

Muon Precision Experiments Mexican Workshop on Particles and Fields 21-25 Nov. 2022, Puebla, Mexico

Carlos A. Chavez Barajas

Outline :

Muon properties some history looking for new physics

Muon Precision experiments g-2, muEDM, CLFV

* I am not part of g-2 collaboration
** some material taken from, Graziano V. and Phillip S-W. workshop on Muon Precision Physics at Liverpool

The Standard Model

The Standard Model of elementary particles describes all known particles and their interactions via electromagnetic, weak and strong forces.

Standard Model of Elementary Particles

The particles which constitute all known matter are grouped in 3 families **but we do not know why**

Ways of looking for new hysics

- **High Energy:** increasingly highenergy machines (LHC, ILC / Fcc) are designed to search for new high mass particles (direct observation). Large detectors and collaborations.
- LHC ten et la set la se

- High Intensity: through precision measurements, new low-energy physics effects are sought (deviations from theory). Small scale detectors and collaborations, very high statistics.
 - (g-2, muEDM, rare decay LFV exp.)

The Muon (µ)

The Muon is an elementary particle with similar characteristics as the electron, same electric charge but is \sim 200 times heavier. As the electron it has an intrinsic angular and magnetic moment

 $m_{\mu}{\sim}200~m_{e_{\perp}}$ Lifetime ${\sim}2.2~\mu s$, $S_{\mu}{=}~1/2$

Muon Discovery (1936)

Seeth Carl Neddermeyer Anderson

cloud chamber (1935)

First observed in cosmic rays

Pike's Peak, CO

Muon trace in a cloud chamber (Anderson and Neddermeyer 1936)

For 10 years it was confused with the particle responsible for the nuclear force (Yukawa particle) and it was known as the mesotron

The Magnetic Moment

A charge particle in a plane orbit has: **angular momentum** and **magnetic moment**

$$\vec{\mu} = \frac{q}{2m}\vec{L}$$

- The ratio $\frac{\mu}{\left(\frac{q}{2m}\right)\vec{L}}$ is called gyromagnetic ratio **g**. Classically **g=1**
- For an elementary particle of Spin = 1/2 (e,m) Dirac equation predicts g = 2 $\vec{\mu} = \frac{e}{2m}\vec{\sigma} \equiv g\frac{e}{2m}\vec{S}; \vec{S} = \frac{\vec{\sigma}}{2}; g = 2$
- The magnetic anomaly is defined as a = (g-2)/2.
 g = 2 → a = 0 according to Dirac

Mesurement of g of the electron (1948)

PHYSICAL REVIEW

VOLUME 74, NUMBER 3

AUGUST 1, 1948

The Magnetic Moment of the Electron[†]

P. KUSCH AND H. M. FOLEY Department of Physics, Columbia University, New York, New York (Received April 19, 1948)

A comparison of the g_J values of Ga in the ${}^2P_{3/2}$ and ${}^2P_{\frac{1}{2}}$ states, In in the ${}^2P_{\frac{1}{2}}$ state, and Na in the ${}^2S_{\frac{1}{2}}$ state has been made by a measurement of the frequencies of lines in the hfs spectra in a constant magnetic field. The ratios of the g_J values depart from the values obtained on the basis of the assumption that the electron spin gyromagnetic ratio is 2 and that the orbital electron gyromagnetic ratio is 1. Except for small residual effects, the results can be described by the statement that $g_L = 1$ and $g_S = 2(1.00119 \pm 0.00005)$. The possibility that the observed effects may be explained by perturbations is precluded by the consistency of the result as obtained by various comparisons and also on the basis of theoretical considerations.

$$g = 2(1.00119 \pm 0.00005); a = \frac{(g-2)}{2} = 0.00119 \pm 0.00005$$

a= 0 according to Dirac

Mesurement of g of the electron (1948)

PHYSICAL REVIEW

VOLUME 74, NUMBER 3

AUGUST 1, 1948

The Magnetic Moment of the Electron[†]

P. KUSCH AND H. M. FOLEY Department of Physics, Columbia University, New York, New York (Received April 19, 1948)

A comparison of the g_J values of Ga in the ${}^2P_{3/2}$ and ${}^2P_{\frac{1}{2}}$ states, In in the ${}^2P_{\frac{1}{2}}$ state, and Na in the ${}^2S_{\frac{1}{2}}$ state has been made by a measurement of the frequencies of lines in the hfs spectra in a constant magnetic field. The ratios of the g_J values depart from the values obtained on the basis of the assumption that the electron spin gyromagnetic ratio is 2 and that the orbital electron gyromagnetic ratio is 1. Except for small residual effects, the results can be described by the statement that $g_L = 1$ and $g_S = 2(1.00119 \pm 0.00005)$. The possibility that the observed effects may be explained by perturbations is precluded by the consistency of the result as obtained by various comparisons and also on the basis of theoretical considerations.

