The role of the rho(1450) in low energy observables

Dr. Genaro Toledo

Puebla,

Based on hep-ph By Gustavo Ávalos, Antonio Rojas, Marxil Sánchez and GT

Nov 23, 2022, XVIII Mexican Workshop on Particles and Fields

The importance of the rho(1450) state Description of low energy processes Global analysis. From decay modes to cross section data

Results and Conclusions

Outline

 $I^{G}(J^{PC}) = 1^{+}(1^{--})$

ρ(1450) MASS

ρ(1450) MASS

VALUE (MeV)

DOCUMENT ID

1465±25 OUR ESTIMATE This is only an educated guess; the error given is larger than the error on the average of the published values.

Rho(770) excited state

Parameters are not settled PDG

 ρ (1450) DECAY MODES

	Mode	Fraction (
Γ ₁	$\pi\pi$	seen
Γ2	$\pi^+\pi^-$	seen
Г3	4π	seen
Г ₄	$\omega \pi$	
Γ ₅	$a_1(1260)\pi$	
Γ ₆	$h_1(1170)\pi$	
Γ ₇	$\pi(1300)\pi$	
Γ ₈	ρρ	
Г9	$\rho(\pi\pi)$ S-wave	
Γ ₁₀	e^+e^-	seen
Γ ₁₁	$\eta \rho$	seen
Γ ₁₂	$a_2(1320)\pi$	not seen
Γ ₁₃	ĸŔ	seen
Γ ₁₄	K^+K^-	seen
Γ ₁₅	$K\overline{K}^{*}(892) + c.c.$	possibly s
Γ ₁₆	$\pi^0\gamma$	
Γ_{17}	$\eta \gamma'$	seen
Γ_{18}	$f_0(500)\gamma$	not seen
Γ ₁₀	$f_0(980)\gamma$	not seen
	$f_0(1370)\gamma$	not seen
Γ ₂₁	$f_2(1270)\gamma$	not seen

The importance ...

Observed in tau decays and e+e--> hadrons cross sections

Contribution to muon g-2, rho MDM from e+e- -> 4 pi, pion form factor, etc

Description of low energy processes

Vector meson dominance approach

 $\mathcal{L} = \sum_{V=\rho,\,\rho'} g_{V\pi\pi} \,\epsilon_{abc} \, V^a_\mu \, \pi^b \, \partial^\mu \, \pi^c + \sum_{V=\rho,\,\rho'} g_{\omega V\pi} \,\delta_{ab} \,\epsilon^{\mu\nu\lambda\sigma} \,\partial_\mu \,\omega_\nu \,\partial_\lambda \, V^a_\sigma \, \pi^b$

 $+ g_{3\pi} \epsilon_{abc} \epsilon^{\mu\nu\lambda\sigma} \omega_{\mu} \partial_{\nu} \pi^{a} \partial_{\lambda} \pi^{b} \partial_{\sigma} \pi^{c} + \sum_{V=\rho,\rho',\omega} \frac{e m_{V}^{2}}{g_{V}} V_{\mu} A^{\mu}.$

Consider hadrons as the relevant degrees of freedom at low energies. Couplings are free parameters to be determined from experiment.

Corresponding amplitudes and decay widths

 $\mathcal{M} = i \, g_{VP_1P_2} \, (p_1 - p_2)^{\mu} \, \eta_{\mu}(q)$ **B**_{VPP}

 $\mathcal{M} = -i \frac{e^2}{\alpha} \bar{u}(l_1) \gamma^{\nu} v(l_2) \eta_{\nu}(q)$ g_V

g_v

(b)

$$\Gamma_{VP_1P_2} = \frac{g_{VP_1P_2}^2 \,\lambda^{3/2}(m_V^2, m_{P_1}^2, m_{P_2}^2)}{48 \,\pi \, m_V^5}$$

$$\Gamma_{V\ell\ell} = \frac{4\pi\,\alpha^2 (2\,m_{L_1}^2 + m_V^2)\,(m_V^2 - 4\,m_{L_1}^2)^{1/2}}{3\,m_V^2\,g_V^2}.$$

Radia (a)

 $V_1(k, \eta)$ $\mathcal{V}^{(q, \epsilon^*)}$ (a)

P

 $\mathcal{M} = i \, g_{V_1 P \gamma} \, \epsilon^{\beta \nu \alpha \mu} \, k_\beta \, q_\alpha \, \eta_\mu \, \epsilon_\nu^*$ **B**_{VPV}

 $\mathcal{M} = i \, g_{P\gamma\gamma} \, \epsilon^{\alpha\mu\beta\nu} \, q_{1\beta} \, q_{2\alpha} \, \epsilon^*_{1\mu} \, \epsilon^*_{2\nu}$

