The Quark Propagator in the Light Cone Gauge

Alfonso Aldair Lopez Calderon Adnan Bashir Luis Albino Fernandez Rangel Gustavo Paredes Torres Angel Salvador Miramontes Lopez

XVIII Mexican Workshop on Particles and Fields

21-25 November 2022 Edificio Carolino, BUAP Mexico/General timezone

Motivation

- The Schwinger-Dyson Equations (SDE) are the equations of motion corresponding to the Green's function in QCD.
- SDE have been solved in covariant gauge.
- The main adventage of the light-cone approach is that it automatically gets rid of all ghosts and non-physical degrees of freedom.

Light cone coordinates

For an arbitrary four-vector in Minkowski, we perform the following transformation:

 $(a^0, a^1, a^2, a^3) \rightarrow (a^+, a^1, a^2, a^-)$

Where we have defined:

$$a^{\pm} = a^0 \pm a^3$$
, $\mathbf{a}_{\perp} = (a^1, a^2)$

The scalar product: $a \cdot b = g_{\mu\nu}a^{\mu}b^{\nu} = \frac{1}{2}a^{+}b^{-} + \frac{1}{2}a^{-}b^{+} - a^{i}b^{i}, \quad i = 1, 2$ Metric convention $g_{\mu\nu} = (+, -, -, -, -) \longrightarrow \delta_{\mu\nu} = (+, +, +, +)$ $m_{\mu} = \eta(1, 0, 0, -1)$

 x^3

QCD Lagrangian in the light cone gauge

$$\mathscr{L}_{LCG} = -\frac{1}{4} F^{a}_{\mu\nu} F^{\mu\nu}_{a} - \frac{1}{2\xi} (n_{\mu}A^{\mu}_{a})^{2} + \sum_{j=1}^{N_{f}} \bar{\psi}^{j}_{l} (i\gamma^{\mu}D_{\mu} - m_{j})\psi^{j}_{l}, \quad \text{with } n^{2} = 0$$

A represents the gluonic field and $\boldsymbol{\psi}$ is the fermionic field With the covariant derivative $D_{\mu}\psi_{l}^{j} = \partial_{\mu}\psi_{l}^{j} - igR_{lk}^{a}\psi_{k}^{j}A_{\mu}^{a}$. And the gluonic field tensor $F_{\mu\nu}^{a} = \partial_{\mu}A_{\nu}^{a} - \partial_{\nu}A_{\mu}^{a} + gf_{abc}A_{\mu}^{b}A_{\nu}^{c}$

Schwinger-Dyson Equations

- Poincare invariance
- They form a set of infinitely many functional differential equations.
- They work very well for studying non-perturbative phenoma

SDE for the quark propagator

For a fully dressed quark of flavor f, the SDE in Euclidean space is given by:

$$\begin{split} S_{f}^{-1}(p;\Lambda) &= i\gamma \cdot p + m_{f}(\Lambda) + \Sigma_{f}(p;\Lambda) \,, \\ \Sigma_{f}(p;\Lambda) &= C_{F} \int^{\Lambda} \frac{d^{4}q}{(2\pi)^{4}} g^{2}(\Lambda) \Delta_{\mu\nu}(k;\Lambda) \gamma_{\mu} S_{f}(q;\Lambda) \Gamma_{\nu}(q,p;\Lambda) \,, \\ \text{These structures do not appear in covariant gauge The most general decomposition for the quark self-energy can be written as } \end{split}$$

$$\Sigma_f(p;\Lambda) = i\hat{A}(p^2;\Lambda)\gamma \cdot p + \hat{B}(p^2;\Lambda) + i\hat{C}(p^2;\Lambda)\gamma \cdot n + i\hat{D}(p^2,\Lambda)\gamma \cdot n^*$$

7

Renormalized SDE

- $Z_2 \equiv$ Quark propagator renormalization constant.
- $Z_{\pi} \equiv$ Self-energy renormalization constant
- $Z_m \equiv$ Renormalization constant for the mass of the quark

$$S_f^{-1}(p) = Z_2[i\gamma \cdot p + Z_m m_f(\mu)] + Z_\pi Z_2^2 C_F \int^{\Lambda} \frac{d^4q}{(2\pi)^4} g^2 \Delta_{\mu\nu}(k) \gamma_\mu S_f(q) \Gamma_\nu(q,p)$$