$$g = 2(1.00119 \pm 0.00005); a = \frac{(g-2)}{2} = 0.00119 \pm 0.00005$$

a= 0 according to Dirac

 $a = \frac{(g-2)}{2} = \frac{\alpha}{2\pi} = 0.001161$ a>0; g>2

Quantum Vacuum

- The vacuum is filled with pairs of particles and antiparticles that exist for a very short time and are therefore called **virtual**.
- They produce tangible effects on the physical phenomena we observe → g ≠2

a_{μ} = (g-2)/2 can be calculated very precisely

a_µ can be measured very precisely

- The frequency with which the spin moves ahead of the momentum in a magnetic field B (anomalous precession frequency ω_a) is: $\omega_a = \omega_s \omega_c = a \frac{eB}{m}$
- If g=2 (a=0) spin remains locked to momentum

a_u can be measured very precisely

- The frequency with which the spin moves ahead of the momentum in a magnetic field B (anomalous precession frequency ω_a) is: $\omega_a = \omega_s \omega_c = a \frac{eB}{m}$
- If g>2 (a>0) spin advances to the momentum

Lets have a look at the history of muon g-2 experiments

The Muons in g-2 experiments

Muons are produced polarized in "forward" direction $\pi^- o \mu^- \, ar u_\mu$

decay with information on where their spin was at the time of decay

$$\mu^- \rightarrow e^- \ \overline{\nu}_e \ \nu_\mu$$

High energy positrons have momentum along the muon spin. The opposite is true for electrons from μ^- .

Detect high energy electrons. The time dependence of the signal tracks muon precession.

Lee and Yang 1956

The parity violation in the production and decay of the muon offers a way to measure the muon magnetic moment

The rate of high energy decay electrons is time modulated by the precession of the magnetic moment with a frequency which depends on g

1957 First measurement of g_{μ}

Garwin, Lederman, Weinrich at Nevis (Just after Yang and Lee parity violation paper - confirmation)

Cassels, et al. (Liverpool)1957

Stopped $\vec{\mu}^+$ from π^+ decays

 Counted e⁺ decays vs. time in a 100.9 G B field.

 $g_{\mu} = 2.004 \pm 0.014$

stopped μ then decay $\rightarrow e^+$

0.7% uncertainty

Figure 1 Layout of experimental apparatus

exponential frößn τ_{μ} divided out

"The value of g itself should be sought in a comparison of the **precession** and **cyclotron** frequencies of muons in a magnetic field. The two frequencies are expected to differ only by the **radiative correction**" → Birth **of Storage Ring** method! W. E. Bell and E. P. Hincks, Phys. Rev. 84, 1243 (1951)

Muon g-2 CERN experiments (1962-1979) measure the spin relative to the momentum

$$\vec{\omega}_a = -\frac{e}{m}a_\mu\vec{B}$$

Exp. CERN I, 1958-1962

With 100 MeV/c muons

- Inject polarized muon into a long magnet (B ≈ 1.5 T) with a small gradient particles drift in circular orbits to the other end: 7.5 ms = 1600 turns
- Extract muons with a large gradient into a polarization monitor where they stopped
- Time in the magnetic field was measured by counters
- Measure the time dependent forward-backward decay asymmetry

Exp. CERN I, 1958-1962

Measure the time dependent forward-backward decay asymmetry

 $A(t) = A_0 \sin(\omega_* t + \phi)$

 $\omega_{n} = a_{\mu} (e / mc) \overline{B}$

 $\simeq 10^3 \ \mu^+$ recorded

 $a_{\mu}(expt) = 0.001162(5)$ (4300 ppm)

 a_{u} (theory) = 0.001165

Second order QED corrections $a_{\mu} \approx 0.5 \left(\frac{\alpha}{\pi}\right) + 0.766 \left(\frac{\alpha}{\pi}\right)^2$

https://link.springer.com/book/10.1007/978-3-319-63577-4

Exp. CERN II, 1962-1968 First Storage Ring

- Go to p_{μ} = 1.27 GeV/c, γ_{μ} = 12; $\gamma \tau$ = 27 μ s;
- Used a weak-focusing magnetic storage ring; B_z = 1.71 T

Fig. 17. The first muon storage ring: diameter 5 m, muon momentum 1.3 GeV/c, time dilation factor 12. The injected pulse of 10.5 GeV protons produces pions at the target, which decay in flight to give muons.

