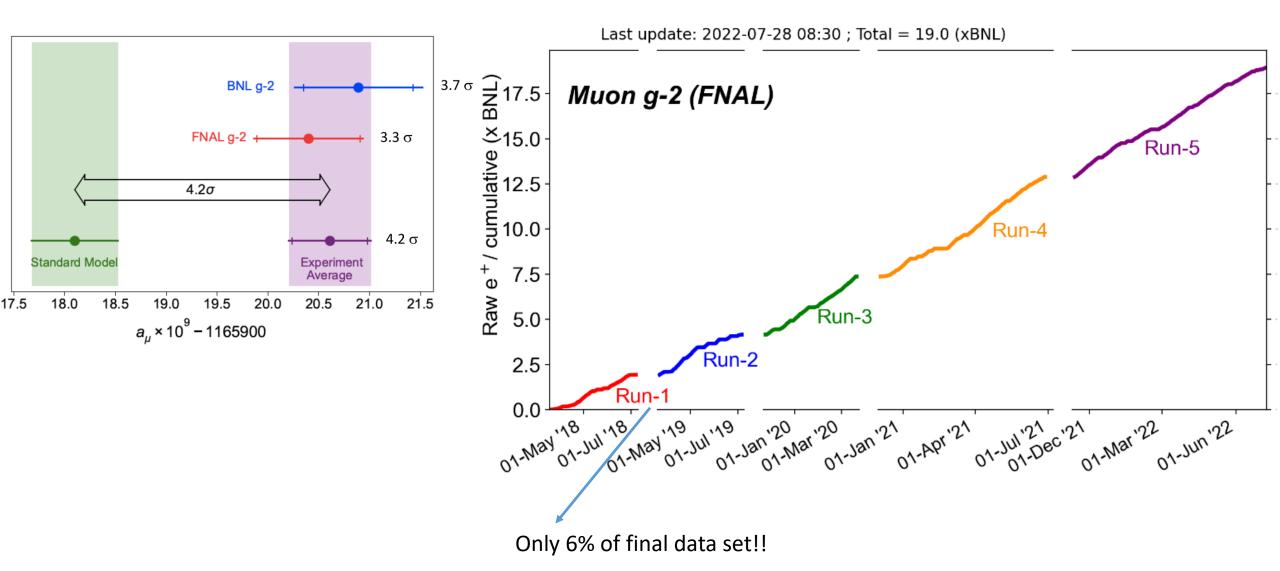
τ

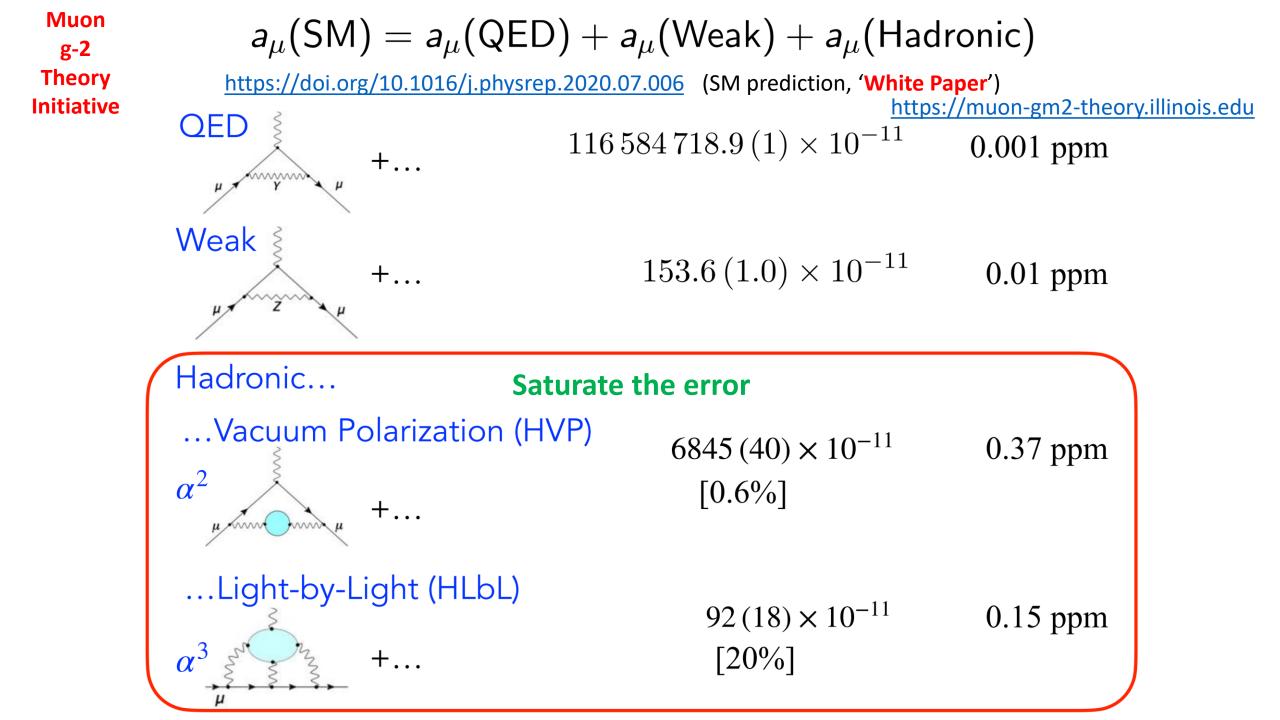
w

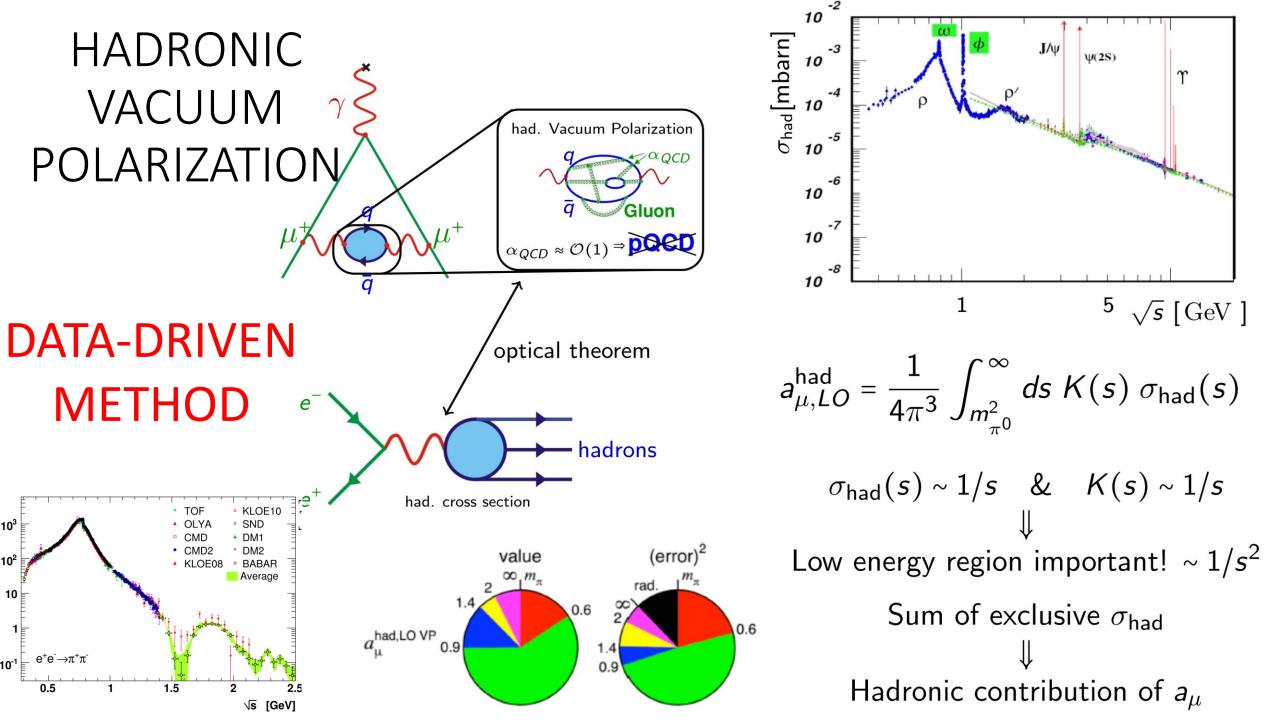

Pablo Roig Cinvestav (Mexico) In collaboration with: J.A. Miranda (Cinvestav, Mexico & IFAE, Barcelona) and also with R. Escribano (IFAE, Barcelona)

