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1. Motivation
v' Lepton Universality (LU) as a basic tenet of the Standard Model (SM).
v Afew anomalies observed in semileptonic B meson decays*. (See talks by Irina and E. Rojas)
v' Lower energy observables currently provide the most precise test of LU**.

v' We aim to test muon-tau lepton universality through the ratio (P = i, K)***:
2 g T V’C

_ I(r > P[] 0 ——
Bryp = = R (14 6R. p) T % 1 K
P _’

[P = pvpuly])

9r

Iu

g. =g, according to LU.
LM (1 —md /M2
2 mamp (1— mz/m%)Q :

0
v R is the LO result RS—/)p =

v' 8R_ encodes the radiative corrections. Vu
v OR,p was calculated by Decker & Finkemeier (DF'95) "
v' OR,,=(0.16 £0.14)% and R, = (0.90 £ 0.22)%.

v"Important phenomenological and theoretical reasons to address the analysis again.

* Albrecht et al.”21 j‘** Marciano & Sirlin’93
** Bryman et al.’21 Decker & Finkemeier’95
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v' Phenomenological disagreement in LU tests:

) and DF'95%*, HFLAV** reported:

|g./8,| = 0.9958 + 0.0026 (at 1.6G of LU)
|g./8,|=0.9879 + 0.0063 (at 1.9 of LU)

L(r = ever-[n]) HFLAV** reported:

Igr/gu\ =1.0010 £ 0.0014 (at 0.7c of LU)

CMS and ATLAS*** and reported:

v USIﬂgF(T — Puv.[v]
I(P — pvyu[r])
v
v
v
UsmgF(,u — e, [v])
v
v Usin r(w — rv;)
gF(W — vy, )
v

|g/g,| = 0.995 £ 0.006 (at 0.8 of LU)

* Decker & Finkemeier’95

** HFLAV'21
*** CMS'21,

ATLAS21
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v' Phenomenological disagreement in LU tests:

v' Using

v
v

v' Using
v
v' Using

v

I'(r — Pv:[v])
L(P — pvuly])

|gT/gM|TE =0.9958 + 0.0026 (at 1.6c of LU)
|gT/gM| «=0.9879 £ 0.0063 (at 1.9 of LU)

and DF'95%*, HFLAV** reported:

(1 — ever,[7])
[(p = evevu[v])

|g/g,| = 1.0010 £ 0.0014 (at 0.7G of LU)

, HFLAV** reported:

r(w — rv;)
LW — uv,)

|gT/gH\ =0.995 £ 0.006 (at 0.8c of LU)

* Decker & Finkemeier’95
** HFLAV'21
*** CMS’21, ATLAS' 21

CMS and ATLAS*** and reported:

1. Motivation

v Theoretical issues within DF’95*:

v" Hadronic form factors are different
for real- and virtual-photon
corrections, do not satisfy the
correct QCD short-distance
behavior, violate unitarity, analicity
and the chiral limit at leading non-

trivial orders.

v' A cutoff to regulate the
integrals (separating long-
short-distance corrections)

v" Unrealistic uncertainties
O(e?p?) ChPT size).
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1. Motivation

v' Phenomenological disagreement in LU tests:

v' Using

I(r — P,[1))

and DF'95%*, HFLAV** reported:
L(P — pvuly])

v |g./g,|,=0.9958 + 0.0026 (at 1.6G of LU)
v |g./8,|=0.9879 + 0.0063 (at 1.9 of LU)
. (1 — evev,[])
v" Usin , HFLAV** reported:
gF(,u — evely[]) P

v |g/g,| =1.0010 £ 0.0014 (at 0.7 of LU)

v' Using LW = 7vr) CMS and ATLAS*** and reported:
LW — uv,)
v |g/g,| =0.995 +0.006 (at 0.8 of LU)

v' By-products of the project:

v

v

Radiative corrections in I'(t - Pv_[y]).

v Theoretical issues within DF’95*:

v" Hadronic form factors are different
for real- and virtual-photon
corrections, do not satisfy the
correct QCD short-distance
behavior, violate unitarity, analicity
and the chiral limit at leading non-

trivial orders.

v' A cutoff to regulate the
integrals (separating long-

short-distance corrections)

v" Unrealistic uncertainties
O(e?p?) ChPT size).