The Magic Momentum concept

- How to keep the muons vertically confined?
 - 2nd CERN exp. used radial variation in *B* field (big systematic)

3rd CERN exp. Needs electrostatic quadrupoles - but adds complications

$$\begin{split} \vec{\omega_a} &= \frac{e}{mc} \left[a_\mu \vec{B} - \left(a_\mu - \frac{1}{\gamma^2 - 1} \right) (\vec{\beta} \times \vec{E}) \right] \\ (p_\mu = 3.09 \text{ GeV}/c) \end{split}$$

If we choose $\gamma = 29.3$ then coefficient vanishes! The MAGIC momentum!

So we can worry less about the electric field (but still will need corrections)

Had a_u been, say 100x smaller, would need $p \sim 30$ GeV/c

Exp. CERN III, 1969-1976

- Inject pions at 3.2 GeV
 Muon lifetime dilates to 64 μs
- Use $p \rightarrow m$ decay to kick muons onto stable orbits
- Magic momentum and Electric field for vertical focusing

Still have pion flash at injection!

Not as bad as for CERN2

Exp. CERN III, 1969-1976

https://link.springer.com/book/10.1007/978-3-319-63577-4

Muon g-2 experiments @ BNL E821 (1984-2001) @ FNAL E989 (2009-present)

Measurement of g-2 at BNL

In 1984 QED was calculated to fourth order Hadronic uncertainties were greatly reduced Time for new experiment at Brookhaven at sub ppm

Improvements:

Much higher intensity

3 superconducting coils

Circular aperture

Inject muons into ring with inflector and kicker

In-situ B measurements with NMR probes

E821 Experimental Technique

$e^{\pm} \text{ from } \mu^{\pm} \rightarrow e^{\pm} \nu \, \overline{\nu} \text{ are detected}$

gives t, E

Picture of a Lead-Scifi Calorimeter from E821

E821 at BNL, 1984-2001

https://link.springer.com/book/10.1007/978-3-319-63577-4

E821 at BNL, 1984-2001

History of muon g-2 experiments (1960-2000)

The storage ring method was developed at CERN and improved at BNL through a series of experiments with increasing precision which allowed to test the SM at the level of strong (CERN) and EW (BNL) effects

±	Measurement	$\sigma_{a_{\mu}}/a_{\mu}$	Sensitivity	Reference
μ^+	$g=2.00\pm0.10$		g = 2	Garwin <i>et al</i> [30], Nevis (1957)
μ^+	$0.00113^{+0.00016}_{-0.00012}$	12.4%	$\frac{\alpha}{\pi}$	Garwin <i>et al</i> [33], Nevis (1959)
μ^+	0.001145(22)	1.9%	$\frac{\alpha}{\pi}$	Charpak et $al[34]$ CERN 1 (SC) (1961)
μ^+	0.001162(5)	0.43%	$\left(\frac{\alpha}{\pi}\right)^2$	Charpak et al [35] CERN 1 (SC) (1962)
μ^{\pm}	0.00116616(31)	$265 \mathrm{~ppm}$	$\left(\frac{\alpha}{\pi}\right)^3$	Bailey et al[36] CERN 2 (PS) (1968)
μ^+	0.001060(67)	5.8%	$\frac{\alpha}{\pi}$	Henry $et al[46]$ solenoid (1969)
μ^{\pm}	0.001165895(27)	$23 \mathrm{~ppm}$	$\left(\frac{\alpha}{\pi}\right)^3$ + Hadronic	Bailey et al[37] CERN 3 (PS) (1975)
μ^{\pm}	0.001165911(11)	$7.3 \mathrm{~ppm}$	$\left(\frac{\alpha}{\pi}\right)^3$ + Hadronic	Bailey et al[38] CERN 3 (PS) (1979)
μ^+	0.0011659191(59)	$5~{ m ppm}$	$\left(\frac{\alpha}{\pi}\right)^3$ + Hadronic	Brown <i>et al</i> [48] BNL (2000)
μ^+	0.0011659202(16)	$1.3 \mathrm{~ppm}$	$\left(\frac{\alpha}{\pi}\right)^4$ + Weak	Brown $et al[49]$ BNL (2001)
μ^+	0.0011659203(8)	$0.7 \mathrm{~ppm}$	$\left(\frac{\alpha}{\pi}\right)^4$ + Weak + ?	Bennett $et al[50]$ BNL (2002)
μ^{-}	0.0011659214(8)(3)	$0.7 \mathrm{~ppm}$	$\left(\frac{\alpha}{\pi}\right)^4$ + Weak + ?	Bennett $et al[51]$ BNL (2004)
μ^{\pm}	0.00116592080(63)	$0.54 \mathrm{~ppm}$	$\left(\frac{\alpha}{\pi}\right)^4$ + Weak + ?	Bennett <i>et al</i> [51, 26] BNL WA (2004)

