Ultraperipheral heavy-ion collisions in Run3 -

VERIFICATION OF WHAT WE KNOW OR NEW PHYSICS?

Mariola Kłusek-Gawenda

The Henryk Niewodniczański Institute of Nuclear Physics Polish Academy of Sciences

- Equivalent Photon Approximation
- Light-by-light scattering
- Leptons production
- Electromagnetic excitation of nuclei and neutron evaporation

UPC IN RUN 3

M. KŁUSEK-GAWENDA

CLASSIFICATION

UPC IN RUN 3

M. KŁUSEK-GAWENDA

NOV 21-25, 2022 PUEBLA 2

EQUIVALENT PHOTON APPROXIMATION

EPA

EQUIVALENT PHOTON FLUX VS. FORM FACTOR

EPA

$$N(\omega, b) = \frac{Z^2 \alpha_{em}}{\pi^2 \beta^2} \frac{1}{\omega} \frac{1}{b^2} \times \left| \int d\chi \, \chi^2 \frac{F\left(\frac{\chi^2 + u^2}{b^2}\right)}{\chi^2 + u^2} J_1\left(\chi\right) \right|^2$$

$$\beta = \frac{p}{E}, \gamma = \frac{1}{\sqrt{1-\beta^2}}, \boldsymbol{U} = \frac{\omega \boldsymbol{b}}{\gamma\beta}, \chi = \boldsymbol{k}_{\!\perp}\boldsymbol{b}$$

• point-like
$$F(\mathbf{q}^2) = 1$$

 $N(\omega, b) = \frac{Z^2 \alpha_{eff}}{\pi^2 \beta^2} \frac{1}{\omega} \frac{1}{b^2} \times u^2 \left[K_1^2(\omega) + \frac{1}{\gamma^2} K_0^2(\omega)\right]$
• monopole $F(\mathbf{q}^2) = \frac{\Lambda^2}{\Lambda^2 + |\mathbf{q}|^2}$
 $\sqrt{\langle r^2 \rangle} = \sqrt{\frac{6}{\Lambda^2}} = 1 \text{ fm } A^{1/3}$

realistic

$$\boldsymbol{F}\left(\mathbf{q}^{2}\right) = \frac{4\pi}{|\mathbf{q}|} \int \rho(r) \sin(|\mathbf{q}| r) r dr$$

UPC IN RUN 3

JIGHT-BY-LIGHT SCATTERING

LIGHT-BY-LIGHT SCATTERING

UPC IN RUN 3

M. KŁUSEK-GAWENDA

NOV 21-25, 2022 PUEBLA 5

LIGHT-BY-LIGHT SCATTERING

- O Maxwell classical theory
 - ✓ light doesn't interact with each other
- O Quantum theory
 - ✓ interaction of photons through quantum fluctuations

•
$$\sigma(\gamma\gamma \to \gamma\gamma) \propto \alpha_{em}^4 \simeq \left(\frac{1}{137}\right)^4 \to \text{very small}$$

- Photon beams
 - X High-power lasers
 - \succ K. Homma, K. Matsuura, K. Nakajima, PTEP 2016 (2016) 013C01 Testing helicity-dependent γγ → γγ scattering in the region of MeV
 - ✔ Ultrarelativistic heavy-ion collision

 - O Quasi-real photons

BOXES , , , , ,

Fermionic box LO QED - FormCalc.

The one-loop W box diagram - LoopTools.

We have compared our results with:

- Jikia et al. (1993),
- Bern et al. (2001),
- Bardin et al. (2009).

Bern et al. consider QCD and QED corrections (two-loop Feynman diagrams) to the one-loop fermionic contributions in the ultrarelativistic limit (\hat{s} , $|\hat{t}|$, $|\hat{u}| \gg m_{f}^{2}$). The corrections are quite small numerically.

