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Motivation

• Data extracted from particle colliders must be confronted with theoretical models

• What we need to calculate? Cross-sections and production/decay rates at colliders

• How to calculate? Use the parton model and SM (or other QFT…)

PDFs
(non-perturbative)

Partonic cross-section
(perturbative)

• Intermediate steps contain mathematical issues

• Need for regularization DREG

• It changes the number of space-time dimensions in 

order to achieve integrability

Geometrical causality: casting Feynman integrals into quantum algorithms - G. Sborlini (USAL)

Small effects can be discovered only if theoretical predictions match experimental accuracy…
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Motivation

• Parton Distribution Functions:

• Extracted from data (fits, neural networks, etc)

• Scale dependence determined by DGLAP equations (perturbative kernels)

• Several PDFs sets available in the market (different datasets, models, approximations, etc)

• Partonic Cross Sections:

• Directly obtained from QFT (applying perturbative methods)

Loop contributions 
(quantum fluctuations of 

vacuum)
Real corrections (additional 

particles)

Counter-terms (fix 
the problems of the 

other two)

FINITE NUMBER 
(compare to 
experiments)

CANCELLATION AFTER
INTEGRATION

Appears after integration

Geometrical causality: casting Feynman integrals into quantum algorithms - G. Sborlini (USAL)
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Several bottlenecks make it difficult to increase the 
precision (phase-space integrals, loop integrals, 

singularities)

CANCELLATION AFTER
INTEGRATION



PROBLEM
Loop integrals are hard to 
compute (specially, in closed 
analytical form) and they live in 
a space different than real 
corrections.

QUESTION
Can we do something to 
combine them?

ANSWER
We can use… 

Loop-Tree Duality!
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Advantages

• Real-radiation contributions are defined in Euclidean space (i.e. phase-space integrals)

• Finite loop integrals numerically integrable (adding local counter-terms), just like phase-space ones

• We can combine real and virtual (plus local counter-terms) in a single finite and integrable expression!!

Loop-Tree 
Duality

LOOP AMPLITUDES

• Virtual internal 
momenta

• Defined in Minkowski 
space-time

DUAL AMPLITUDES

• On-shell cut momenta

• Defined in Euclidean 
space-time

Graphical 
representation of 
one-loop opening 

into trees
(original idea by 
Catani et al ’08)

Geometrical causality: casting Feynman integrals into quantum algorithms - G. Sborlini (USAL)

Tackling the loops: Loop-Tree Duality



• New strategy: iterate Cauchy’s theorem to open loops into trees

• Energy component is removed by using Cauchy’s residue theorem

• Multiloop require to iterate (“nest”) the procedure (remove all the energy components)

Remaining sets (no residue evaluation)

Sum over all the 
elements of the 

rth set

rth residue 
evaluation

(r-1)th dual 
function

Depends on 
integration 

variables (qi)

Tackling the loops: Loop-Tree Duality

Geometrical causality: casting Feynman integrals into quantum algorithms - G. Sborlini (USAL)
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Causality and nested residues

• Explicit calculation of nested residues Very compact formulae!

• We define the Maximal Loop Topology (MLT) as a building block to describe multi-loop amplitudes

• Important: “Any one and two-loop amplitude can be described by MLT topologies”
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On-shell lines 
with reversed 

momenta

1 off-shell 
line

On-shell lines

Defined in 
Minkowski space

Defined in 
Euclidean space

REMARK: External particles can be 
attached to each momenta set

Lines = sets of 
propagators

Inductive proofs of these formulae to all-loop 
orders available in JHEP 02 (2021) 112
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• Summing all the terms in LTD representation leads to noticeable simplifications

• There is a strict connection between aligned contributions and causal terms!!!

• MLT example: If we sum over all the possible cuts, we get this extremely compact result:

with                                                          and

CAUSAL PROPAGATORS
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• Causal Representation exists for any QFT amplitude!

• Advantages

1. Causal denominators have same-sign combinations of on-shell energies (positive 

numbers), thus are more stable numerically!