V2 Υ (q, ε*) e checays tive

Corresponding amplitudes and decay widths

$$\Gamma_{V_1 P \gamma} = g_{V_1 P \gamma}^2 \left[\frac{(m_{V_1}^2 - m_P^2)^3}{96 \, \pi \, m_P^3} \right]$$

$$\Gamma_{P\gamma\gamma} = \left[\frac{g_{P\gamma\gamma}^2 m_P^3}{32 \pi}\right].$$

V,

(b)

 $\gamma(q, \varepsilon_2^*)$

Couplings from individual decays

Process	Coupling
$\rho^0(770) \to \pi^+ \pi^-$	5.944 ± 0.018
$\rho^+(770) \to \pi^+\pi^0$	5.978 ± 0.048
Weighted Average	5.953 ± 0.017

Process	$g_{\rho\omega\pi} \; (\text{GeV}^{-1})$
$\omega(782) \to \pi^0 \gamma$	$11.489 {\pm} 0.039$
$\rho^0(770) \to \pi^0 \gamma$	14.224 ± 2.227
$\rho^+(770) \to \pi^+ \gamma$	12.358 ± 1.806
$\pi^0 \to \gamma \gamma$ (15.631 ± 1.6121

Omega -> 3pi rho(770), rho(1450), contact rho(1450) + contact contributions needed to describe the process

Omega -> 3 pi decay width

The amplitude $\mathcal{M}_{\omega \to 3\pi} = i \epsilon_{\mu}$

 $\mathcal{A}(m_{\omega}^2) = 6 g_{3\pi} + 2 g_{\omega\rho\pi} g_{\rho\pi\pi}$ $+ 2 g_{\omega\rho'\pi} g_{\rho'\pi\pi}$

$$s_{ij} = p_i + p_j,$$

Decay width as a function of all the couplings involved $\Gamma_{\omega 3\pi} = A_1 g_{3\pi}^2 + A_2 g_{\omega \rho \pi}^2 g_{\rho \pi \pi}^2 + A_3 g_{3\pi} g_{\omega \rho \pi} g_{\rho \pi \pi} + A_4 g_{\omega \rho' \pi}^2 g_{\rho' \pi \pi}^2 + A_5 g_{\omega \rho' \pi} g_{3\pi} g_{\rho' \pi \pi} + A_6 g_{\omega \rho' \pi} g_{\omega \rho \pi} g_{\rho \pi \pi} g_{\rho' \pi \pi},$

The Ai coefficients are computed at the omega mass energy

 $\mathcal{M}_{\omega\to 3\pi} = i \,\epsilon_{\mu\alpha\beta\gamma} \,\eta^{\mu} \,p_1^{\ \alpha} \,p_2^{\ \beta} \,p_3^{\ \gamma} \,\mathcal{A}(m_{\omega}^2),$

$$(D_{\rho^{0}}[s_{12}] + D_{\rho^{+}}[s_{13}] + D_{\rho^{-}}[s_{23}])$$

$$(D_{\rho'}[s_{12}] + D_{\rho'}[s_{13}] + D_{\rho'}[s_{23}]),$$

$$D_V[p] = 1/(p^2 - m_V^2 + i \, m_V \, \Gamma_V)$$

e+e- -> omega -> 3 pi

 $\mathcal{M}_{e^+ e^- \to 3\pi} =$ Amplitude

Cross section as a function of all the couplings involved

$$\sigma(e^+e^- \to \omega \to 3\pi) = \frac{1}{g_\omega^2} \left(B_1 g_{3\pi}^2 + B_2 \right)$$

 $+B_5 g_{\omega\rho'\pi} g_{3\pi} g_{\rho'\pi\pi} + B_6 g_{\omega\rho'\pi} g_{\omega\rho\pi} g_{\rho\pi\pi} g_{\rho'\pi\pi} \Big),$

The Bi coefficients are computed at each energy data of the experimental cross section

Similar to the previous contribution but adding the omega production process from e+e-

$$\frac{e}{q^2} \frac{m_{\omega}^2}{g_{\omega}} D_{\omega}(q) \mathcal{A}(q^2) \epsilon_{\mu\alpha\beta\gamma} p_1^{\alpha} p_2^{\beta} p_3^{\gamma} l^{\mu}$$

