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e Data extracted from particle colliders must be confronted with theoretical models

Small effects can be discovered only if theoretical predictions match experimental accuracy...

* What we need to calculate? Cross-sections and production/decay rates at colliders

* How to calculate? Use the parton model and SM (or other QFT...)

do 06y v
~ = drydxy 1 (x a2Vt
a*gr dM*=dfldy / b £ () fy* (@ ") g drrracdy
PDFs Partonic cross-section
h1(p1) Fohy (X1, 147 ﬁon-perturbative) (perturbative)

* Intermediate steps contain mathematical issues

* Need for regularization I:> DREG

* It changes the number of space-time dimensions in

}X order to achieve integrability

0iF] = [dFk)  d=4-2s
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* Parton Distribution Functions:

* Extracted from data (fits, neural networks, etc)

* Scale dependence determined by DGLAP equations (perturbative kernels)

» Several PDFs sets available in the market (different datasets, models, approximations, etc)
* Partonic Cross Sections:

* Directly obtained from QFT (applying perturbative methods)

-

Appears after integration

FINITE NUMBER
(compare to
experiments)

CANCELLATION AFTER
Loop contributions Counter-terms (fix INTEGRATION

(quantum fluctuations of Real corrections (additional the problems of the
vacuum) particles) other two)

Geometrical causality: casting Feynman integrals into quantum algorithms - G. Sborlini (USAL)



Several bottlenecks make it difficult to increase the
precision (phase-space integrals, loop integrals,
singularities)

* Partonic Cross Sections:

T

* Directly obtained from QFT (applying perturbative methods)

FINITE NUMBER
(compare to
experiments)

CANCELLATION AFTER
Loop contributions Counter-terms (fix INTEGRATION

(quantum fluctuations of Real corrections (additional the problems of the
vacuum) particles) other two)
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PROBLEM

Loop integrals are hard to
compute (specially,

losed
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ANSWER

We can use...

-Tree Duality!

Loop



Tackling the loops: Loop-Tree Duality

P Pi-1 6(q) P
1
q
N 1
T -
= - Z (g +pi)” —10np;
i=1 Graphical
representation of
. . Pis1 .
. one-loop opening
into trees
LOOP AMPLITUDES o= DUAL AMPLITUDES (original idea by
N —,@f Catani et al "08)
® Virtual internal k/ = i & ® On-shell cut momenta
momenta Loo p-Tree ® Defined in Euclidean
® Defined in Minkowski . space-time
space-time Dual Ity
Advantages

* Real-radiation contributions are defined in Euclidean space (i.e. phase-space integrals)

* Finite loop integrals numerically integrable (adding local counter-terms), just like phase-space ones

* We can combine real and virtual (plus local counter-terms) in a single finite and integrable expression!!
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Tackling the loops: Loop-Tree Duality

 New strategy: iterate Cauchy’s theorem to open loops into trees

* Energy component is removed by using Cauchy’s residue theorem

* Multiloop require to iterate (“nest”) the procedure (remove all the energy components)

Ny

L oOP
meuTUDE

- —

Remaining sets (no residue evaluation)

rth residue
evaluation
GD(I,--.,F'; =—2}IIZRCS(GD(1,___,F—1 ),]_m(;?qlr).(())
i, €r
Sum over allthe  (r-1)th dual Depends on
Sl elements of the function integration
th variables (q;)
L - LOORS Ce
\|
L'CUTS FEYN MAN
REP. —
(D) -2 3 . |
adh >z | | 9 =V Bfem-io
& %-gY  FegH) L By

SN A
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Causality and nested residues

* Explicit calculation of nested residues |:> Very compact formulae!

1
REMARK: External particles can be

attached to each momenta set

Maximal Loop

(2 vertices, L+1

On-shell lines

. with reversed Lines = sets of
lines) momenta
propagators
L+1 /‘
>
} (1,...,i—1,0+1,...,L+1;3) 1 off-shell
L line
—
Defined in Defined in
Minkowski space Euclidean space

* We define the Maximal Loop Topology (MLT) as a building block to describe multi-loop amplitudes

* Important: “Any one and two-loop amplitude can be described by MLT topologies”

Inductive proofs of these formulae to all-loop
orders available in JHEP 02 (2021) 112
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Causality and nested residues

Summing all the terms in LTD representation leads to noticeable simplifications

There is a strict connection between aligned contributions and causal terms!!!