EXPERIMENTAL IDENTIFICATION OF PROCESSES

- ✓ boxes
- ✓ VDM-Regge
- ✓ 2-gluon exchange

W = 50 GeV

VDM-Regge

2-gluon exchange, n=4

— mg=0 W=10 GeV

m_=0.75 GeV

(nb/GeV)

10

dp/¹⁰ 10 00

10

10

10

10-1

W = 200 GeV

 σ (PbPb \rightarrow PbPb $\gamma\gamma$) [nb] @ LHC ($\sqrt{s_{NN}} = 5.5 \text{ TeV}$) & FCC ($\sqrt{s_{NN}} = 39 \text{ TeV}$)

		boxes		VDM-Regge		
	cuts	F _{realistic}	F _{monopole}	F _{realistic}	F _{monopole}	
	$W_{\gamma\gamma} > 5 \mathrm{GeV}$	306	349	31	36	1
	$W_{\gamma\gamma} > 5 \text{ GeV}, p_{t,\gamma} > 2 \text{ GeV}$	159	182	7E-9	8E-9	
L	$E_{\gamma} > 3 \text{GeV}$	16 692	18 400	17	18	
	E_{γ} > 5 GeV	4 800	5 450	9	611	
н	$ E_{\gamma}\rangle > 3$ GeV, $ y_{\gamma} < 2.5$	183	210	8E-2	9E-2	
	$ E_{\gamma} > 5 \text{GeV}, y_{\gamma} < 2.5$	54	61	4E-4	7E-4	
С	$ p_{t,\gamma}\rangle > 0.9$ GeV, $ y_{\gamma} < 0.7$ (ALICE cuts)	107				
	$ p_{t,\gamma} > 5.5 \text{ GeV}, y_{\gamma} < 2.5 \text{ (CMS cuts)}$	10				
F	$W_{\gamma\gamma} > 5 \mathrm{GeV}$	6 169		882		1
С	$E_{\gamma} > 3 \text{GeV}$	4 696 268		574		
С					-	
			•			48 HENRYK NEWCONICZAŃSKI INSTITUTE OF NUCLEAR PHY

POLISH ACADEMY OF SCIENCES

$\mathbf{A}\mathbf{A}{ ightarrow}\mathbf{A}\mathbf{A}\gamma\gamma$ - Atlas results

ATLAS Collaboration (M. Aaboud et al.), Evidence for light-by-light scattering in heavy-ion collisions with the ATLAS detector at the LHC, Nature Phys. 13 (2017) 852 Phys. Rev. Lett. 123 (2019)* 052001

${ m AA}{ ightarrow}{ m AA}\gamma\gamma$ - CMS & ATLAS results - ${\it M}_{\gamma\gamma}$ > 5 GeV

- » CMS Coll., Phys. Lett. B797 (2019) 134826
- $X E_{t_{\gamma}} > 2 \text{ GeV}$
- **X** $|\eta_{\gamma}| < 2.4$
- x $M_{\gamma\gamma} > 5~{
 m GeV}$
- X $p_{t_{\gamma\gamma}} < 1 \text{ GeV}$
- **✗** Aco < 0.01

- ➤ ATLAS Collaboration, JHEP 03 (2021) 243
- $x E_{t_{\gamma}} > 2.5 \, \mathrm{GeV}$
- **X** $|\eta_{\gamma}| < 2.4$
- X $M_{\gamma\gamma} > 5 \, \text{GeV}$
- X $p_{t_{\gamma\gamma}} < 1 \text{ GeV}$
- X Aco < 0.01

Experiment		Theory			
		Nuclear radius: $R = R_0 A^{\frac{1}{3}}$		Glauber model	
Collaboration	σ nb	σ (<i>b</i> = 13fm)	σ (b = 14.8fm)	σ (b = 20fm)	
ATLAS (2018 data)	78 \pm 13(stat.) \pm 7(syst.)	52	50	45	
ATLAS (2015+2018)	120 \pm 17(stat.) \pm 13(syst.)	82	80	71	
CMS (2015)	120 \pm 46(stat.) \pm 28(syst.)	105	103	92	

UPC IN RUN 3

HIGHER ORDER PROCESSES..?