CKM unitarity test via I'(t - Kv_[y]) or via the ratio I'(t - Kv_[y]) / ['(t = mv_[y]).

Constraints on possible non-standard interactions in I'(t =2 Pvr[y])A.

* Decker & Finkemeier’95
** HFLAV'21
*** CMS’21, ATLAS' 21

" Cirigliano et al.’10 ’19, ‘21

" Gonzélez-Alonso & Martin-Camalich ‘16

" Gonzalez-Solis et al. ‘20
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2.P>uv, [yl (P=mK)

v’ Calculated unambigously within the Standard Model (Chiral Perturbation Theory, ChPT*).

v" Notation by Marciano & Sirlin** and numbers by Cirigliano & Rosell*** (D=d,s for ,K and F_= 92.2 MeV):

structure independent (SI)
contributions (point-like

T, K & u H LO result EW correction approximation)”
28488 < b ~ 1.0232** °F 1 )
v A
Vi : \ \' {

2
G2 V. 2 2 m% o
F(P%NVM[’VDZ F| D Pmpmi (1— g Sew 1—|—;F(mi/m§3) X

short-distance

A7 mp
al3. m, (p, M AP) m; (P) | (P)( Py, M,
1—; §lg + ¢y +m—% log—+c (my/mp) ——02 1og 2

\ ] 1/ /

structure-dependent (SD) contributions
[coefficents reported in Cirigliano & IR'07]

v" The only model-dependence is the determination of the countertermsin c¢,!”) and ¢,

v' Large-N. expansion of QCD: ChPT is enlarged by including the lightest multiplets of spin-one resonances
such that the relevant Green functions are well-behaved at high energiesT.

* Weinberg’79 *** Cirigliano & IR'07 T Ecker et al.’89

* Gasser & Leutwyler‘84 ‘85 " Kinoshita’59 T Cirigliano et al.’06
** Marciano & Sirlin’93
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3.1t2>Pv_ [y] (P=nK)

v’ Calculated within an effective approach encoding the hadronization:

v’ Large-N. expansion of QCD: ChPT is enlarged by including the lightest multiplets of spin-one
resonances such that the relevant Green functions are well-behaved at high energies®.

v" We follow a similar notation to P%uvu[y] (D=d,s for t,K and F_= 92.2 MeV):

structure independent (SI)
contributions (point-like
approximation)***

short-distance
V’C LO result EW correction
=~ 1.02 80k *

| 1
%TE,K ( V) \

G2|V,p|2F? ’
rl 8713‘ £ <1—%> SEwW 1+%G(m%/MTQ> X

D(r — Purfy)) =

3a mp
{1 T eyt orpisp + 5TP}VSD}

/N

real-photon structure-dependent virtual-photon structure-dependent
(rSD) contributions vSR) contributions
v' Real-photon structure-dependent (rSD) contributions from Guo & Roig’iop.

v' Virtual-photon structure-dependent (vSD) contributions not calculated in the literature.

* Ecker et al.”89 :"** Kinoshita’59
* Cirigliano et al.’06 Guo & Roig’'10
** Erler'02
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3.t>Pv_[y] (P=mK)

v Virtual-photon structure-dependent contribution (vSD):

