Geometrical causality: casting Feynman integrals into quantum algorithms.

Departamento de Física Fundamental Universidad de Salamanca (USAL)

XVIII Mexican Workshop on Particles and Fields 2022 November 21st - 25th, Puebla - México

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skiodowska-Curie grant agreement No.101034371

Index

1. <u>Motivation</u>

- 2. Loop-Tree Duality
 - A. Causality from residues
 - B. Geometrical causality
- 3. Quantum algorithms for HEP
 - A. Grover's search algorithm
 - B. Hamiltonian minimization
- 4. <u>Conclusions</u>

Motivation

• Data extracted from particle colliders must be confronted with theoretical models

Small effects can be discovered only if theoretical predictions match experimental accuracy...

- What we need to calculate? Cross-sections and production/decay rates at colliders
- How to calculate? Use the parton model and SM (or other QFT...)

Motivation

- Parton Distribution Functions:
 - Extracted from data (fits, neural networks, etc)
 - Scale dependence determined by DGLAP equations (perturbative kernels)
 - Several PDFs sets available in the market (different datasets, models, approximations, etc)
- Partonic Cross Sections:
 - Directly obtained from QFT (applying perturbative methods)

Loop contributions (quantum fluctuations of vacuum)

Counter-terms (fix the problems of the other two)

Geometrical causality: casting Feynman integrals into quantum algorithms - G. Sborlini (USAL)

INTEGRATION

Motivation

- Parton Distribution Functions:
 - Several bottlenecks make it difficult to increase the
 - precision (phase-space integrals, loop integrals,
 - Scale dependence determined by DGLAP esingularities)
 - Several PDFs sets available in the market (different datasets, models, approximations, etc)
- Partonic Cross Sections:
 - Directly obtained from QFT (applying perturbative methods)

Loop contributions (quantum fluctuations of vacuum)

other two)

PROBLEM

Loop integrals are hard to compute (specially, in closed analytical form) and they live in a space different than real corrections.

<u>QUESTION</u> Can we do something to combine them?

<u>ANSWER</u> We can use...

Loop-Tree Duality!

Tackling the loops: Loop-Tree Duality

Graphical

representation of

one-loop opening

into trees (original idea by

Catani et al '08)

Advantages

- Real-radiation contributions are defined in Euclidean space (i.e. phase-space integrals)
- Finite loop integrals numerically integrable (adding local <u>counter-terms</u>), just like phase-space ones
- We can combine real and virtual (plus local counter-terms) in a single finite and integrable expression!!

Tackling the loops: Loop-Tree Duality

- <u>New strategy:</u> iterate Cauchy's theorem to *open loops into trees*
- Energy component is removed by using Cauchy's residue theorem
- Multiloop require to iterate ("nest") the procedure (remove all the energy components)

- We define the <u>Maximal Loop Topology (MLT)</u> as a building block to describe multi-loop amplitudes
- Important: "Any one and two-loop amplitude can be described by MLT topologies"

Inductive proofs of these formulae to all-loop orders available in JHEP 02 (2021) 112

Causality and nested residues

- Summing all the terms in LTD representation leads to noticeable simplifications
- There is a strict connection between aligned contributions and causal terms!!!
- *MLT example*: If we **sum over all the possible cuts**, we get **this extremely compact** result:

- Causal Representation exists for any QFT amplitude!
- <u>Advantages</u>

1. Causal denominators have same-sign combinations of on-shell energies (positive

numbers), thus are more stable numerically!

2. Only physical thresholds remain; spurious un-physical instabilities are removed!

White lines = Numerical instabilities

• Further studies were performed with several topological families

JHEP 01 (2021) 069; JHEP 04 (2021) 129; JHEP 04 (2021) 183; Eur.Phys.J.C 81 (2021) 6, 514

- Graphical interpretation in terms of entangled thresholds
 - 1. Each causal propagator represents a threshold of the diagram
 - 2. Each diagram contains several thresholds
 - 3. The causal representation involves products of (*compatible*) thresholds

Sborlini, Phys.Rev.D 104 (2021) 3, 036014

• Causal representation obtained directly after summing over all the nested residues