 $\gamma\gamma$ invariant mass

Coherent sum of both processes...?

Pionic boxes...?

3/28

INSTITUTE OF NUCLEAR PHYSIC POLISH ACADEMY OF SCIENCES

UPC IN RUN 3

LIGHT-BY-LIGHT SCATTERING NUCLEAR CROSS SECTION

$AA \rightarrow AA\gamma\gamma$ for $M_{\gamma\gamma} < 5 \text{ GeV}$?

The role of meson exchanges in light-by-light scattering

UPC IN RUN 3

 \rightarrow

collisions

and in ultraperipheral ultrarelativistic heavy-ion

1/28

INSTITUTE OF NUCLEAR PHYSIC

UPC OF AA...

UPC IN RUN 3

5/28

THE HENRYK NEWCONICZAŃSKI INSTITUTE OF NUCLEAR PHYSIC

POLISH ACADEMY OF SCIENCES

$AA \rightarrow AA\gamma\gamma$ @ midrapidity

$AA \rightarrow AA\gamma\gamma$ @ Forward region ?

✓ ALICE Collaboration, Letter of Intent: A Forward Calorimeter (FoCal) in the ALICE experiment, CERN-LHCC-2020-009

FoCal ightarrow 3.4 $< \eta <$ 5.8

The forward electromagnetic and hadronic calorimeter is an upgrade to the ALICE experiment, to be installed during LS3 for data-taking in 2027–2029 at the LHC.

 $p_{t,\gamma} > 1 \text{ GeV}$

 $p_{t,\gamma} > 2 \text{ GeV}$

PRODUCTION OF LEPTONS POSITRON-ELECTRON

$\overline{\textit{AA} ightarrow \textit{AAe^+e^-}}$ & $\overline{\textit{AA}} ightarrow \textit{AAe^+e^-e^+e^-}$

PRODUCTION OF LEPTONS MUONS

$AA ightarrow AA\mu^+\mu^-$ & $AA ightarrow AA\mu^+\mu^-\mu^+\mu^-$

Single $\mu^+\mu^-$ pair production VS. double scattering production of two $\mu^+\mu^-$ pairs $p_{t,\mu}$ Уdiff 10¹ dσ(PbPb→PbPbμ⁺μ゙μ⁺μ゙)/dp_t (nb/GeV) •••• u*u μ⁺μ √s_{NN}=5.02 TeV √s_{NN}=5.02 TeV DS 10¹⁰ 10 y_{...+}-у_{...} 10⁸ 10⁷ y_{μ+}-y_μ 10⁶ 10⁵ y_μ-y_μ-y y'-y' 104 10⁴ 10³ 8 p, (GeV) y_{diff} Like for electron-positron production: $\sigma_{\mu^+\mu^-} \simeq 1000 \times \sigma_{\mu^+\mu^-\mu^+\mu^-}$

UPC IN RUN 3

M. KŁUSEK-GAWENDA

NOV 21-25, 2022 PUEBLA

PRODUCTION OF LEPTONS MUONS

$\gamma\gamma \rightarrow \mu^{+}\mu^{-}\mu^{+}\mu^{-}$ - Single scattering

UPC IN RUN 3

$AA \rightarrow AA\mu^{+}\mu^{-}\mu^{+}\mu^{-}$

It is difficult to isolate range of SS domination

*DS - double-scattering mechanism

*SS - a NEW single-scattering mechanism

UPC IN RUN 3

PRODUCTION OF LEPTONS MUONS

$AA \rightarrow AA\mu^{+}\mu^{-}\mu^{+}\mu^{-}$

 $p_{t,\mu^+} \simeq p_{t,\mu^-} \Rightarrow$ construction of similar distributions by ALICE or CMS?