d4k I/
. _ 2 . A P 2 1.2 P 2 1.2 2
ZM[T—)PVT”SD—GFVUDG /(27T)d ]432[(]?7-4-]{)2—]\43] [ZeuvApk ppFV (W ,k? )—I-FA (W ,k )>\1uu+23(l{5 ))\QW/}
v-(q)
= (g (L =) [(grt §) + M|y u(ps) (py) W
)\1,u,1/ = (p + k)2 + k2 o m%] Juv — 2kﬂp’/ P(p)
k*(p + k) upo ST
>\2,uV = kzg,uy - £
+ k 2 _ m2
v' Form factors from Guo & Roig’10 and Guevara et al./13,21*:
FE(W2.12) —Ng M v Well-behaved two- and three-point
VAl 24m2Fp(k2 — M2)(W?2 — M2) Green functions.
F M2 —2M2 — k?
P 2 1.2 P A 1%
Ey (W2, k%) 2 (V2 — 12)(MZ — W) v Chiraland U(3) limits.
2 Fp .
B(k™) = —5—0 v' M, and M, vector- and axial-vector
MZ —k

resonance mass: V=M and M,=M_,
(m case); M,=M . and M, =M, (K case).

* Guo & Roig’10
* Guevara et al.’13,’21
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3.t>Pv_[y] (P=mK)

v Virtual-photon structure-dependent contribution (vSD):

d?k v
Z'M[T—>PVT”SD :GFVUD€2/

2m) R 12— 2] Lok P E (W5 B2 F (WS D) A +2B(5) Aoy

0= A=)t )+ M () )
(p+k)* + k> — m%] Guv — 2k,upy

k2(p + k) .py
(p+ k)2 —m%

)\1,u,1/

>\2,uu = kzg,uy -

v" Form factors from Guo & Roig’10 and Guevara et al./13,21%*;

v' Well-behaved two- and three-point
Green functions.

_NeM
242 Fp (k2 — M2Z)(W? — M2)
Fp  M2%—2M2 — k2
> (M7 — ) (M3 — W)
Fp

v" Chiral and U(3) limits.

v' M, and M, vector- and axial-vector
resonance mass: Vi,=M and M,=M_,
(m case); M,=M . and M, =M, (K case).

* Guo & Roig’10
* Guevara et al.’13,’21
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4. Calculation of R =R ;@ (1 +8R ;) =R ;% (1 + 6, — 3y )

1. Structure-independent contribution (point-like approximation): SI.

M? 2 m?2

v We confirm the results by DF'95%*, 5RT/P}SI a 310g mP_|_§_|_g(mP)_f( 5)

o my, 2 M? mp

I+ x(8 — bx) 142 x 3 4,
— 9 log z — 2 ) log(1 — log +4;— L o 4

fa) = 2 (T oge 2 ) log(t )~ 51— loga 447 L) - 1 (5 4 g
1 2—-5 1 3 4

g(x) = 2(1+xloga;—2>log(1—a:) :;E :f)logx 41+xL12() 1fx(§—§7r2)

r/n

|s=1.05% and 6R_ |, = 1.67%

vy Real-photon structure-dependent contribution: rSD.

v' 8, | sp from Cirigliano & IR'07**: 5, | ,sp = -1.3-10®%and &, | sp = -1.7-10°,

V' 8,5|,5pfrom Guo & Roig’10***: 5_ | .., =0.15%and d | s, = (0.18 + 0.05)%.

SR/l vsp = 0.15% and SR | ,sp = (0.18  0.15)%

* Decker & Finkemeier’95

** Cirigliano & Rosell’07 *** Guo & Roig’10
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4. Calculation of R p=R @ (1 + 3R jp) =R p (1 +8, -5
3. Virtual-photon structure-dependent contribution: vSD.

V' 85l 5o from Cirigliano & IR'07*: 8., | 5p = (0.54 + 0.12)% and 8y, | ,sp = (0.43 + 0.12)%.

v 8.,l.sp New calculation: 6_ | s, = (-0.48 £ 0.56)% and & | ,sp =(-0.45 £ 0.57)%.

SR /xlvsp = (-1.02 £ 0.57)% and 3Ry | ,sp = (-0.88 + 0.58)%

* Cirigliano & IR’07
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4. Calculation of R =R ;@ (1 +8R ;) =R ;% (1 + 6, — 3y )

3. Virtual-photon structure-dependent contribution: vSD.

v 8, lysp from Cirigliano & IR'07*: 8

v 6rPl

wuluso = (0.54 £ 0.12)% and 8y | p = (0.43 £ 0.12)%.

wso» New calculation: 6| sp = (-0.48 £ 0.56)% and 6| ,sp =(-0.45 + 0.57)%.