J. Miller, E. De Rafael, L. Roberts, Rept. Prog. Phys. 70 (2007) 795

Muon Storage Ring at FNAL, 2009-present

June 2013, Ring leaves BNL for FNAL

QUADS

24 Calorimeter stations located all around the ring

NMR probes and electronics located all around the ring

Tracking detector

- → Two in-vacuum tracking stations at 180 and 270
- → One station = 8 modules
- → One module = 128 gas-filled straws, arranged in 4 layers
- → Measure trajectory of decay e+ to reconstruct muon beam profile

128 straws 10 cm long 15 um Al-coated mylar

How is g-2 measured?

radial

Key points for g-2 at FNAL

- Consolidated method (same ring of the BNL experiment)
- More muons (x20)
- Improved beam and detector → Reduced systematics
- New crew → new ideas

E821 at Brookhaven $\sigma_{stat} = \pm 0.46 \text{ ppm} \\ \sigma_{syst} = \pm 0.28 \text{ ppm} \end{cases} \sigma = \pm 0.54 \text{ ppm} \\ \sigma = \pm 0.54 \text{ ppm}$ E989 at Fermilab $0.2\omega_a \oplus 0.17\omega_p$ $\sigma_{\text{stat}} = \pm 0.1 \text{ ppm} \\ \sigma_{\text{syst}} = \pm 0.1 \text{ ppm}$ $\sigma = \pm 0.14 \text{ ppm}$ 0.07ω_a⊕ 0.07ω_p 39

April 2021: First results of the g-2 experiment at Fermilab

 $a_{\mu}(\text{FNAL}) = 116\,592\,040(54) \times 10^{-11} \quad (0.46\,\text{ppm})$

Combined Result

 $a_{\mu}(\text{Exp}) = 116\,592\,061(41) \times 10^{-11} \quad (0.35\,\text{ppm})$

Are we seeing something new ?

Muon g-2/EDM Experiment at J-PARC

- Compact storage ring (1/20)
- Tracking detector with large acceptance
- Completely different from BNL/FNAL method

Is the SM calculation correct?

- The contribution from the strong interaction (Hadronic Vacuum Polarization, HVP) is challenging
- Tension between two different methods: 1) "lattice calculation"; 2) "dispersive approach"
- Ongoing work to clarify the tension

MUonE experiment at CERN

Alternative (competitive) measurement of HVP for a

precise measurement of the shape of the differential cross section for the $\mu e \to \mu e$ elastic process

-C. M. Carloni Calame et al PLB 746 (2015) 325 -G. Abbiendi et al Eur.Phys.J.C 77 (2017) 3, 139 -Lol https://cds.cern.ch/record/2677471/files/SPSC-I-252.pdf Muon EDM Experiments J-PARC, FNAL storage rings PSI using frozen spin technique

Muon EDM

A EDM signal would be a new physics discovery! (No EDM in the SM) It could explain the matter dominance in the universe

Can be tested at a storage rings and on dedicated experimantal setups.

History of EDM searches

*Bennett et al.,PRD80(2009)052008 ** Abel et al., PRL124(2020)081803

Frequencies under EDM and frozen spin

#&Chislett et al., EPJConf.118 01005(2016), **Abe et al., PTEP053C02 (2019)]

Frequencies under EDM and frozen spin

49 [*Farley et al,, PRL93 042001 (2004)],

Search for a Muon EDM using Frozen spin

- from Pion-decay → high polarization
- Injection through superconducting channel
- Fast scintillator triggers pulse
- Magnetic pulse stops longitudinal motion of
- Weakly focusing field for storage
- Thin electrodes provide electric field for frozen spin
- Pixelated detectors for
 - tracking

The MuEDM experimental idea

Н

- If the EDM ≠ 0, then there will be a vertical precession out of the plane of the orbit
 - An asymmetry increasing with time will be observed recording decay positrons
- If the EDM = 0, then the spin should always be parallel to the momentum – asymmetry should be zero
- Some asymmetry could still be observed due to systematic effects

Time [us]