MLT example: If we sum over all the possible cuts, we get this extremely compact result:

R

1 1 1
AR (2 (1) ) = (t++)
LT o E’l:'" ,E’L $L+1 1_ AT—

L+1
. L+k (+
with A\ = E q@%)im,o and  TL+k = oLtk Hfs=+1 qg,o)
i=1

CAUSAL PROPAGATORS
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Causality and nested residues

e Causal Representation exists for any QFT amplitude!

e Advantages

1. Causal denominators have same-sign combinations of on-shell energies (positive
numbers), thus are more stable numerically!

2. Only physical thresholds remain; spurious un-physical instabilities are removed!

101

01('5}3.0

0.000015

0.000010

5.x107¢

q#é?a 015,0
Without causal With causal ai5o

representation representation White lines = Numerical instabilities
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Causal Reconstruction

e Further studies were performed with several topological families

JHEP 01 (2021) 069; JHEP 04 (2021) 129; JHEP 04 (2021) 183; Eur.Phys.J.C 81 (2021) 6, 514

* @Graphical interpretation in terms of entangled thresholds

1. Each causal propagator represents a threshold of the diagram
2. Each diagram contains several thresholds

3. The causal representation involves products of (compatible) thresholds

Causal denominators (1) are
associated to cut lines in the
diagrams: momenta flow must
be adjusted to be compatible
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6¢T (TZ0Z) ¥0 d3HT ‘|e 32 aquN zaswey
690 (T20Z) TO dIHT ‘|e 32 08npiap-esd|Indy



Causal Reconstruction

* Causal representation obtained directly after summing over all the nested residues

N, ) i 0 r 1
Master formula A%’)(l, .., L+k)= Z / o(W4ro'}: WPio)) X H ———— + (0 < 0)

ocEY Ela"'aEL LTL+k — 7)\0(2)
A
| |

Set of entangled Products of k causal
thresholds propagators
* |s it possible to do it in other way? ‘ * Geometrical reconstruction Sborlini ‘21
* Algebraic reconstruction (Lotty) Torres Bobadilla ‘21

* Previous concepts
1. Diagrams are made of vertices and multi-edges (bunches of )
propagators, connecting two given vertices)
P P
qz

p:

|
qz

2. Multi-edges define a basis of momenta, that lead to the “vertex

matrix” ‘ Defines the casual structure!

3. Binary partitions are given by subsets of vertices that splits in two

P4 ps :Jf

13

the original diagram ‘ Connected partitions! X pa s
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Causal Reconstruction

More details in arXiv:2102.05062 [hep-ph]

1. Generate causal propagators

e Causal propagators are associated to binary connected partitions of the &) 4
diagram, namely “connected sub-blocks of the diagram” By 950 e 950
* They encode the possible physical thresholds %o %o
* Involve a consistent (aligned) energy flow through the cut lines a5 )
2. Order of a diagram: it quantifies the complexity of a given topology !
e k=1 for MLT, k=2 for NMLT and so on k = vertices - 1 o
* Adiagram of order k involves products of k causal propagators 5 : 3
3. Geometric compatibility rules: determine the entangled thresholds
a) All the multi-edges are cut at least once N 1)\1
b) Causal propagators do no intersect; i.e. they are associated to disjoint or
extended partitions of the diagram 4 A3
c) All the multi-edges involved in a causal threshold must carry 2 .
momenta flowing in the same direction Distinction A" / A A

14
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PROBLEM

Complex topologies have many
causal configurations, it takes a
lot of time to test all the
possibilities.

QUESTION
Can we use other techniques to
identify the causal terms?

ANSWER
We can explore ...

Quantum Search
Algorithms!

|
vvvvv
| L

15t Approach: Finding
1 “a needle in a haystack”
“with Grover!