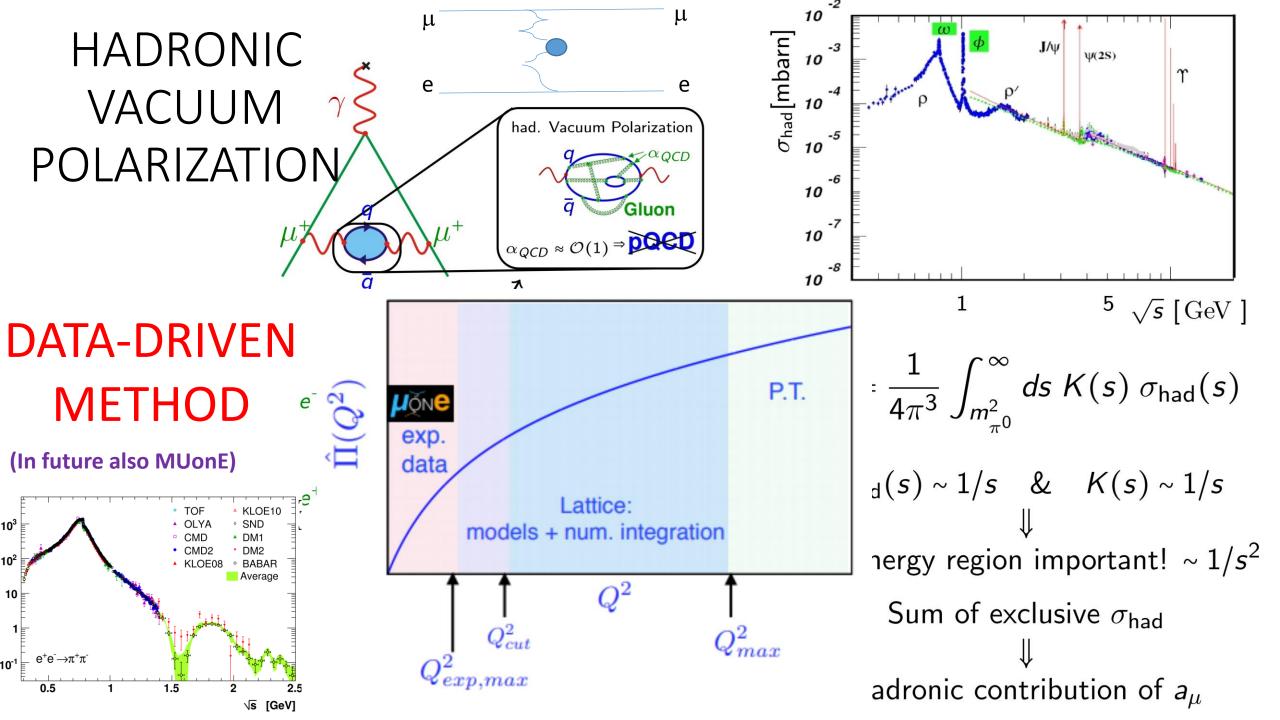
> PRD 102 (2020), 114117 [arXiv:2007.11019] & to appear soon... All other modes

