

Core Corona Model: A tool to study hyperon global polarization using the Multi Purpose Detector at NICA energies

Ivonne Maldonado* for the MPD Collaboration

* VBLHEP, JINR ivonne.alicia.maldonado@gmail.com Work done in collaboration with A. Ayala, I. Dominguez and M.E. Tejeda-Yeomans

November 25th, 2022 XVIII Mexican Workshop on Particles and Fields

Why measure the hyperon global polarization?

The study of HIC at lower end of relativistic energies became a topic of interest because:

- Onset of deconfinement
- High baryon densities and modest temperatures are produced in contrast to collisions at larger energies

Hyperon Global Polarization \rightarrow to characterize the strongly interacting matter, due the possibility to link with vorticity, viscosity and flow.

- Non central collision have large angular momentum J \sim 1000 \hbar
- Hydrodynamic calculations relate the polarization with the vorticity oriented (in average) in the direction of the total angular momentum \hat{J}

 Λ and $\bar{\Lambda}$ parity-violating weak decay allows to measure its polarization \rightarrow decayed baryon emitted in the spin direction **Nature 548. 62-65(2017)**

Global Polarization as a function of energy

Results from STAR-BES and HADES.

- Polarization increases as the energy of the collision decreases and then decrease near the threshold energy.
- $\bar{\Lambda}$ polarization is larger.

- Thermodynamial approach describes the polarization $_{\rm Annu.\ Rev.\ Nucl.\ Part.\ Sci.\ 2020.\ 70.395-423,}$ but not the large difference between Λ and $\bar{\Lambda}$
- Energy dependence of kinematic vorticity predicted by a transport model (UrQMD) x-G. Deng et al., PRC101(2020)064908

• NICA will cover $\sqrt{s_{NN}} = 4 - 11 \text{ GeV}$

Difference between Λ and $\bar{\Lambda}$

3FD model predicts a peak Phys. Rev. C 103, L031903 (2021)

UrQMD model Phys. Lett. B 803(2020)135298

Stronger polarization explained by different space-time distributions of Λ and $\overline{\Lambda}$ and by different freeze-out conditions of both hyperons.

Core-Corona model

The source of Λ and $\overline{\Lambda}$ is taken as consisting of a high-density core and a less dense corona. Properties of polarization are linked with the relative abundance of Λ s coming from the core versus those coming from the corona.

I. Maldonado

25.11.2022

Core-Corona Model: Two-component source

In heavy-ion collisions, Λ and $\bar{\Lambda}$ come from different density regions

• Core: QGP processes (lowest order QCD processes)

 $q\bar{q}
ightarrow s\bar{s}$ and $gg
ightarrow s\bar{s}$

 Corona: Via n + n reactions by recombination-like processes (ud from incoming nucleons + s from sea)

The number of Λs can be written as:

$$N_{\Lambda} = N_{\Lambda_{QGP}} + N_{\Lambda_{REC}}$$

A+A Phys.Lett.B 810 (2020) 135818

It has been used to explain data from different observables:

- Centrality Dependence of Strangeness Enhancement in Ultrarelativistic Heavy Ion Collisions – a Core-Corona Effect_{Phys.Lett.B} 673(2009)19-23.
- Is the centrality dependence of the elliptic flow v_2 and of the average $\langle p_T\rangle$ more than a Core-Corona Effect?_Phys.Rev.C 82(2010)034906

Observable $O(N_{part})$ as a function of centrality

$$O(N_{part}) = f_{core}O_{core} + (1 - f_{core})O_{corona}$$

core - central collisions corona - pp collisions f_{core} - fraction of core nucleons

The number of Λ s can be written as: $N_{\Lambda} = N_{\Lambda_{QGP}} + N_{\Lambda_{REC}}$ then the polarization given by:

$$\mathcal{P} = rac{N^{\uparrow} - N^{\downarrow}}{N^{\uparrow} + N^{\downarrow}}$$

can be rewritten in terms of the number of Λs (or $\bar{\Lambda} s$) produced in the different density regions

$$\mathcal{P}^{\Lambda} = \frac{\mathcal{P}^{\Lambda}_{REC} + z \frac{N_{\Lambda_{QGP}}}{N_{\Lambda_{REC}}}}{1 + \frac{N_{\Lambda_{QGP}}}{N_{\Lambda_{REC}}}}$$
$$\mathcal{P}^{\bar{\Lambda}} = \frac{\mathcal{P}^{\bar{\Lambda}}_{REC} + \bar{z} \left(\frac{w'}{w}\right) \frac{N_{\Lambda_{QGP}}}{N_{\Lambda_{REC}}}}{1 + \left(\frac{w'}{w}\right) \frac{N_{\Lambda_{QGP}}}{N_{\Lambda_{REC}}}}$$

Global polarization **depends on** the coefficients $w = \frac{N_{\bar{\Lambda}_{REC}}}{N_{\Lambda_{REC}}}$, $w' = \frac{N_{\bar{\Lambda}_{QGP}}}{N_{\Lambda_{QGP}}}$, the intrinsic polarization z, \bar{z} of Λ and $\bar{\Lambda}$ and the ratio $\frac{N_{\Lambda_{QGP}}}{N_{\Lambda_{REC}}}$ that can be estimated from data or calculated.