Where the fully dressed quark propagator can be expressed quite generally as:

$$\begin{split} S_{f}^{-1}(p) &= iA(p^{2})\gamma \cdot p + B(p^{2}) + iC(p^{2})\gamma \cdot n + iD(p^{2})\gamma \cdot n^{*}, \quad A(p^{2}) &= \hat{A}(p^{2}) + 1 \\ S_{f}(p) &= \frac{-iA(p^{2})\gamma \cdot p + B(p^{2}) - iC(p^{2})\gamma \cdot n - iD(p^{2})\gamma \cdot n^{*}}{\beta(p)}, \quad B(p^{2}) &= \hat{B}(p^{2}) + m_{f}(\mu), \\ \beta(p) &= p^{2}A^{2}(p^{2}) + B^{2}(p^{2}) + 2A(p^{2})C(p^{2})(n \cdot p) \\ &+ 2A(p^{2})D(p^{2})(n^{*} \cdot p) + 2C(p^{2})D(p^{2})(n^{*} \cdot n), \end{split}$$

Renormalization conditions

$$A^{(1)}(\mu^2) = 1$$

 $B^{(1)}(\mu^2) = m_q$
We would also expect

One-loop calculations suggest that in LCG we need to choose a "renormalization direction"!

$$\begin{array}{rcl} C^{(1)}(\mu^2) &=& 0\\ D^{(1)}(\mu^2) &=& 0\\ \text{at tree level} && S^{-1}_{(0)}(p)=\gamma\cdot p+m \end{array}$$

thus at the renormalization point $p^2 = \mu^2$ one would expect this behavior

One loop solutions

In the leading log. approximation:

$$\begin{split} A(p^2) &= Z_2(1 + Z_\pi I_A(p^2)) & I_A^{(1)}(p^2) &= \kappa I(p^2) \left[\frac{p_{||}^2}{p^2} \left(1 - \frac{I(p_{||}^2)}{I(p^2)} \right) - \frac{1}{2} \right] \\ B(p^2) &= Z_2 Z_m m(\mu) + Z_\pi I_B(p^2) & I_B^{(1)}(p^2) &= \kappa I(p^2) \\ C(p^2) &= \frac{1}{2} Z_2 Z_\pi \frac{n^* \cdot p}{n^* \cdot n} (I_C(p^2) - I_D(p^2)) & I_C^{(1)}(p^2) &= \frac{\kappa}{2} I(p^2) \left(1 - 4 \frac{I(p_{||}^2)}{I(p^2)} \right) \\ D(p^2) &= \frac{1}{2} Z_2 Z_\pi \frac{n \cdot p}{n^* \cdot n} (I_D(p^2) - I_C(p^2)) & I_D^{(1)}(p^2) &= \frac{\kappa}{2} I(p^2) \\ \kappa &= \frac{C_F \alpha(\mu)}{2\pi^3} & I(p^2) &= \pi^2 \log(\kappa^2/p^2) \end{split}$$

Recall that $p_{\mu} = p_n n_{\mu} + p_{n^*} n_{\mu}^* + \mathbf{p}_{\perp} \implies p^2 = \mathbf{p}_{||}^2 + \mathbf{p}_{\perp}^2$

Numerical results (for $p_{\perp}=0$)

 $\alpha = 0.118, \quad m_q = 0.004 GeV, \quad \mu = 19.0 GeV$ $Z_2 = 1.07, \quad Z_m = 0.78, \quad Z_\pi = 1.0$

Conclusions and work for the future

- $A(p_1, p_2, p_3, p_4)$, the same feature stands for C & D.
- Lorentz symmetry hides.
- Tree level gluon propagator in this gauge is not transverse.
- In order to compute non-perturbative solutions, we must propose an interaction model taking into account the above features.

Thank you!