OR

|vSD = (-1.02 + 0.57)% and SRT/KleD = (_0.88 + 0.58)%

T/

v' Uncertainties dominated by & ;| p:

v P decays within ChPT [counterterms can be determined by matching ChPT with the resonance

effective approach at higher energies], whereas t decays within resonance effective approach
[no matching to determine the counterterms].

v Estimation of the model-dependence by comparing our results with a less general scenario

where only well-behaved two-point Green functions and a reduced resonance Lagrangian is
used: £0.22% and +0.24% for the pion and the kaon case.

v Estimation of the counterterms by considering the running between 0.5 and 1.0 GeV: +0.52%

(similar procedure in Marciano & Sirlin’93). Conservative estimate, since vSD counterterms
affecting in P decays imply similar corrections to our estimation of the vSD counterterms in t©
decays.

* Cirigliano & Rosell’07
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5. Results

Contribution OR;/n OR; Kk Ref.
SI +1.05% +1.67%
rSD +0.15% +(0.18 £ 0.05)% | **
vSD —(1.02+0.57)% | —(0.88 +0.58)% | new
Total +(0.18 £ 0.57)% | +(0.97 £0.58)% | new
. Vr Errors are not reported if they are lower than 0.01%.

n K
% — Central values agree remarkably with DF'S5, merely a coincidence: 6R ;.= (0.16 + 0.14)% and 6R_, = (0.90 £

0.22)%, but in that work:

T~ v' problematic hadronization: form factors are different for real- and virtual-photon corrections, do not

satisfy the correct QCD short-distance behavior, violate unitarity, analicity and the chiral limit at
leading non-trivial orders.

v' acutoff to regulate the loop integrals, splitting unphysically long- and short-distance regimes.
v'unrealistic uncertainties (purely O(e2p?) ChPT size).

* Decker & Finkemeier’'95
** Cirigliano & Rosell’07
** Guo & Roig’'10
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6. Application I: Radiative correctionsin I'(t - Pv_[y])

short-distance
EW correction

/ =~ 1.0201*

2 |Vup|*F2
rir > Pl = Zel Ty (1Y G40

v & includes Sl and SD radiative corrections.

2
o mp B_QL_ | 62 =(-0.24£0.56)%
0rp = o < <M2)—|— 1 3 SIOgM >+5TP‘ SD+5TP‘ vSD — { O ) = (_0_15:&0.57)%

* Erler'02
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6. Application Il: lepton universality test

2
L(r— Pv:y]) _|g-| 1 M} (1-mp/M7)?
Bre =P g, 2m2 1 —m2 2y (Lt 0% r)
(P =) 9|, 2mimp (1 —mi /mp)

971 20.99640.0028¢ £0.0025 0, = 0.9964 -+ 0.0038
Iu T

g—T —0.985740.0028, £0.007265p = 0.9857 + 0.0078
mIlK

Improved radiative corrections for Tt - n (K) v_ [y] and reliable new physics tests, P. Roig
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* HFLAV'21
** Decker & Finkemeier’95

6. Application Il: lepton universality test

2
LM (-
P2 mzmp (1-— mi/m%)2

SR, = (0.18 £ 0.57)%

SR,k = (0.97 £ 0.58)%

PDG
971 20.99640.0028¢ £0.0025 0, = 0.9964 -+ 0.0038
Iu T

g—T —0.985740.0028, £0.007265p = 0.9857 + 0.0078
mIlK

v' mcase: at 0.9c of LU vs. 1.6 of LU in HFLAV’21* using DF’95**

v' Kcase: at 1.8c of LU vs. 1.96 of LU in HFLAV’21* using DF'95**

Improved radiative corrections for Tt - n (K) v_ [y] and reliable new physics tests, P. Roig
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6. Application Ill: CKM unitarity test in the ratio I'(t - Kv_[y]) / T'(t = ©v_[y])