More details in arXiv:2102.05062 [hep-ph]

k = vertices - 1

Distinction λ^+

/ λ⁻

- 1. Generate causal propagators
 - Causal propagators are associated to binary connected partitions of the diagram, namely "<u>connected sub-blocks of the diagram</u>"
 - They encode the possible **physical thresholds**
 - Involve a consistent (aligned) energy flow through the cut lines
- 2. Order of a diagram: it quantifies the complexity of a given topology
 - *k*=1 for MLT, *k*=2 for NMLT and so on
 - A diagram of order k involves products of k causal propagators
- 3. <u>Geometric compatibility rules:</u> determine the entangled thresholds
 - a) All the multi-edges are cut at least once
 - b) Causal propagators do no intersect; i.e. they are associated to disjoint or extended partitions of the diagram
 - c) All the multi-edges involved in a causal threshold must carry

momenta flowing in the same direction

PROBLEM

Complex topologies have many causal configurations, it takes a lot of time to test all the possibilities.

QUESTION

Can we use other techniques to identify the causal terms?

<u>ANSWER</u> We can explore ...

> Quantum Search Algorithms!

- **Purpose:** Search "selected" states from a bunch of possible configurations
- Idea: Build a quantum uniform superposition of N states and paralellize a selection condition
- Aim: Achieve an speed-up compared to the classical search algorithms

Strategy: Preparation

• From the N total states, there are **r** "winning" states and **N-r** orthogonal ones

$$|q\rangle = \frac{1}{\sqrt{N}} \sum_{x=0}^{N-1} |x\rangle \text{ with } N = 2^{n}$$
Projection over orthogonal subspaces
$$|q\rangle = \sin \theta |w\rangle + \cos \theta |q_{\perp}\rangle$$

$$|w\rangle = \frac{1}{\sqrt{r}} \sum_{x \in w} |x\rangle \qquad |q_{\perp}\rangle = \frac{1}{\sqrt{N-r}} \sum_{x \notin w} |x\rangle$$
Winning states
Non-winning states

Strategy: Amplitude amplification

• We define the oracle operator to mark the "winning" states

 $U_w = I - 2 |w\rangle \langle w|$

• It flips the phase of winning states, and left unaltered the others

```
U_w |x\rangle = - |x\rangle
```

Action over winning subspace

 $U_w | x \rangle = | x \rangle$ Action over orthogonal subspace

• Then, the diffusion operator reflect over the initial state:

 $U_q = 2 |q\rangle\langle q| - I$

• Iterate the procedure to achieve an amplification:

$$\begin{split} (U_q \, U_w)^t \, | \, q \rangle &= \sin \theta_t \, | \, w \rangle + \cos \theta_t \, | \, q_\perp \rangle \\ & \text{with } \theta_t = (2t+1) \, \theta \end{split}$$

Strategy: Amplitude amplification

• We define the oracle operator to mark the "winning" states

 $U_w = I - 2 |w\rangle \langle w|$

• It flips the phase of winning states, and left unaltered the others

$$U_w |x\rangle = - |x\rangle$$

Action over winning subspace

Action over orthogonal subspace

 $U_w |x\rangle = |x\rangle$

• Then, the diffusion operator reflect over the initial state:

 $U_q = 2 \left| q \right\rangle \langle q \right| - \mathbf{I}$

• Iterate the procedure to achieve an amplification:

$$\begin{split} (U_q \, U_w)^t \, | \, q \rangle &= \sin \theta_t \, | \, w \rangle + \cos \theta_t \, | \, q_\perp \rangle \\ & \text{with } \theta_t = (2t+1) \, \theta \end{split}$$

Grover (1997) arXiv: quant-ph/9712011 G. Rodrigo (DESY Seminar 21)

- 1. Generate causal propagators
 - Causal propagators are associated to binary connected partitions of the

diagram, namely "connected sub-blocks of the diagram"

- Non-cyclical configurations = Causal flux
- Involve a consistent (aligned) energy flow through the cut lines
- 2. <u>Order of a diagram</u>: it quantifies the complexity of a given topology
 - k=1 for MLT, k=2 for NMLT and so on

k = vertices - 1

Distinction λ^+ / λ^-

- A diagram of order k involves products of k causal propagators
- 3. <u>Geometric compatibility rules:</u> determine the entangled thresholds
 - a) All the multi-edges are cut at least once
 - **b)** Causal propagators do no intersect; i.e. they are associated to disjoint extended partitions of the diagram
 - c) All the multi-edges involved in a causal threshold must carry

momenta flowing in the same direction

- Identify momentum-orderings compatible with causality using Grover's search algorithm!
- We assign **1 qubit to each edge**, and impose logical conditions to select configurations without closed