 $g_{\omega\rho\pi}^2 g_{\rho\pi\pi}^2 g_{\rho\pi\pi}^2 + B_3 g_{3\pi} g_{\omega\rho\pi} g_{\rho\pi\pi} + B_4 g_{\omega\rho'\pi}^2 g_{\rho'\pi\pi}^2$

$$C_{\rho^{0}} = \left(\frac{g_{\omega\rho\pi}}{g_{\rho}}\right)^{2} m_{\rho^{0}}^{2} D_{\rho^{0}}(q),$$

e+e- -> 2pi gamma

$$C_{\rho'} = \frac{g_{\omega\rho'\pi} \, g_{\omega\rho\pi}}{g_{\rho} \, g_{\rho'}} \, m_{\rho'}^2 \, D_{\rho'}(q),$$

Cross section as a function of all the couplings involved

$$\frac{g_{\omega\rho'\pi}}{g_{\rho}^{(p_{2})}} \sum_{e^{+(k_{2})}}^{2} + \left(\frac{g_{\omega\rho\pi}^{3}}{g_{\rho}^{3}}\frac{g_{\omega\rho'\pi}}{g_{\rho'}}\right)_{\pi^{0}(p_{2})} \cos(\theta) C_{3} - Sin(\theta) C_{4}.$$

$$\frac{g_{\omega\rho'\pi}}{g_{\rho}^{3}} \cos(\theta) C_{4}.$$

$$\frac{g_{\omega\rho'\pi}}{g_{\rho}^{3}} \cos(\theta) C_{4}.$$

$$\frac{g_{\omega\rho'\pi}}{g_{\rho}^{3}} \cos(\theta) C_{4}.$$

$$\frac{g_{\omega}}{g_{\rho}^{3}} \cos(\theta) C_{4}.$$

$$\frac{g_{\omega}}{g_{\omega}^{3}} \cos(\theta) C_{4}.$$

Global analysis. From decay modes to cross section data

We minimize the function

considering the couplings as free parameters, for the following data:

 $\chi^2(\theta) =$

(a) 10 decay modes: $\rho \rightarrow \pi \pi$ $\rho \rightarrow \pi \gamma$ 11 decay modes: (a) + $\omega \rightarrow 3\pi$

 $e^+e^- \to \pi^0\pi^0\gamma$ SND (00), (13), (16), CMD2 (b)11 decay modes + SND, BABAR, CMD2, BES 3 $e^+e^- \rightarrow 3\pi$

(c)11 decay modes +

$$\sum_{i=1}^{N} \frac{(y_i - \mu(x_i; \theta))^2}{E_i^2}$$

10 decay modes (4 parameters)

Parameter	Central value	Error
$g_{ ho\pi\pi}$	5.9485	0.0536
$g_ ho$	4.9619	0.0661
g_ω	17.038	0.603
$g_{\omega\rho\pi} \; ({\rm GeV^{-1}})$	11.575	0.438

Correlation matrix

Parameter	Central value	Error
$g_{ ho\pi\pi}$	5.9484	0.0668
$g_ ho$	4.9618	0.0819
g_ω	16.907	0.6625
$g_{\omega\rho\pi} \; ({\rm GeV^{-1}})$	11.486	0.4951
$g_{ ho'\pi\pi}$	4.5103	1.0371
$g_{\omega\rho'\pi} \;({\rm GeV^{-1}})$	3.1363	1.7702
$g_{3\pi} ({\rm GeV^{-3}})$	-53.612	6.8932
$g_{ ho'}$	12.472	1.2437
θ (in π units)	0.8697	0.0452

11 decay modes + $e^+e^- \rightarrow \pi^0\pi^0\gamma$

	$g_{\rho\pi\pi}$	$g_ ho$	g_ω	$g_{\omega ho\pi}$	$g_{ ho'\pi\pi}$	$g_{\omega ho'\pi}$	$g_{3\pi}$	$g_{ ho'}$	θ	
$g_{\rho\pi\pi}$	1	0.028	-0.038	-0.024	-0.108	0.176	0.093	-0.323	0.002	-
$g_{ ho}$	0.028	1	0.042	0.418	-0.189	-0.289	0.486	0.519	0.012	-
g_ω	-0.038	0.042	1	0.925	-0.845	0.722	-0.114	-0.701	-0.008	-
$g_{\omega ho\pi}$	-0.024	0.418	0.925	1	-0.84	0.546	0.082	-0.439	-0.003	-
$g_{\rho'\pi\pi}$	0.108	-0.189	-0.845	-0.84	1	-0.827	0.294	0.538	-0.328	-
g _{ωρ' π}	0.176	-0.289	0.722	0.546	-0.827	1	-0.632	-0.735	0.366	-
$g_{3\pi}$	0.093	0.486	-0.114	0.082	0.294	-0.632	1	0.291	-0.498	-
$g_{\rho'}$	-0.323	0.519	-0.701	-0.439	0.538	-0.735	0.291	1	0.179	-
θ	0.002	0.012	-0.008	-0.003	-0.328	0.366	-0.498	0.179	1	-