L(r = Kvi[y]) _ [Vis|” Fi (1—mjc/MZ)*

T ) [Vadl 2 (1=me a2 )

Vu S

ud

=0.2288+0.0010¢, £0.0017¢xp = 0.2288 + 0.0020

Improved radiative corrections for Tt - n (K) v_ [y] and reliable new physics tests, P. Roig
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6. Application Ill: CKM unitarity test in the ratio I'(t - Kv_[y]) / T'(t = ©v_[y])

PDG

* FLAG'20
** Hardy & Towner’20
*** Seng et al.’21

FLAG'20*:
F/F.=1.1932 £ 0.0019 § = 6,5 —06.n=+(0.10+0.80)%

T

‘Vuem_m%/Mz)z (1
D VaaRF2ZA1—m2 /M2)?

‘ Vus
ud

=0.2288+0.0010¢, £0.0017¢xp = 0.2288 + 0.0020

V' 2.1c away from CKM unitarity, considering |V 4 |=0.9737310.00031**.

v' To be compared with |V /V,4]|=0.2291+0.0009***, obtained with kaon semileptonic
decays. Our error does not reach this level due to lack of statistics in T decays.

Improved radiative corrections for Tt - n (K) v_ [y] and reliable new physics tests, P. Roig
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6. Application Ill: CKM unitarity test in the ratio I'(t - Kv_[y]) / T'(t = ©v_[y])

FLAG'20*:
F/F.=1.1932 £ 0.0019 5

= Ok — 0 = +(0.10 0.80) %)

&

PDG

gt VT \ ‘Vusm_m%/M3)2
_’_“1/:; K V™ VaaR 2 (1=m2 /M2)? 1£)

Conservative estimation of the
errors in 9, since we have
directly propagated the
uncertainties of &, and &_,.

V’LLS
‘ =0.2288+0.0010¢, £0.0017¢xp = 0.2288 + 0.0020

ud

V' 2.1c away from CKM unitarity, considering |V 4 |=0.9737310.00031**.

v' To be compared with |V /V,4]|=0.2291+0.0009***, obtained with kaon semileptonic
* FLAG'20 decays. Our error does not reach this level due to lack of statistics in T decays.

** Hardy & Towner’20
*** Seng et al.’21

Improved radiative corrections for Tt - n (K) v_ [y] and reliable new physics tests, P. Roig
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6. Application IV: CKM unitarity test in I'(t - Kv_[y])

2
Mg

M2

T

Gr 1k,
&

I'(t — Kv.[y]) =

2
Vus|2M§ (1 - ) SEW (1 + 57‘K>

|Vis| =0.222040.00081, £0.00166xp =0.2220 £ 0.0018

Improved radiative corrections for Tt - n (K) v_ [y] and reliable new physics tests, P. Roig
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6. Application IV: CKM unitarity test in I'(t - Kv_[y])

FLAG'20*:

short-distance
EW correction

PDG

* FLAG'20

** Erler'02

*** Hardy & Towner’'20
"HFLAV'21

TSeng et al.’”21

0.k = (—0.15 £ 0.57)%

|Vis| =0.222040.00081, £0.00166xp =0.2220 £ 0.0018

v’ 2.60 away from CKIVI unitarity, considering |V, 4 |=0.97373£0.00031***,

v' To be compared with |Vus|=0.2234i0.0015A or |V, |=0.2231+0.0006%, obtained this
last one with kaon semileptonic decays. Our error does not reach this level due to lack
of statistics in T decays.