2. Only physical thresholds remain; spurious un-physical instabilities are removed!

Without causal 
representation

With causal 
representation White lines = Numerical instabilities

Geometrical causality: casting Feynman integrals into quantum algorithms - G. Sborlini (USAL)
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• Further studies were performed with several topological families

• Graphical interpretation in terms of entangled thresholds

1. Each causal propagator represents a threshold of the diagram

2. Each diagram contains several thresholds

3. The causal representation involves products of (compatible) thresholds
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Causal denominators (λ) are 
associated to cut lines in the 

diagrams: momenta flow must 
be adjusted to be compatible

JHEP 01 (2021) 069; JHEP 04 (2021) 129; JHEP 04 (2021) 183; Eur.Phys.J.C 81 (2021) 6, 514 
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Causal Reconstruction from graphs 
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• Causal representation obtained directly after summing over all the nested residues

• Is it possible to do it in other way?
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• Previous concepts

1. Diagrams are made of vertices and multi-edges (bunches of

propagators, connecting two given vertices)

2. Multi-edges define a basis of momenta, that lead to the “vertex

matrix” Defines the casual structure!

3. Binary partitions are given by subsets of vertices that splits in two

the original diagram Connected partitions!

Master formula

Set of entangled 
thresholds

Products of k causal 
propagators

• Geometrical reconstruction

• Algebraic reconstruction (Lotty) Torres Bobadilla ‘21

Sborlini ‘21

Geometrical causality: casting Feynman integrals into quantum algorithms - G. Sborlini (USAL)

Causal Reconstruction from graphs 
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1. Generate causal propagators

• Causal propagators are associated to binary connected partitions of the 

diagram, namely “connected sub-blocks of the diagram”

• They encode the possible physical thresholds

• Involve a consistent (aligned) energy flow through the cut lines

2. Order of a diagram: it quantifies the complexity of a given topology

• k=1 for MLT, k=2 for NMLT and so on k = vertices - 1 

• A diagram of order k involves products of k causal propagators

3. Geometric compatibility rules: determine the entangled thresholds

a) All the multi-edges are cut at least once

b) Causal propagators do no intersect; i.e. they are associated to disjoint or 

extended partitions of the diagram

c) All the multi-edges involved in a causal threshold must carry 

momenta flowing in the same direction       Distinction

Geometrical causality: casting Feynman integrals into quantum algorithms - G. Sborlini (USAL)

More details in arXiv:2102.05062 [hep-ph]

Causal Reconstruction from graphs 

Incompatible 
causal flux

Presence of
intersections



PROBLEM
Complex topologies have many 
causal configurations, it takes a 
lot of time to test all the 
possibilities.

QUESTION
Can we use other techniques to 
identify the causal terms?

ANSWER
We can explore …

Quantum Search 
Algorithms!

1st Approach: Finding 
“a needle in a haystack” 
with Grover!
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Grover’s search algorithm

• Purpose: Search “selected” states from a bunch of possible configurations

• Idea: Build a quantum uniform superposition of N states and paralellize a selection condition

• Aim: Achieve an speed-up compared to the classical search algorithms

Strategy: Preparation

• From the N total states, there are r “winning” states and N-r orthogonal ones

with

Geometrical causality: casting Feynman integrals into quantum algorithms - G. Sborlini (USAL)
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Grover’s search algorithm

Strategy: Amplitude amplification

• We define the oracle operator to mark the “winning” states

• It flips the phase of winning states, and left unaltered the others

• Then, the diffusion operator reflect over the initial state:

• Iterate the procedure to achieve an amplification:

Geometrical causality: casting Feynman integrals into quantum algorithms - G. Sborlini (USAL)
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Grover’s search algorithm
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1. Generate causal propagators

• Causal propagators are associated to binary connected partitions of the 

diagram, namely “connected sub-blocks of the diagram”

• They encode the possible physical thresholds

• Involve a consistent (aligned) energy flow through the cut lines

2. Order of a diagram: it quantifies the complexity of a given topology

• k=1 for MLT, k=2 for NMLT and so on k = vertices - 1 

• A diagram of order k involves products of k causal propagators

3. Geometric compatibility rules: determine the entangled thresholds

a) All the multi-edges are cut at least once

b) Causal propagators do no intersect; i.e. they are associated to disjoint or 

extended partitions of the diagram

c) All the multi-edges involved in a causal threshold must carry 

momenta flowing in the same direction       Distinction

Geometrical causality: casting Feynman integrals into quantum algorithms - G. Sborlini (USAL)

Grover’s algorithm for Causal Reconstruction

Non-cyclical configurations = Causal flux

More detailed explanation
arXiv:2102.05062 [hep-ph] &

arXiv:2105.08703 [hep-ph]
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Grover’s algorithm for Causal Reconstruction

• Identify momentum-orderings compatible with causality using Grover’s search algorithm!