Non-cyclical configurations = Causal flux

• Important: "loop" refers to integration variables; "eloop" to loops in the graph

• We use Grover's algorithm to **enhances** the probability of the **causal states**:

$$U_w = \mathbf{I} - 2|w\rangle\langle w| \qquad U_q = 2|q\rangle\langle q| - \mathbf{I} \implies (U_q U_w)^t |q\rangle = \cos\theta_t |q_\perp\rangle + \sin\theta_t |u\rangle$$

Oracle operator (changes sign of causal states)

cvcles

Diffusion operator (reflects with respect to initial state)

Geometrical causality: casting Feynman integrals into quantum algorithms - G. Sborlini (USAL)

 $\sin^2 \theta_t$

20

with

- Implemented with Qiskit and run in **IBM Q** (simulator & real QC) ۲
- Several topologies studied!! Enhanced performance with extra-qubits

JHEP 05 (2022) 100 arXiv:2105.08703 [hep-ph]

• **Details about the circuit:** one eloop with three vertices

- Adding an additional qubit increases the total configurations, without increasing the winning states
- Grover's algorithm could reach a quadratic speed-up (subtleties related to the number of shots)

JHEP 05 (2022) 100 arXiv:2105.08703 [hep-ph]

• **Details about the circuit:** one eloop with three vertices (no extra-qubit)

Hadamard

$$|q\rangle = H^{\otimes n}|0\rangle$$

$$U_w|q\rangle|c\rangle|a\rangle|out_0\rangle = (-1)^{f(a,q)}|q\rangle|c\rangle|a\rangle|out_0\rangle$$
Oracle operator

$$|out_0\rangle = \frac{|0\rangle - |1\rangle}{\sqrt{2}} = |-\rangle$$

$$c_{ij}$$

$$c_{ij} = (q_i = q_j),$$

$$c_{ij} = (q_i \neq q_j),$$

$$i, j \in \{0, ..., n-1\}$$
Binary clauses
$$f^{(1)}(a, q) = a_0 \land q_0 \land q_n$$

$$a_0(\{c_{ij}\}) \equiv \neg (c_{01} \land c_{12} \land \cdots \land c_{n-2,n-1})$$
Implementation of the marker f

 $(U_q U_w)^t |q\rangle = \cos \theta_t |q_\perp\rangle + \sin \theta_t |w\rangle$

JHEP 05 (2022) 100

Ramírez-Uribe et al, JHEP 05 (2022) 100

• **Details about the circuit:** one eloop with three vertices

Simulator:

- Very good performance
- Extra-qubit enhances the amplification
- Real devices:
 - Several limitations due to large quantum depth
 - Efficient error mitigation required (noisy output)
 - Could be improved in future devices

Good... but...

PROBLEM

Binary clauses and selection rules require several qubits (and they are not re-usable!). Resource consumption scales very fast!

QUESTION

Within QA, can we use other approach?

<u>ANSWER</u>

We can combine classical and quantum codes ...

Quantum Minimization Algorithms!

Geometrical information is codified in the **adjacency matrix**

Exploit the **adjacency matrix** to build a **Hamiltonian**

2nd approach (BETTER): Promote adjacency matrix to operator, and *trace over all possible cycles*

Geometrical causality: casting Feynman integrals into quantum algorithms - G. Sborlini (USAL)

Minimizing H, we find the acyclic graphs (0 energy)

Ground state = Acyclic graph

Using a Variational Quantum Eigensolver

- VQE is a hybrid quantum-classical algorithm, optimized for minimization problems
- **QUANTUM PART**: Evaluation of the Hamiltonian applied to an ansatz (parametrized quantum circuit)
- <u>CLASSICAL PART</u>: Modification of the parameters, through minimization algorithms

Geometrical causality: casting Feynman integrals into quantum algorithms - G. Sborlini (USAL)

Using a Variational Quantum Eigensolver

- 1. Our implementation with Qiskit: Real Amplitudes (ansatz) + COBYLA (optimizer)
- 2. Improved results with **multi-run VQE**: set a selection **threshold**, collect **solutions** and modify the

- 1. Our implementation with Qiskit: Real Amplitudes (ansatz) + COBYLA (optimizer)
- 2. Improved results with **multi-run VQE**: set a selection **threshold**, collect **solutions** and modify the

- We collect solutions step by step, till the algorithm converges (if <H> >1)
- Problem: it is not guaranteed that all the solutions are collected (work in progress!!)