Lower detector

MuEDM collaboration at PSI

A. Adelmann,^{1,2} C. Chavez Barajas,³ D. Chouhan,⁴ N. Berger,⁴ T. Bowcock,³
A. Bravar,⁵ C. Calzolaio,² L. Caminada,^{2,6} G. Cavoto,^{7,8} C. Chen,⁹
R. Chislett,¹⁰ A. Crivellin,^{2,6,11} M. Daum,² C. Dutsov,² A. Doinaki,²
F. Fallavollita,⁴ M. Giovannozzi,¹¹ G. Hiller,¹² G. Hesketh,¹⁰ M. Hildebrandt,²
M. Hoferichter,¹³ T. Hume,² T. Hu,⁹ A. Keshavarzi,¹⁴ K.S. Khaw,^{9,15}
K. Kirch,^{1,2} A. Kozlinsky,⁴ A. Knecht,² M. Lancaster,¹⁴ B. Märkisch,¹⁵
F. Méot,¹⁶ J.K. Ng,⁹ A. Papa,^{2,17} P. Pestlin,² J. Price,³ F. Renga,^{7,8} M. Sakurai,¹
P. Schmidt-Wellenburg,² M. Schott,⁴ T. Teubner,³ F. Trillaud, ¹⁸ B. Vitali,^{2,17}

C. Voena,^{7,8} J. Vossebeld,³ and F. Wauters,⁴ Y. Zeng ⁹

Charge Lepton Flavour Violating Experiments MEG II, Mu2e, COMET, Mu3e

CLFV Experiments

Looking for the neutrinoless decay of a muon to one or more electrons Significant potential to improve on current limits

The Mu3e experiment at PSI

The Mu3e experiment at PSI

The Mu3e Experiment at PSI

In Phase 1, PSI provides a constant low momentum muon beam With a beam of 10⁸ muons per second on target

Integration run in 2021, construction of scintillating fibres, tiles and pixel next year. Completion in 2024 and physics data taking from 2025 Phase I : 1000x improvement in current limit Phase II: use HIMB to acchieave further factor of 10 in sensitivity

Mu3e Tracking system

2 inner tracking layers in central station2 outer tracking layers

minimal mass required: 50 micron thickness HV-CMOS pixel Aluminum high density interconnect (HDI) Helium cooling Mockup System For cooling testing

Inner tracker layers during integration run in 2021

Creating the Muon Beam for g-2

- 8 GeV p batch into Recycler
- Split into 4 bunches
- Extract 1 by 1 to strike target
- Long FODO channel to
- collect $\pi \leq \mu v$ p/ π/μ beam enters DR; protons kicked out; π decay away
- μ enter storage ring

History of muon g-2 experiments (1960-2000)

Comparisons of g-2 experiments

Comparison of g-2 experiments

	Completed	Running	In preparation
(syst.)	$0.9 \times 10^{-19} e \cdot \mathrm{cm}$	_	$0.36 \times 10^{-21} \ e \cdot \mathrm{cm}$
EDM precision (stat.)	$0.2 imes 10^{-19} e \cdot \mathrm{cm}$		$1.5 \times 10^{-21} e \cdot \mathrm{cm}$
(syst.)	280 ppb	100 ppb	<70 ppb
a_{μ} precision (stat.)	460 ppb	100 ppb	450 ppb
Number of detected e^-	3.6×10^{9}	—	—
Number of detected e^+	5.0×10^{9}	1.6×10^{11}	5.7×10^{11}
Spin precession period	$4.37 \ \mu s$		$2.11 \ \mu s$
Cyclotron period	149 ns		7.4 ns
Focusing field	Electric quadrupole		Very weak magnetic
Storage field	B = 1.45 T		B = 3.0 T
Polarization	100%	50%	
Lorentz γ	29.3		3
Muon momentum	3.09 Ge	eV/c	300 MeV/c
	BNL-E821	Fermilab-E989	Our experiment
2		Prog. Theor. Exp. Phys. 2019, 053C02 (2019	

a_{μ}^{HLO} calculation, traditional way: time-like data

[C. Bouchiat, L. Michel,'61; N. Cabibbo, R. Gatto 61; L. Durand '62-'63; M. Gourdin, E. De Rafael, '69; S. Eidelman F. Jegerlehner 95, Davier et al '97, Hagiwara et al 2003,...]

Traditional way: based on precise experimental (time-like) data: $a_{h}^{TLO} = (693.1 \ 4.0)10^{-10}$ (TI)

- Main contribution in the low energy region (highly fluctuating!)
- Current precision at 0.6%