• We assign 1 qubit to each edge, and impose logical conditions to select configurations without closed 

cycles Non-cyclical configurations = Causal flux

• Important: “loop” refers to integration variables; “eloop” to loops in the graph

• We use Grover’s algorithm to enhances the probability of the causal states:
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Total number of 
orderings

(n = nº of edges)

Quantum 
superposition of 

N flux 
configurations

States with causal 
flow = “Winning 

states”

Oracle operator
(changes sign of causal states)

Diffusion operator
(reflects with respect to initial state) with

States with non-
causal flow = 

“Orthogonal states”

Geometrical causality: casting Feynman integrals into quantum algorithms - G. Sborlini (USAL)
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Grover’s algorithm for Causal Reconstruction

• Implemented with Qiskit and run in IBM Q (simulator & real QC)

• Several topologies studied!! Enhanced performance with extra-qubits 

The selected configurations are exactly |001>, |011>, 
|101>

The algorithm identifies the causal flux, 
relying on geometrical concepts!

Quantum circuit

Causal configurations

JHEP 05 (2022) 100
arXiv:2105.08703 [hep-ph]

Geometrical causality: casting Feynman integrals into quantum algorithms - G. Sborlini (USAL)
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Grover’s algorithm for Causal Reconstruction

• Details about the circuit: one eloop with three vertices

Geometrical causality: casting Feynman integrals into quantum algorithms - G. Sborlini (USAL)

Extra qubit

No-extra qubit

• Adding an additional qubit 
increases the total 
configurations, without 
increasing the winning states

• Grover’s algorithm could reach a 
quadratic speed-up (subtleties 
related to the number of shots)
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arXiv:2105.08703 [hep-ph]
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Grover’s algorithm for Causal Reconstruction

• Details about the circuit: one eloop with three vertices (no extra-qubit)

Geometrical causality: casting Feynman integrals into quantum algorithms - G. Sborlini (USAL)

Hadamard

Binary clauses

Oracle operator

Diffuser (defined 
in Qiskit)

Implementation 
of the marker f

n=2 in this 
example
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JHEP 05 (2022) 100
arXiv:2105.08703 [hep-ph]
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Grover’s algorithm for Causal Reconstruction

• Details about the circuit: one eloop with three vertices

Geometrical causality: casting Feynman integrals into quantum algorithms - G. Sborlini (USAL)

• Simulator: 
• Very good 

performance
• Extra-qubit enhances 

the amplification

• Real devices: 
• Several limitations 

due to large quantum 
depth

• Efficient error 
mitigation required 
(noisy output)

• Could be improved in 
future devices

R
am

írez-U
rib

e et al, JH
EP

 0
5

 (2
0

2
2

) 1
0

0
 



2nd Approach: 
Minimizing a cost 
function with VQE!

Good… but…

PROBLEM
Binary clauses and selection rules 
require several qubits (and they are 
not re-usable!). Resource 
consumption scales very fast!

QUESTION
Within QA, can we use other 
approach?

ANSWER
We can combine classical and 
quantum codes …

Quantum Minimization 
Algorithms!
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Hamiltonian construction for minimization

• Geometrical information is codified in the adjacency matrix

• Useful properties: 

Geometrical causality: casting Feynman integrals into quantum algorithms - G. Sborlini (USAL)

Vertex matrix 
(from the conservation equations)

Adjacency matrix 
(how are vertices connected)

N2MLT topology: 
Mercedes-Benz diagram

2 1

34

There are triangles 

There are boxes 

In general, there are N-cycles iif fN(A) is non zero 

A graph with associated adjacency 
matrix A is acyclic if: 

C
lem

en
te, C

rip
p

a
et al (2

0
2

2
) arX

iv:2
2

1
0

.1
3

2
4

0
 [h

ep
-p

h
]



27

• Exploit the adjacency matrix to build a Hamiltonian Ground state = Acyclic graph

• 1st approach: Penalize oriented cycles using projectors to build the loop Hamiltonian

• 2nd approach (BETTER): Promote adjacency matrix to operator, and trace over all possible cycles

Geometrical causality: casting Feynman integrals into quantum algorithms - G. Sborlini (USAL)
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Hamiltonian construction for minimization

0 original direction 

1 reversed direction

Cycles 
(within 
graph)

Edges 
(within 
cycle)

Projector

Orientation 
(0 or 1) with

Need to fix a initial 
orientation, but results are 

independent of this choice!!