Assuming that nucleon-nucleon scattering not enough to align the spin in the direction of the angular momentum $\rightarrow \mathcal{P}^{\Lambda}_{REC} = \mathcal{P}^{\Lambda}_{REC} = 0$. Phys. Rev. C 105, 034907

Λ polarization as a function of centrality for Au+Au at $\sqrt{s_{NN}}=3~{\rm GeV}$

Polarization for more peripheral collisions goes to zero, as the critical density n_c of the system is not achieved, vanishing the number of Λ s from the core.

What about the contribution of P_{REC} ?

- Which is the effect of transverse Λ polarization in the corona?
- The polarization in pp collisions is not zero³.

• At
$$\sqrt{s}=19.6 {\rm GeV} \rightarrow \mathcal{P}=-0.25\pm0.26$$

• At
$$\sqrt{s} = 53 \text{GeV} \rightarrow \mathcal{P} = -0.34 \pm 0.07$$

• At
$$\sqrt{s} = 62 \text{GeV} \rightarrow \mathcal{P} = -0.40 \pm 0.10$$

Core Corona Model

In more peripheral collisions transverse polarization is not diluted by rescattering within QCD medium and can be measured at MPD⁴. Which is the value wrt, the angular

25.11.2022

Which is the value w.r.t. the angular momentum?

Adding an arbitrary value of $\mathcal{P}^{\Lambda}_{REC}$ Data could be described?

12

¹PoS HEP2005 (2006) 122, V. Blobel et al., Nucl. Phys. B122 (1977) 429, Phys. Rev.,D11:2405, 1975

I. Maldonado

²Nazarova, et. al. Phys. of Part. and Nuclei Lett., 2021, Vol. 18, No. 4, pp. 429–438

9/20

Measurement procedure of Hyperon Global Polarization

1 Λ and $\overline{\Lambda}$ identification through their decay products and measurement of the azimuthal angle of the decay baryon in Λ rest frame.

$$rac{dN}{d\Omega} = rac{N}{4\pi} \left(1 + lpha \mathcal{P}_H cos heta
ight)$$

 $lpha_{\it H}=0.732\pm0.014$ - new hyperon decay parameter

- $\fbox{2}$ Flow technique measurement $\rightarrow \Psi_{EP}$ and its Resolution R_{EP}
- **6** Polarization as a function of the difference of these angles

$$\mathcal{P}_{H} = \frac{8}{\pi \alpha_{H}} \frac{\left\langle \sin\left(\phi_{p}^{*} - \Psi_{EP}^{(1)}\right) \right\rangle}{R_{EP}}$$

I. Maldonado

25.11.2022

Polarization from Corona region

In pp collisions, transverse polarization is measured with respect to production plane.

Polarization along vector \hat{n} perpendicular to the plane defined by the beam \hat{p}_{beam} and Λ directions, p_{Λ}

$$\hat{n} \equiv \frac{\bar{p}_{beam} \times \bar{p}_{\Lambda}}{|\bar{p}_{beam} \times \bar{p}_{\Lambda}|}$$

Assuming the beam direction parallel to \hat{z} , we can express \hat{n} like:

$$\hat{n} = \frac{1}{p_{T_{\Lambda}}}(-p_{y_{\Lambda}}, p_{x_{\Lambda}}, 0)$$

$$\frac{N}{\Omega} = \frac{N}{4\pi} (1 + \alpha P \cos \theta)$$

I. Maldonado

25.11.2022

Local Polarization projected along angular momentum

Assuming that in pp collisions, polarization \mathcal{P}_T is only different from zero along \hat{n} ; for Λ 's in the corona, the contribution to global polarization can be measured by:

$$\frac{dN}{d\Omega} = \frac{N}{4\pi} \left(1 + \alpha \mathcal{P}_T \cos \sigma^* \right)$$

where σ^* is the angle between \hat{n} and the direction of the angular momentum $\hat{L} = \hat{b} \times \hat{p}_{beam} = (\sin \Psi_{RP}, -\cos \Psi_{RP}, 0).$ Then $\cos\sigma^*$ is given by:

$$\cos \sigma^* = \hat{n} \cdot \hat{L} = \frac{1}{p_{T_{\Lambda}}} \left(-p_{y_{\Lambda}} \sin \Psi_{RP} - p_{x_{\Lambda}} \cos \Psi_{RP} \right)$$

Substituting

 $p_{x_{\Lambda}} = p_{\Lambda} \sin \theta_{\Lambda} \cos \phi_{\Lambda}, p_{y_{\Lambda}} = p_{\Lambda} \sin \theta_{\Lambda} \sin \phi_{\Lambda}, p_{T_{\Lambda}} = p_{\Lambda} \sin \theta_{\Lambda}$ Core Corong Model