Improved radiative corrections for Tt - n (K) v_ [y] and reliable new physics tests, P. Roig
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6. Application V: constraining non-standard interactions in I'(t & Pv_[y])

G2 ‘7u 2 2 2\ 2
I(t — Pv,[y]) = r| 8:‘ P e (1—%) Sew (1+6,p +2A7")

Values of A™ reported in the MS-scheme
and at a scale of u=2 GeV.

m, o AT = —(0.1540.72) - 1072
)

TP _ vt e T e
A =L TeRTRT L ATE — —(0.36 + 1.18) - 102

Improved radiative corrections for Tt - n (K) v_ [y] and reliable new physics tests, P. Roig
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6. Application V: constraining non-standard interactions in I'(t = Pv_[y])

|V 4 | =0.97373 £ 0.00031*
|V,/V,q4| =0.2288 + 0.0020

PDG

FLAG'20*: short-distance
V2F, = (130.2 £ 0.8) MeV EW correction | |Orm = (-0.24£0.56)%
V2F, = (155.7 £ 0.3) MeV ~ 1.0201** O,k = (—0.15+0.57)%
G |‘7uD FlzD 3 m%? y
- e 1 @ 9ATP
87 T M?2 ‘ )

Values of A™ reported in the MS-scheme
and at a scale of u=2 GeV.

ATPZeT_Ee_GT_GG_
L L R R MT

m, ;[ AT =—-(015+0.72) - 102
)P T ATK = —(0.36 + 1.18) - 1072

v To be compared with A" = -(0.15 + 0.67)-10? of Cirigliano et al/19".

v' To be compared with A7 =-(0.12 + 0.68)-102 and A™ = (-0.41 + 0.93)-107? of Gonzéalez-Solis et al20".

* Hardy & Towner’20
** FLAG'20
*** Erler'02

" Cirigliano et al.“19
T Gonzalez-Solis et al. ‘20

Improved radiative corrections for Tt - n (K) v_ [y] and reliable new physics tests, P. Roig 23/25



7. Conclusions

v" The observable and our result:

2
R© 0R:/x = (0.18 £ 0.57)%

gr
i ryp (L08R p)  — {5RT/K:(O.97iO.58)%

Iu

o _ L= Puh)
I TP = )

v' Framework: ChPT for &t decays and a resonance extension of ChPT for T decays.
v' Consistent with DF’95%*, but with more robust assumptions and yielding a reliable uncertainty.
v' Applications:
v" Theoretical determination of radiative corrections in I'(t = Pv._[y]).
4 |gr/gH| »at 0.9c (w) and 1.8c (K) of LU, reducing HFLAV'21** disagreement with LU.
V' CKM unitarity in T(t=>Kv [y])/T(t=>nv_ [y]): |V ,/V, 4| = 0.2288 + 0.0020, at 2.1c from unitarity.

V' CKM unitarity in T(t=>Kv_[y]): |V,.| =0.2220 + 0.0018, at 2.6c from unitarity.

v" Constraining non-standard interactions in I'(t = Pv_[y]): update of A™,

v" Our results have been incorporated in the very recent HFLAV'22.

* Decker & Finkemeier’95
** HFLAV'21

Improved radiative corrections for Tt - n (K) v_ [y] and reliable new physics tests, P. Roig 24/25



7. conclusions  Reliable NP tests for

v The observable and our result: present & fUtu re exps.
2
_ P = Pr:Y) 9| o0 0R:/x = (0.18 £ 0.57)%
Bee = 50 S i) ~ | o, PRT/P (L+0Rp)  — { SR, i = (0.97 £0.58)%

v' Framework: ChPT for &t decays and a resonance extension of ChPT for T decays.
v' Consistent with DF’95%*, but with more robust assumptions and yielding a reliable uncertainty.
v' Applications:
v" Theoretical determination of radiative corrections in I'(t = Pv._[y]).
4 |gr/g“| »at 0.9c (w) and 1.8c (K) of LU, reducing HFLAV'21** disagreement with LU.
V' CKM unitarity in T(t=>Kv [y])/T(t=>nv_ [y]): |V ,/V, 4| = 0.2288 + 0.0020, at 2.1c from unitarity.