Conclusions

- Use LTD to cleverly rewrite Feynman integrals: Minkowski to Euclidean
- Nested residues leads to manifestly causal representations of scattering amplitudes!
- Very compact formulae with strong physical/conceptual motivation
- Geometrical rules select entangled thresholds. Complete reconstruction of multiloop amplitudes!
- Quantum algorithms to speed-up causal flux selection. Exploring new disruptive tools for breaking the precision frontier!!
- Both Grover's search algorithm and VQE seem promising candidates to unveil the causal representations in (real) quantum devices

• Similar causal formulae can be found for NMLT and NNMLT to all loop orders!

Next-to
Maximal
Loop
Topology
Next-to
Next-to
Maximal
Loop
Topology

$$A_{NMLT}^{(L)}(1, 2, \dots, L+2) = \int_{\tilde{\ell}_{1}, \dots, \tilde{\ell}_{L}} \frac{2}{x_{L+2}} \left(\frac{1}{\lambda_{1} \lambda_{2}} + \frac{1}{\lambda_{2} \lambda_{3}} + \frac{1}{\lambda_{3} \lambda_{1}}\right)$$
with $\lambda_{1} = \sum_{i=1}^{L+1} q_{i,0}^{(+)}$
 $\lambda_{2} = q_{1,0}^{(+)} + q_{2,0}^{(+)} + q_{L+2,0}^{(+)}$
 $\lambda_{3} = \sum_{i=3}^{L+2} q_{i,0}^{(+)}$
 $\lambda_{3} = \sum_{i=3}^{L+2} q_{i,0}^{(+)}$
 $\lambda_{3} = \sum_{i=3}^{L+2} q_{i,0}^{(+)}$
 $\lambda_{3} = \sum_{i=3}^{L+2} q_{i,0}^{(+)}$
 $\lambda_{4} = q_{2,0}^{(L)} + q_{3,0}^{(L)} + q_{2,0}^{(L)} + q_{2,0}^{(L)}$

34

• **Further examples:** four eloops (N3MLT and s & t-channels N4MLT)

Boolean conditions (oracle definition)

$$\begin{aligned} a_0^{(4)} &= \neg \left(c_{01} \wedge c_{12} \wedge c_{23} \right) , \\ a_1^{(4)} &= \neg \left(\bar{c}_{05} \wedge \bar{c}_{45} \right) , \\ a_2^{(4)} &= \neg \left(\bar{c}_{16} \wedge \bar{c}_{56} \right) , \qquad f^{(4)}(a,q) = \left(a_0^{(4)} \wedge \ldots \wedge a_4^{(4)} \right) \wedge q_0 \\ a_3^{(4)} &= \neg \left(\bar{c}_{27} \wedge \bar{c}_{67} \right) , \\ a_4^{(4)} &= \neg \left(\bar{c}_{34} \wedge \bar{c}_{47} \right) , \end{aligned}$$

Four eloops (N³MLT), single four-particle vertex (qasm_simulator, 700 shots)

|100111001**>**

 $|000001011\rangle$

t-channel (N4MLT)

Further examples: four eloops (N3MLT and s & t-channels N4MLT)

 $|111000111\rangle$

s-channel similar to t-channel BUT... u-channel exceeds IBMQ capabilities

$$\begin{aligned} f^{(4,t)}(a,q) &= \left(a_0^{(4)} \wedge a_1^{(t)} \wedge a_2^{(4)} \wedge a_3^{(t)} \wedge a_4^{(4)}\right) \wedge q_0 ,\\ f^{(4,s)}(a,q) &= \left(a_0^{(4)} \wedge a_1^{(4)} \wedge a_2^{(s)} \wedge a_3^{(4)} \wedge a_4^{(s)}\right) \wedge q_0 ,\\ f^{(4,u)}(a,q) &= \left(a_0^{(4)} \wedge a_1^{(t)} \wedge a_2^{(s)} \wedge a_3^{(u)} \wedge \ldots \wedge a_8^{(u)}\right) \wedge q_0 \end{aligned}$$

Boolean conditions (oracle definition)

 $|001111001\rangle$