QCD Lagrangian

$$\begin{aligned} \mathcal{L}_{B} &= -\frac{1}{4} Z_{3} (\partial_{\mu} A^{a}_{\nu} - \partial_{\nu} A^{a}_{\mu}) (\partial^{\mu} A^{\nu}_{a} - \partial^{\nu} A^{\mu}_{a}) - \frac{1}{2} Z_{1} g f_{abc} (\partial_{\mu} A^{a}_{\nu} - \partial_{\nu} A^{a}_{\mu}) A^{\mu}_{b} A^{\nu}_{c} \\ &- \frac{1}{4} Z_{5} g^{2} f_{abc} f_{ade} A^{b}_{\mu} A^{c}_{\nu} A^{\mu}_{d} A^{\nu}_{e} - \frac{1}{2\xi} Z_{6} (n^{\mu} A^{a}_{\mu})^{2} \\ &+ \sum_{j=1}^{Nf} (i Z_{2Fj} \bar{\psi}^{j}_{l} \gamma^{\mu} \partial_{\mu} \psi^{j}_{l} + Z_{1Fj} g \bar{\psi}^{j}_{l} R^{a}_{lk} \gamma^{\mu} \psi^{j}_{k} A^{a}_{\mu} - Z_{4j} m_{j} \bar{\psi}^{j}_{l} \psi^{j}_{l}), \quad n^{2} = 0 \end{aligned}$$

Z_i renormalization constants

Rainbow-ladder aproximation

The quark-gluon vertex obeys its own SDE, so we must truncate the infinite system of equations.

$$g^2 \Delta_{\mu\nu}(k) \Gamma_{\nu}(q,p) \equiv Z_2 D_{\mu\nu}(k) \gamma_{\nu},$$

where $D_{\mu\nu}(k) = 4\pi \frac{\alpha(k^2)}{k^2} \left[\delta_{\mu\nu} - \frac{k_{\mu}n_{\nu} + n_{\mu}k_{\nu}}{n \cdot k} \right],$

We choose $\xi=0$

0

SDE after rainbow-ladder aproximation

$$S_f^{-1}(p) = Z_2[i\gamma \cdot p + Z_m m_f(\mu)] + Z_2^2 C_F \int^{\Lambda} \frac{d^4 q}{(2\pi)^4} D_{\mu\nu}(k) \gamma_{\mu} S_f(q) \gamma_{\nu},$$

In order to get a coupled system of equations for A, B, C and D, we apply the following projectors

$$P_A = \frac{-i\gamma \cdot p}{4p^2}, \quad P_B = \frac{1}{4}\mathbf{I}, \quad P_C = \frac{-i\gamma \cdot n}{4(n \cdot p)}, \quad P_D = \frac{-i\gamma \cdot n^*}{4(n^* \cdot p)},$$

SDE

_ __ __

$$B_{p} = Z_{2}Z_{m}m_{f}(\mu) + \frac{Z_{2}^{2}C_{F}}{4}\int \frac{d^{4}q}{(2\pi)^{4}}D_{\mu\nu}(k)\operatorname{Tr}[\gamma_{\mu}S_{f}(q)\gamma_{\nu}],$$

$$A_{p} + \frac{(n \cdot p)}{p^{2}}C_{p} + \frac{(n^{*} \cdot p)}{p^{2}}D_{p} = Z_{2} - \frac{iZ_{2}^{2}C_{F}}{4p^{2}}\int \frac{d^{4}q}{(2\pi)^{4}}D_{\mu\nu}(k)\operatorname{Tr}[(\gamma \cdot p)\gamma_{\mu}S_{f}(q)\gamma_{\nu}],$$

$$A_{p} + \frac{n^{*} \cdot n}{(n \cdot p)}D_{p} = Z_{2} - \frac{iZ_{2}^{2}C_{F}}{4(n \cdot p)}\int \frac{d^{4}q}{(2\pi)^{4}}D_{\mu\nu}(k)\operatorname{Tr}[(\gamma \cdot n)\gamma_{\mu}S_{f}(q)\gamma_{\nu}],$$

$$A_{p} + \frac{n^{*} \cdot n}{(n^{*} \cdot p)}C_{p} = Z_{2} - \frac{iZ_{2}^{2}C_{F}}{4(n^{*} \cdot p)}\int \frac{d^{4}q}{(2\pi)^{4}}D_{\mu\nu}(k)\operatorname{Tr}[(\gamma \cdot n^{*})\gamma_{\mu}S_{f}(q)\gamma_{\nu}],$$