Grover’s search algorithm

\
e Purpose: Search “selected” states from a bunch of possible configurations
e Idea: Build a quantum uniform superposition of N states and paralellize a selection condition
\. Aim: Achieve an speed-up compared to the classical search algorithms y

Strategy: Preparation

* From the N total states, there are r “winning” states and N-r orthogonal ones

| N
—Z|x> with N = 2"

\/N x=0

Projection over orthogonal
subspaces

lq) =

|g) =sin@|w) +cosd|q,)

1 |
|w>——r2|x> |qL>—ﬁZ|x>

XEW XEW

Winning states Non-winning states
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Mixing angle
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Grover’s search algorithm

Strategy: Amplitude amplification

* We define the oracle operator to mark the “winning” states
U,=1-2|w){w|

* It flips the phase of winning states, and left unaltered the others

U lx)y==1x)  U,lx) = |x)

Action over winning Action over orthogonal
subspace subspace
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Grover’s search algorithm

Strategy: Amplitude amplification

* We define the oracle operator to mark the “winning” states

UW=I—2|W>(W|

It flips the phase of winning states, and left unaltered the others

U lx)y==1x)  U,lx) = |x)

Action over winning Action over orthogonal
subspace subspace

Then, the diffusion operator reflect over the initial state:

U,=2|q){q|l -1

Iterate the procedure to achieve an amplification:

(U,U,) |q) =sing,|w)+cosb;|q,)
with 6, = Qt+1)0
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Grover’s algorithm for Causal Reconstruc

More detailed explanation
arXiv:2102.05062 [hep-ph] &
arXiv:2105.08703 [hep-ph]

e e

Non-cyclical configurations = Causal flux N

* Involve a consistent (aligned) energy flow through the cut lines

) Tt

L"_ -
ONUY 2 ConricuraTions

c) All the multi-edges involved in a causal threshold must carry

momenta flowing in the same direction mmmmms) Distinction A" / A

19
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Grover’s algorithm for Causal Reconstructi

* Identify momentum-orderings compatible with causality using Grover’s search algorithm!
 We assign 1 qubit to each edge, and impose logical conditions to select configurations without closed
cycles ‘ Non-cyclical configurations = Causal flux
* Important: “loop” refers to integration variables; “eloop” to loops in the graph
[O

1

1 N—1 Quantum

0 1 Total number of 1 "
0 ’ orderings N =2" ‘ |Q) — N |z) superlsc;l.sl::(lon o
o ‘ 9 (n=n2 of edges) =0 configurations
3 1

States with causal
|z)

1 jw) = flow = “Winning

1
\/FIE'LU states”
Y (S, (N, o= eostlan) +sno R
. 2 5 2 ‘ 2 |@i>:mz|$> :aﬁza:l;’:‘lowi
3 3

3 €W uQrthogonal states”

* We use Grover’s algorithm to enhances the probability of the causal states:

Up =T —=2w)(w| Uy =2[q){q] — I wup (UaUw)'la) =C080|gry+sinb; w)

Oracle operator Diffusion operator ) . 9
(changes sign of causal states) (reflects with respect to initial state) with Isin® 0 ~ 1

20
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Grover’s algorithm for Causal Reconstructio

* Implemented with Qiskit and run in IBM Q (simulator & real QC)

e Several topologies studied!! Enhanced performance with extra-qubits

JHEP 05 (2022) 100
arXiv:2105.08703 [hep-ph]

One eloop with three vertices (qasm_simulator)

Qo

[ Extra ancillary g,-qubit

032

G2 ﬂ_

qs
23 OO = = OO o
a o—o— B-o—a

AN
ot R o

cbits =

Probabilities

Quantum circuit
008

|001) 011) 1101)
@ @ @ |

Causal configurations

I No extra ancillary g,-qubit

011 100
Configurations

The selected configurations are exactly |001>, |011>,
|101>

The algorithm identifies the causal flux,
relying on geometrical concepts!