ππ

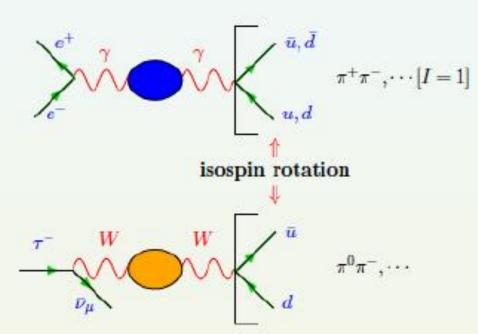

THE MUON ANOMALOUS MAGNETIC **MOMENT & POSSIBLE NEW PHYSICS AFTER THE FNAL 1st MEASUREMENT**

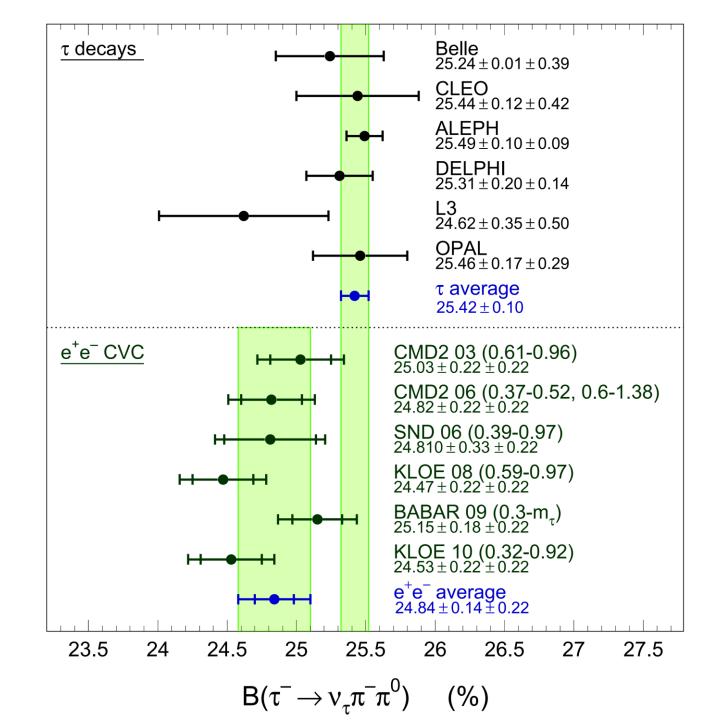

Support from Cátedra Marcos Moshinsky is acknowledged

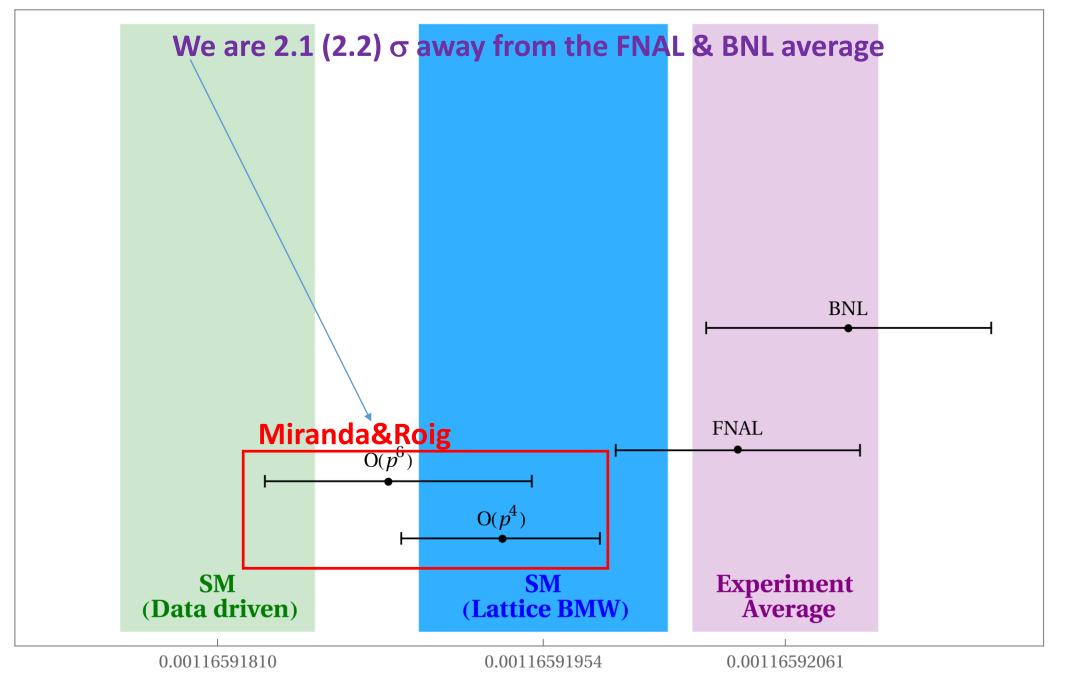



Pablo Roig

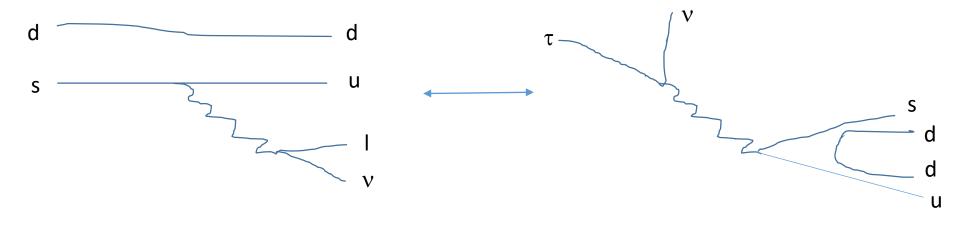
Waiting eagerly for next FNAL measurement in 2023...

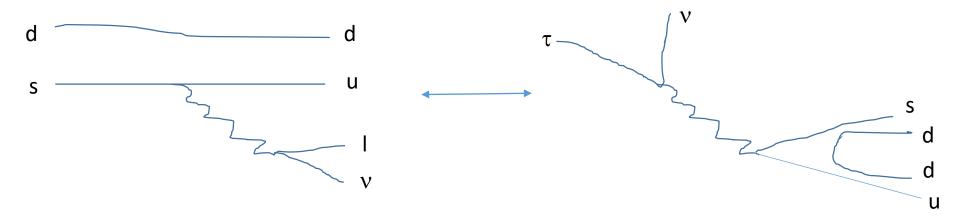



Need precise data:


Good old idea: use isospin symmetry to include existing high quality τ-data (including isospin corrections)

(Francisco Flores-Baez, Alain Flores-Tlalpa, Gabriel López Castro & Genaro Toledo'06&'07)


(Gabriel López Castro, Genaro Toledo & Orsay, CERN & IHEP collaborators'10) Corrected data: large discrepancy [~ 10%] persists! τ vs. e⁺e⁻ problem! [manifest since 2002]


Radiative corrections to other two-meson channels

Antonelli-Cirigliano-Lusiani-Passemar'13 reduced the CKM unitarity violation by using hadron input from Kaon semileptonic decays in strangeness-changing tau decays

Radiative corrections to other two-meson channels