V' CKM unitarity in T(t=>Kv_[y]): |V,.| =0.2220 + 0.0018, at 2.6c from unitarity.

v" Constraining non-standard interactions in I'(t = Pv_[y]): update of A™,

v" Our results have been incorporated in the very recent HFLAV'22.

* Decker & Finkemeier’95
** HFLAV'21
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Comparison with Decker & Finkemeier’95 (DF’95) in the & case

Contribution | dR;r by DF’95 [ty =1.5 GeV] our 0 R,
Bl +0.84%* +1.05%
rSD +0.05% +0.15%
vSD —0.49%* —(1.02 £ 0.57)%
short-distance —0.25%* 0
Total +(0.16 £+ 0.14) %* +(0.18 £ 0.57)%

Virtual corrections by DF'95 are p,-dependent, since long- and short-distance photonic contributions
were separated unphysically: figures with an asterisk are cutoff-dependent.

The quoted error in the radiative correction of DF'95 arises from uncertainties in hadronic parameters of
SD contributions and from variations in the cutoff parameter, p .

For the Sl contribution in DF'95 we have added to the result obtained in the point-like approximation
(1.05%) the term coming from cutting off the loops at p,, (—0.21%).

Different contributions of 6R_, are not provided in DF'95, which prevents a comparison.

Although central values for the sum of all the corrections agree remarkably, this is a coincidence, since
central values for the SD corrections are largely different within both approaches.
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MOMENT & POSSIBLE NEW PHYSICS
AFTER THE FNAL 1st MEASUREMENT
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Waiting eagerly for next FNAL measurement in 2023...

Last update: 2022-07-28 08:30 ; Total = 19.0 (xBNL)

BNLg2 —+——&—+ 370 gw.s- Muon g-2 (FNAL)
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Only 6% of final data set!!



Muon a,(SM) = a,(QED) + a,(Weak) + a,(Hadronic)

g-2
Theory https: //d0| org/10.1016/j.physrep.2020.07.006 (SM prediction, ‘White Paper’)

Initiative https://muon-gm?2-theory.illinois.edu

QED

116584718.9(1) x 10~ 0.001 ppm

153.6 (1.0) x 101! 0.01 ppm

ﬁ—ladronic... Saturate the error \
...VaCL%um Polarization (HVP) 6845 (40) x 10~ 0.37 ppm
10.6%]
92 (18) x 107! 0.15 ppm
[20%)]



https://doi.org/10.1016/j.physrep.2020.07.006
https://muon-gm2-theory.illinois.edu/
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Need precise data:
% Good old idea: use isospin symmetry to include existing high quality 7—data
(including isospin corrections)

>x/\.\";\,

=

W W =
—*\\/\\<
Dy

(Francisco Flores-Baez, Alain Flores-Tlalpa, Gabriel Lopez Castro & Genaro Toledo’06&’07)

(Gabriel Lopez Castro, Genaro Toledo & Orsay, CERN & IHEP collaborators’10)
Corrected data: large discrepancy [~ 10%] persistis! T vs. e"¢~ problem! [manifest

since 2002]
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Radiative corrections to other two-meson channels

Antonelli-Cirigliano-Lusiani-Passemar’13 reduced the CKM unitarity violation by using hadron input from Kaon semileptonic
decays in strangeness-changing tau decays




Radiative corrections to other two-meson channels

Antonelli-Cirigliano-Lusiani-Passemar’13 reduced the CKM unitarity violation by using hadron input from Kaon semileptonic
decays in strangeness-changing tau decays

d d .

In the one-meson tau decays they used the old Decker-Finkemeier RadCors & for the two-meson channels they computed only
the Sl part and estimated the size of the model-dependent corrections, which we have calculated now.

— 0 0 —
6K = (—0.0097098) %, oK = (—0.166701933) %

KT = (—0.0305002) %, 0 ™ = (01861 00%) %

The first two were -0.20(20) and -0.15(20) in Antonelli et al. Our RadCors (also for one-meson case) will enable
improved NP tests: most notably CKM unitarity.
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