Geometrical causality: casting Feynman integrals into quantum algorithms - G. Sborlini (USAL)
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Grover’s algorithm for Causal Reconstruct

* Details about the circuit: one eloop with three vertices

Go
o — —
a -
Extra qubit PR .
< o0 x I_. o9
a oo e
ao G}—.—l—.—éb
outo —jnitialize. o
chits = o 41 42
Go
a
No-extra qubit o T_' =
— oo | m oo
a o—o01
o ol
outy —- o
chits = %1
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Adding an additional qubit
increases the total
configurations, without
increasing the winning states

Grover’s algorithm could reach a
quadratic speed-up (subtleties

related to the number of shots)

[

JHEP 05 (2022) 100
arXiv:2105.08703 [hep-ph]

J
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Grover’s algorithm for Causal Reconstructi

* Details about the circuit: one eloop with three vertices (no extra-qubit)
Hadamard [ arXiv:2105.08703 [hep-ph]]
lg) = H®"|0) Uslg)le)|a)louto) = (~1)@ |g)|)|a) outo) ~ Oracle operator
1 I Diffuser (defined
I @ in Qiskit)
T

n=2 in this
example

00T (2202) SO dIHT ‘|e 12 aqun-zaliwey

cij = (6 = 45) - fM(a,q) = ao Ago A an Implementation

E@:’jE(%?AQj)v ?:vje{oa"'vn_l} of the marker f

Binary clauses ao({cij}) = ~(cor Acia A -+ Acp—an-1)

(UyUw) |q) = cos b |q1) + sin by |w)

23
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Grover’s algorithm for Causal Reconstruction

e Details about the circuit: one eloop with three vertices

One eloop with three vertices (gasm_simulator & ibmqg_16_melbourne)

[ Extra ancillary gs-qubit (gasm_simulator)

I No extra ancillary gn-qubit (gasm_simulator)
I Extra ancillary g,-qubit (ibmg_16_melbourne)
[ No extra ancillary g,-qubit (ibmg_16 melbourne)

0.32

0.24 1

Probabilities

0.08 -

0.00-
000 001 010 011 100 101 110 111

Configurations

Geometrical causality: casting Feynman integrals into quantum algorithms - G. Sborlini (USAL)

* Simulator:

Very good
performance
Extra-qubit enhances
the amplification

* Real devices:

Several limitations
due to large quantum
depth

Efficient error
mitigation required
(noisy output)

Could be improved in
future devices

24
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Good... but...

WL R

PROBLEM

Binary clauses and selection rules | |
require several qubits (and theyare | ... |
not re-usable!). Resource G
consumption scales very fast!

=

QUESTION
Within QA, can we use other
approach?

| &

- e
| =
. ™ =
; 'H N
% —
i

LN e 2

ANSWER
We can combine classical and
guantum codes ...

2"d Approach:
Minimizing a cost
function with VQE!

Quantum Minimization
Algorithms!




Hamiltonian construction for minim

* Geometrical information is codified in the adjacency matrix

(xConfiguracion momentosx)
NumeroVertices = 4; Orden = NumeroVertices - 1;

; Eq[1] = {q[6] +q[4] - q[1] +p[1]}; »
1

Eq[2] = {q[1] +q[5] -q[2] +p[2]};
Eq[3] = {q[3] -q[6] +q[2] +p[3]};

< Eq[4] = {-q[3] - q[4] -q[5] - (p[1] +p[2] +P[3])};

mp -
N2MLT topology:
Mercedes-Benz diagram

 Useful properties: =
f3(A) = SR70270 0,5, X Gy, X @iy, # 0 €m) There are triangles

_ i1 FiaFisAi
fi1(A) = Ezii?:ff Y iyiy X Qiyig X Qigiy X Qiyi, 70 “ There are boxes

In general, there are N-cycles iif f(A) is non zero

-1 & @ 1 |1 1 e e
-1 8 @ 1|6 e 1 @
1 1 e e |-1 e © 1
g -1 -1 -1, -1 -1 -1

Vertex matrix
(from the conservation equations)

a12 ais B 6‘1
0 a3 1 e e 1
oz 0 —=le 181

e 8 8 8

Adjacency matrix
(how are vertices connected)

A graph with associated adjacency
matrix A is acyclic if:

Geometrical causality: casting Feynman integrals into quantum algorithms - G. Sborlini (USAL)

q tr(AY) =0

\

J
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Hamiltonian construction for minim

* Exploit the adjacency matrix to build a Hamiltonian — Ground state = Acyclic graph

* 1stapproach: Penalize oriented cycles using projectors to build the loop Hamiltonian

: : 1
Orientation 7V = |()><()|e — _(] + Z) O original direction
HG — E | | ,ﬂ.z(e,GO)/' (0 or 1) with ‘ % ’ 1 reversed direction
1 _
"}/EFGO ecy \ Te = |]‘><1|6 — 5(1_ Z)e
W \ 0 1
Cycles Edges Projector
(within  (within Need to fix a initial

graph) cycle) orientation, but results are
independent of this choice!!