Local Polarization projected along angular momentum

then

$$\cos \sigma^* = -\sin \phi_{\Lambda} \sin \Psi_{RP} - \cos \phi_{\Lambda} \cos \Psi_{RP}$$
$$= -\cos (\phi_{\Lambda} - \Psi_{RP})$$

angular distribution can be rewritten like:

$$\frac{dN}{d\Omega} = \frac{N}{4\pi} \left(1 - \alpha \mathcal{P}_T \cos \left(\phi_\Lambda - \Psi_{RP} \right) \right)$$

Considering $d\Omega = \sin\theta d\theta d\phi$ and integrating w.r.t. $d\theta$?

$$\frac{dN}{d\phi} = \int_0^\pi \left[\frac{N}{4\pi} (1 - \alpha \mathcal{P}_T \cos\left(\phi_\Lambda - \Psi_{RP}\right)) \right] \sin\theta \, d\theta$$
$$= \frac{N}{2\pi} (1 - \alpha \mathcal{P}_T \cos\left(\phi_\Lambda - \Psi_{RP}\right))$$

NICA

Core Corona Model

Calculating the mean angular distribution $\langle \cos{(\phi_{\Lambda}-\Psi_{RP})}
angle$

$$\langle \cos\left(\phi_{\Lambda} - \Psi_{RP}\right) \rangle = -\frac{\alpha \mathcal{P}_T}{2}$$

The transverse polarization projected along angular momentum should be

$$\mathcal{P}_T = \frac{-2\langle \cos\left(\phi_{\Lambda} - \Psi_{RP}\right)\rangle}{\alpha}$$

that differs from the global polarization given by $\mathcal{P}_{\Lambda} = -\frac{8\langle \sin(\phi_p - \Psi_{RP}) \rangle}{\pi \alpha}$ There is a similarity between this expression and directed flow for Λ s **Can we measure this contribution experimentally?**

Perspectives of study at MPD with UrQMD

The UrQMD generator implements an **hybrid model** that includes an ideal fluid-dynamic evolution for the hot an dense stage^a.

The **fluid-dynamic evolution** is carried out by the SHASTA (SHarp and Smooth Transport Algorithm)^b

Implementation of EoS that includes a **deconfinement plus a chiral phase transition**, through a smooth crossover between a chiral hadronic model and an interacting constituent quark model ^c.

A **core-corona like separation** mechanism for the initial state of the fluid evolution. Quark density cut in η intervals for select particles in the fluid-dynamical evolution ^{*d*}.

^oPhys. Rev. C 78 (2008) 044901 ^bNucl.Phys.A595(1995)346, Nucl. Phys.A595(1995)383 ^oPhys.Rev.C84,045208(2011)

^dPhys.Rev.C84,024905(2011)

FIG. 1. (Color online) Contour plot of the local rest frame energy density in the transverse plane (z = 0) of a central (b = 0) collision of Pb+Pb at $E_{abb} = 40.4$ GeV. The energy density is normalized to the ground state energy density ($\epsilon_0 \approx$ 145 MeV/fm³). The two green lines correspond to lines of a constant energy density of $\epsilon/\epsilon_0 = 5$ and 7.

Core-Corona Implementation in MPD

From pure MC $\sim 90 \rm k$ events $\approx 50\%$ came from the corona

 Λ abundances in different regions differs from critical density – Glauber calculation used in our core-corona approach

Implementation in MPD

- Transport within mpdroot framework: assign arbitrary local polarization $40\% \rightarrow$ only to corona particles in the \hat{n} direction.
- Transfer polarization to decay particles → Employ developed tools to transfer Hyperon Global Polarization within mpdroot for PHSD (PWG2 - E. Nazarova, and V. Voronyuk). See V. Riabov talk
- Λ reconstruction and measurement of Hyperon Global Polarization with MCTracks.

Polarization transfer

All Λ s in the corona are polarized, projection along its own \mathcal{P} is consistent with 100% and along \hat{n} normal to production plane is consistent with 40%

sample $\sim 90 \mathrm{k}$ events

Local Polarization measured in all the Λ sample, smaller than 40% due to core contribution

Core Corona Model

Global Polarization for Λ

Contribution from corona particles looks to dilute due to zero polarization of the core's and secondary Λ s **Does local polarization contribute to global polarization?** \rightarrow Is work in progress

- The core-corona model is used to describe the hyperon global polarization experimental data at energy ranges of the HADES, STAR and NICA experiments.
- It has been shown that local polarization could contribute to global polarization with a fraction of the value of transverse polarization measured in pp collisions.
- UrQMD has been proposed to simulate both the hydrodynamic phase of the core and cascade transport of the corona and separate Λ contribution.
- Mpdroot has been used to simulate the decay and transport of polarization in the charged decay of $\Lambda.$
- It has been shown that local polarization could contribute to global polarization, however, the results are inconclusive, due to the size of the sample used and the uncertainties of the calculation.

Gracias

Core Corona Model

I. Maldonado

25.11.2022

20/20