Antonelli-Cirigliano-Lusiani-Passemar'13 reduced the CKM unitarity violation by using hadron input from Kaon semileptonic decays in strangeness-changing tau decays

In the one-meson tau decays they used the old Decker-Finkemeier RadCors & for the two-meson channels they computed only the SI part and estimated the size of the model-dependent corrections, which we have calculated now.

$$\delta^{K^{-}\pi^{0}} = \left(-0.009^{+0.008}_{-0.118}\right)\%, \qquad \delta^{\bar{K}^{0}\pi^{-}} = \left(-0.166^{+0.010}_{-0.122}\right)\%$$
$$\delta^{K^{-}K^{0}} = \left(-0.030^{+0.026}_{-0.179}\right)\%, \qquad \delta^{\pi^{-}\pi^{0}} = \left(-0.186^{+0.024}_{-0.169}\right)\%$$

The first two were -0.20(20) and -0.15(20) in Antonelli et al. Our RadCors (also for one-meson case) will enable improved NP tests: most notably CKM unitarity.

XVIIIth Mexican Workshop on Particles and Fields

XVIII MWPF Ed. Carolino, BUAP, Puebla, Mexico, Nov. 21-25, 2022

Radiative corrections in semileptonic tau decays and reliable new physics tests

W

 v_{τ}

 d_{θ}

ι Π

Pablo Roig Cinvestav (Mexico)