« 2nd approach (BETTER): Promote adjacency matrix to operator, and trace over all possible cycles

— — 0 _+ — 1 _+ M _~ Trace over
A= Z [UUO TeOuy T vy e U'UU} 7 vertex space
I ) |(H = E TrytA"]
l Pauli +/- n = cycle
n:l >
Edge = (origin, end) operators length
More details arXiv:2210.13240 [hep-ph] Minimizing H, we find the acyclic graphs (0 energy)

27
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Using a Variational Quantum Eige

* VQE is a hybrid quantum-classical algorithm, optimized for minimization problems

* QUANTUM PART: Evaluation of the Hamiltonian applied to an ansatz (parametrized quantum circuit)

e CLASSICAL PART: Modification of the parameters, through minimization algorithms

F(1 a) Hamiltonian representation
(e.g. second quantized Hamiltonian)

(1b) Encoding of fermionic

operators to Pauli operators | | weighting

(1c) Grouping and measurement

UTiUT = G%(i)

=Y iy + 3 S byl || H = wala
pq pqrs a
e "
(1d) 12a}Ansatz and state preparation (e.g. /(2b} Rotation to ) ﬁzc) Measurement of ) /(Zdl Observables D\
Initialization Hardware efficient) measurement Pauli strings computation (e.g. expectation
J(:e.g.k;-lartreT ) Ry(t;) || basis value, gradient etc.)
oc 1
D _ [7t(7®N t(z®N N .
Il) HJ'IHUJHRy[ﬂ..}ll {)a = U(l (Z )Ua (if)(GHUa (Z )Ua|¢(9)> (H(e)) — Zwa(w(g)lpulw(a))
I ) By = U[(Z®N)Us || (@)U} (25™)U3|(8)) ‘
b _ g7t 7®N H A
IO) ) (Retn |- Ruton)} F. = Uc (Z )Uc (&(G)IUJ(Z®N)Uc|w(e)) w = (H(Bﬁ,ﬁj + g))
«)
10) ) 708 — —(H(05,0; — g))
\ J @ \ J\ J /
(3) Parameters update (e.g.|
gradient descent) <:
o = 0, - o 2LHO)

J

D Quantum computing subroutines

[:] Traditional computing subroutines

Geometrical causality: casting Feynman integrals into quantum algorithms - G. Sborlini (USAL)

VQE pipeline

(extracted from J. Tilly et al,
arXiv:2111.05176 [quant-ph])

28
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Using a Variational Quantum Eigen:

1. Our implementation with Qiskit: Real Amplitudes (ansatz) + COBYLA (optimizer)

2. Improved results with multi-run VQE: set a selection threshold, collect solutions and modify the

H am i |t0 N ia N With STEP 1: <H> = -0.000000000000000447 , 1024 iters.

:

Hpjtey = 4L LR LRI +2LRLRL®Z — 110302 ® 1) : ]

0 1 —L®LE®Z:®Z1+ L ®Z3L L+ 1 ® Z3® I, ® 74 ot :

+2IiR 23020+ 21 L L 0L+ 2,00, ® Z: o.4§ ]

+ 2208201 +3240 730 L + Z4® 230 I ® Z;
Reduced Hamiltonian

Probability

03f

02 —
Classical methods

01|

Threshold ]
TWO eloop Complete Set Of SO|UtI0nS 0'0: 0100 0101 0111 1000 1001 1011 1100 1101 _
>-point {]0011),]0100), [0101), |0111),]1000), [1001), [1011),|1100), [1101)} state
S1 = {|0100), [0101), [0111)}
Selected solutions (15t run)
(1) _ (1) 1 1
o= % b leta D) =" Ve
|P1) €ES1 j
Approximated ground state found by VQE
1
B = gO 4 O Si = {leg) 1] > A}
... to be added to the Hamiltonian for next run!! and subset of terms above the selection threshold