Pauli +/-
operatorsEdge = (origin, end)

Trace over 
vertex space

n = cycle 
length

Minimizing H, we find the acyclic graphs (0 energy)More details arXiv:2210.13240 [hep-ph]
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• VQE is a hybrid quantum-classical algorithm, optimized for minimization problems

• QUANTUM PART: Evaluation of the Hamiltonian applied to an ansatz (parametrized quantum circuit)

• CLASSICAL PART: Modification of the parameters, through minimization algorithms

Geometrical causality: casting Feynman integrals into quantum algorithms - G. Sborlini (USAL)
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Using a Variational Quantum Eigensolver

VQE pipeline 
(extracted from J. Tilly et al, 

arXiv:2111.05176 [quant-ph])
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1. Our implementation with Qiskit: Real Amplitudes (ansatz) + COBYLA (optimizer)

2. Improved results with multi-run VQE: set a selection threshold, collect solutions and modify the 

Hamiltonian with penalization terms

Geometrical causality: casting Feynman integrals into quantum algorithms - G. Sborlini (USAL)

Using a Variational Quantum Eigensolver

Two eloop
5-point 

Reduced Hamiltonian

Classical methods

Complete set of solutions
Threshold

Selected solutions (1st run)

C
lem

en
te, C

rip
p

a
et al (2

0
2

2
) arX

iv:2
2

1
0

.1
3

2
4

0
 [h

ep
-p

h
]

Approximated ground state found by VQE

and subset of terms above the selection threshold

Penalization term …

… to be added to the Hamiltonian for next run!!
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1. Our implementation with Qiskit: Real Amplitudes (ansatz) + COBYLA (optimizer)

2. Improved results with multi-run VQE: set a selection threshold, collect solutions and modify the 

Hamiltonian with penalization terms
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Using a Variational Quantum Eigensolver

Two eloop
5-point 

• We collect solutions step 
by step, till the 
algorithm converges (if 
<H> >1)

• Problem: it is not 
guaranteed that all the 
solutions are collected 
(work in progress!!)
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Conclusions

• Use LTD to cleverly rewrite Feynman integrals: Minkowski to Euclidean

• Nested residues leads to manifestly causal representations of scattering 

amplitudes!

• Very compact formulae with strong physical/conceptual motivation

• Geometrical rules select entangled thresholds. Complete reconstruction of 

multiloop amplitudes!

• Quantum algorithms to speed-up causal flux selection. Exploring new disruptive 

tools for breaking the precision frontier!!

• Both Grover’s search algorithm and VQE seem promising candidates to unveil 

the causal representations in (real) quantum devices



THANKS!



BACKUP.
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• Similar causal formulae can be found for NMLT and NNMLT to all loop orders!

with

with
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Causality and nested residues

Next-to 
Maximal 

Loop 
Topology

Next-to-
Next-to 

Maximal 
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Grover’s Algorithm for Causal Reconstruction

• Further examples: four eloops (N3MLT and s & t-channels N4MLT)

Pizza 
(N3MLT)

Geometrical causality: casting Feynman integrals into quantum algorithms - G. Sborlini (USAL)

Boolean conditions (oracle definition)

39/256 causal/total states
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Grover’s Algorithm for Causal Reconstruction

• Further examples: four eloops (N3MLT and s & t-channels N4MLT)

t-channel 
(N4MLT)

Geometrical causality: casting Feynman integrals into quantum algorithms - G. Sborlini (USAL)

s-channel similar to t-channel BUT…
u-channel exceeds IBMQ capabilities

Boolean conditions (oracle definition)

102/512 causal/total states
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