Correlation matrix

11 decay modes + $e^+e^- \rightarrow \pi^0\pi^0$

 $\sigma(e^+ e^- -> 2 \pi \gamma)$ (nb)

Parameter	Central value	Error
$g_{ ho\pi\pi}$	5.9486	0.0755
$g_ ho$	4.9622	0.0928
g_ω	16.652	0.4726
$g_{\omega\rho\pi} \; (\text{GeV}^{-1})$	11.314	0.383
$g_{ ho'\pi\pi}$	5.4999	1.0597
$g_{\omega\rho'\pi} (\text{GeV}^{-1})$	3.4774	0.96262
$g_{3\pi} \; ({\rm GeV}^{-3})$	-54.338	6.6739
$g_{ ho'}$	12.918	1.1907
θ (in π units)	0.8715	0.0512

11 decay modes + $e^+e^- \rightarrow 3\pi$

	$g_{ ho\pi\pi}$	$g_ ho$	g_ω	$g_{\omega ho\pi}$	$g_{ ho'\pi\pi}$	$g_{\omega ho'\pi}$	$z g_{3\pi}$	$g_{ ho'}$	θ	
$g_{\rho\pi\pi}$	1	0	0.001	0.001	0	0	0.349	0	0	-
$g_{ ho}$	0	1	-0.004	0.546	0	-0.002	0.512	0	0	-
g_{ω}	0.001	-0.004	1	0.835	0	0.412	0.38	-0.001	-0.004	-
$g_{\omega ho\pi}$	0.001	0.546	0.835	1	0	0.345	0.6	-0.001	-0.004	-
$g_{\rho'\pi\pi}$	0	0	0	0	1	0	-0.014	0	0	-
g _{ωρ' π}	0	-0.002	0.412	0.345	0	1	-0.188	0.156	-0.242	-
$g_{3\pi}$	0.349	0.512	0.38	0.6	-0.014	-0.188	1	-0.065	0.098	-
$g_{\rho'}$	0	0	-0.001	-0.001	0	0.156	-0.065	1	0.001	-
θ	0	0	-0.004	-0.004	0	-0.242	0.098	0.001	1	-

Correlation matrix

G. Toledo, MWPF22

11 decay modes +

 -3π e^+e^-

 $\sigma(e^+ e^- -> 3 \pi)$ (nb)

Couplings behavior for individual data

X axis labels

The
$$e^+ e^- \to \pi$$

Amplitude

 $G_{\rho} = \frac{g_{\omega\rho\pi}}{g_{\rho}} m_{\rho^0}^2 D_{\rho^0}(q),$ $G_{\rho'} = \frac{g_{\omega\rho'\pi}}{g_{\rho'}} m_{\rho'}^2 D_{\rho'}(q).$

$\omega \to 4\pi \text{ cross section}$

Using the previous results, NO fit to these data.

See poster by Antonio Rojas for more details

 $\mathcal{M}_{e^+e^- \to 4\pi} = \frac{e}{r^2} \left(G_{\rho} + e^{i\theta} G_{\rho'} \right) D_{\omega} (q - p_4) \mathcal{A} \left((q - p_4)^2 \right) \epsilon_{\sigma\alpha\eta\beta} \epsilon_{\mu\gamma\chi\sigma} q^{\gamma} p_1^{\alpha} p_2^{\eta} p_3^{\beta} p_4^{\chi} l^{\mu}$

Conclusions

We performed a global analysis of a set of decay modes and cross sections in the context of the vector meson dominance model.

In a first step we determined the parameters of the model involving the light mesons, from 10 decay modes which are insensitive to the ϱ' . Then, we considered the $\omega \rightarrow 3\pi$ decay, and exhibit the need of the ϱ' and a contact term as prescribed by the WZW anomaly.

further restrict the ϱ' parameters validity region.

As an application, we computed the e+e- $\rightarrow 4\pi$ cross section for the so-called omega channel, measured by BABAR and find a good description of the data considering the parameters found. As a byproduct, the coupling $g_{0}\omega\pi = 11.314 \pm 0.383$ GeV-1 is found to be consistent with all the relevant observables.

In a second step, we incorporated the data from the $e^+e^- \rightarrow 3\pi$ cross section (as measured by SND, CMD2, BABAR and BES III), and then the e+e- $\rightarrow \pi^0 \pi^0 \gamma$ data (as measured by SND and CDM2) to

THANK YOU