29
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Using a Variational Quantum Eige

Hamiltonian with

STEP 2: <H> = -0.000000000000000041

Probability
Probability

Two eloop

STEP 4: <H>=0

Probability
Probability

1. Our implementation with Qiskit: Real Amplitudes (ansatz) + COBYLA (optimizer)

0oL

10+

00

Geometrical causality: casting Feynman integrals into quantum algorithms - G. Sborlini (USAL)

Improved results with multi-run VQE: set a selection threshold, collect solutions and modify the

More details arXiv:2210.13240 [hep-ph]

STEP 3: <H> = 0.00390625

06f
05f

04f

03}

0.2}

01f

STEP 5: <H>=4

0.8
0.6+

0.4+

0.2+

We collect solutions step
by step, till the
algorithm converges (if
<H> >1)

Problem: it is not
guaranteed that all the
solutions are collected
(work in progress!!)

30
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Conclusions

e Use LTD to cleverly rewrite Feynman integrals: Minkowski to Euclidean

* Nested residues leads to manifestly causal representations of scattering

amplitudes!

* \ery compact formulae with strong physical/conceptual motivation

/ Geometrical rules select entangled thresholds. Complete reconstruction of \

multiloop amplitudes!

* Quantum algorithms to speed-up causal flux selection. Exploring new disruptive ‘
tools for breaking the precision frontier!! BCEOCDAS

* Both Grover’s search algorithm and VQE seem promising candidates to unveil

\the causal representations in (real) quantum devices /

31
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Causality and nested residues

Next-to
Maximal
Loop
Topology

Next-to-
Next-to
Maximal
Loop
Topology

Similar causal formulae can be found for NMLT and NNMLT to all loop orders!

1 12 e a L) 2 ( 1 1 )
+ 2 —/ r +
NMLT G The2 \MA2  Aadg Az
L+1 L+2
with =) qz(jo_) Az = q(+) (+) + qgr)z,o EDY qﬁﬂ-)
v i—1 i=3
L+1
4 2 1 1 1 1 A
@ (1,2,...,L+3)=— [ —(—+— )+ ++—
1 12 ANZMLT( : Lot ) O 0y TL43 A1 LA * A3 A4 * A5
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Grover’s Algorithm for Causal Reconstructio

* Further examples: four eloops (N3MLT and s & t-channels N4AMLT)

Boolean conditions (oracle definition)

|00000111) |00101101) [01111011) [11110101) (4)

ag” = 1 (cop A e Aeag)
Pizza ﬂid) = 1 (cos A €as)
(1) _ - = (1) -
(N3MLT) as ~(c16 A Es6) fa,q) =
ﬂ(-;l) = (27 A7)
(11:14) = {(-:34 Ay (-:47) R

Four eloops (N3MLT), single four-particle vertex (gasm_simulator, 700 shots)

(agi] M.

N e L A A ] A . A B A LA s A s s
39/256 causal/total states
0.024-
3]
K
=
200161 f—44—4 X e B | e I [ B e
o]
£
0.008{ & R-Q
0.000

Configurations
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Grover’s Algorithm for Causal Reconstruction

-channel similar to t-channel BUT...
* Further examples: four eloops (N3MLT and s & t-channels N4AMLT) jzhg::zl :')(T;:;;B“;Qa:ar;bimies

[000001011) |100111001) |111000111) |001111001)

f(‘l’”(a,q) = (agu A a{iﬂ A agi] A a:(f) A aff)) A qo ,
t(-lfll:l:;ITTe)l %) (a,q) = ((15}4] A (1(14} A ags) A ag'” A ad(ls} ) Adqo
F4% (a, q) = (ugl] A agt) A ugﬂ A a:gu] AN agu) ) A qo
Boolean conditions (oracle definition)

Four eloops (N*MLT), t-channel (qasm simulator, 1300 shots)

0.0161

0.012{—rrreee - R R X R R R R

0.008;

Probabilities

0.004;
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