A1 mm	Ĵ					
The number of counts for $L_{int} = 1 \text{ nb}^{-1}$						
experimental cuts	N	experimental cuts	N			
$ y_i < 2.5, p_t > 0.5 \text{GeV}$	815	$ y_i < 2.5, p_t > 0.5 \text{GeV}$	235			
$ y_i < 2.5, p_t > 1.0 \text{ GeV}$	53	$ y_i < 2.5, p_t > 1.0 \text{ GeV}$	10			
$ y_i < 0.9, p_t > 0.5 \text{GeV}$	31	$ y_i < 1.0, p_t > 0.2 \text{GeV}$	649			
$ y_i < 0.9, p_t > 1.0 \text{ GeV}$	2	$ y_i < 1.0, p_t > 1.0 \text{ GeV}$	1			
$ y_i <$ 2.4, $p_t >$ 4.0 GeV	≪1					

 $\begin{array}{ll} \mathsf{CMS} \text{ and } \mathsf{ALICE} \Rightarrow p_{t,\mathsf{CUI}} = 1 \ \mathsf{GeV} & \mathsf{ALICE} \Rightarrow p_{t,\mathsf{CUI}} = 0.2 \ \mathsf{GeV} \\ \mathsf{ATLAS} \Rightarrow p_{t,\mathsf{CUI}} = 4 \ \mathsf{GeV} & \textbf{Potential background} \end{array}$ $\sqrt{s_{NN}} = 5.5 \text{ TeV}, |y| < 4.9$

Reaction	$p_{t,min} = 0.3 \text{ GeV}$	$p_{t,min} = 0.5 \text{ GeV}$
$PbPb ightarrow PbPb\pi^{+}\pi^{-}\pi^{+}\pi^{-}$	2.954 mb	8.862 µb
$PbPb ightarrow PbPbe^+e^-e^+e^-$	7.447 μ b	0.704 <i>μ</i> b

UPC IN RUN 3

INSTITUTE OF NUCLEAR PHYSIC

ELECTROMAGNETIC EXCITATION

UPC IN RUN 3

M. KŁUSEK-GAWENDA

NOV 21-25, 2022 PUEBLA

ELECTROMAGNETIC EXCITATION FUNCTION

$$\gamma$$
 ¹⁹⁷Au $ightarrow$ 1n ¹⁹⁶Au

$$\gamma \ ^{197}{\rm Au}
ightarrow {
m 2n} \ ^{195}{\rm Au}$$

(γ,2n)

250

$$\gamma$$
 ¹⁹⁷Au \rightarrow 3n ¹⁹⁴Au

A 1970

30

20

→3n¹⁹⁴Au) [mb]

σ(γ¹⁹⁷Au-

20 25 E, [MeV] 30

10

CONCLUSION

- O EPA in the impact parameter space
- O Fourier transform of the charge distribution
- \bigcirc Multidimensional integrals \rightarrow differential cross section
- O Description of experimental data for UPC
 - STAR e⁺e⁻, π⁺π⁻π⁺π⁻
 - ATLAS $\gamma\gamma$, $\mu^+\mu^-$
 - ALICE e^+e^- , J/ψ
 - CMS $\gamma\gamma$
- O Predictions focused on experimental acceptance
 - $\mu^+\mu^-\mu^+\mu^-$ single & double scattering
 - e⁺e⁻e⁺e⁻ double scattering
 - pp
 - $\pi^+\pi^- \& \pi^0\pi^0$
 - $\gamma\gamma$ for $M_{\gamma\gamma} < 5~{
 m GeV}$
- O Electromagnetic excitation
- O Collaboration theoreticians and experimenters
- O Future:
 - greater precision
 - Iower pt

Thank you

Photon collisions: Photonic billiards might be the newest game!, EurekAlert!

Ultraperipheral collisions of lead nuclei at the LHC accelerator can lead to elastic collisions of photons with photons.