Latest results of the ALICE Collaboration and plans for ALICE 3

A. Marin for the ALICE Collaboration

XVIII Mexican Workshop on Particles and Fields 2022 November 21st - 25th, Puebla - México

Outline

- Introduction
- Selected physics highlights
- Status Run 3
- Upgrades:
 - Run 4: ITS3, FoCal
 - Run 5 + 6: ALICE 3

2

Exploration of the QCD phase diagram

Ann. Rev. Nucl. Part. Sci. 71 (2021) 403

Heavy-ion collisions Explore and characterize phase diagram of QCD matter

QGP

- quarks and gluons are deconfined
- hot and dense thermalized medium
- strongly interacting
- existed few μs after the Big Bang
- predicted by lattice QCD above a critical energy density

Time evolution of heavy-ion collisions

Courtesy C. Shen

AA collisions pA and pp : control and reference systems

ALICE

The ALICE Collaboration

The ALICE detector (version 1: Run 1 + Run 2)

.....

EMCal

Muon spectrometer

-4 < η <-2.5

Central barrel | η | < 0.9 Tracking

PID

Calorimeters

ACORDE (cosmics)

Forwards detectors:

- AD (diffraction selection)
- V0 (trigger, centrality)
- T0 (timing, luminosity)
- ZDC (centrality, ev. sel.)
- FMD (N_{ch})
- PMD (*N*_γ, *N*_{ch})

Size: 16 x 26 meters Weight: 10,000 tons Detectors: 18

EMCal+PHOS

Introducing some observables

ALICE centrality determination

Centrality	$\langle N_{\text{part}} \rangle$	RMS	(sys.)	$\langle N_{coll} \rangle$	RMS	(sys.)	(TPbPb) (1/mbarn)	RMS (1/mbarn)	(sys.) (1/mbarn)
0-1%	401.9	7.55	0.46	1949	87	21.1	28.83	1.29	0.177
1-2%	393.9	10.2	0.496	1844	81.3	20.1	27.28	1.2	0.171
2-3%	384.4	11.7	0.752	1755	80.8	20.3	25.96	1.19	0.2
3-4%	373.9	12.5	0.762	1673	79.9	18.8	24.75	1.18	0.18
4-5%	362.9	13	0.738	1593	77.6	17.8	23.57	1.15	0.178

Anisotropic flow

Fourier analysis of particle distribution:

- v_1 : directed flow
- v_2 : elliptic flow
- v_3 : triangular flow ...

$$\frac{\mathrm{d}N}{\mathrm{d}\varphi} \propto 1 + 2\sum_{n=1}^{\infty} v_n \left[\cos(n(\varphi - \Psi_n))\right]$$

Sensitivity to early expansion

Measurement in pp collisions is essential/mandatory.

Measurement in p-Pb collisions as control experiment

ALICE

Global properties

Charged-particle production

PRL 116 (2016) 222302

Increase of charged-particle production in nuclear collisions much faster with \sqrt{s} than in pp

More of the available energy used for particle production in heavy-ion collisions

ALI-PUB-104920

Particle production in Pb-Pb

10

PRC 101 (2020) 044907

- precise p_{T} and centrality differential measurements • of various light-flavour particle species at highest Pb-Pb collision energy
- large number of multiplicity dependent measurements in pp and p-Pb

ALICE Preliminary

10

ALT-PREL-130973

Integrated particle yields

 Continuous evolution of strangeness production between different collision systems and energies

- Hadron chemistry driven by multiplicity
- Magnitude of strangeness enhancement grows with strange quark content:

a.marin@gsi.de, MWPF2022, Puebla (Mexico)

15

Elliptic flow in Pb-Pb, and in pp, p-Pb

arXiv: 2206.04587

Low p_T : Mass ordering \rightarrow hydrodynamic flow

Intermediate p_{T} :

Baryon vs meson grouping : in Pb-Pb, and high multiplicity pp & p-Pb

 \rightarrow quark-level flow + recombination

Constraining initial condition and QGP medium properties

- near T_c, shear viscosity/entropy density close to AdS/CFT lower bound $1/4\pi$ rising with temperature in QGP
- bulk viscosity/entropy density peaks near T_c

Initial-state correlations

Accessing initial conditions: $v_2 - [p_T]$ correlations

PLB 834 (2022) 137393

$$\rho(v_n^2, [p_T]) = \frac{\operatorname{Cov}(v_n^2, [p_T])}{\sqrt{\operatorname{Var}(v_n^2)}\sqrt{c_k}},$$

- positive correlation observed
- almost no centrality dependence

Initial conditions: Trento \leftrightarrow IP - Glasma

IP-Glasma closer to data than Trento

including these data in the Bayesian global fitting
 → better constraint on the initial state in nuclear collisions
 (Prerequisite for study of QGP transport properties)

Two-particle transverse momentum correlator G₂

Extraction of QGP transport characteristics

$$G_2(\Delta\eta,\Delta\varphi) = \frac{1}{\langle p_{\rm T} \rangle^2} \left[\frac{\langle \sum_{i}^{n_{1,1}} \sum_{j\neq i}^{n_{1,2}} p_{{\rm T},i} p_{{\rm T},j} \rangle}{\langle n_{1,1} \rangle \langle n_{1,2} \rangle} - \langle p_{{\rm T},1} \rangle \langle p_{{\rm T},2} \rangle \right]$$

- Sensitive to momentum currents transfer
- The longitudinal dimension provides fingerprints of this transfer
- The reach of the transfer ⇒ proxy for the shear viscosity η/s

Longitudinal width evolution with collision centrality $\Rightarrow \eta/s$

$$\sigma_c^2 - \sigma_0^2 = \frac{4}{T_c} \frac{\eta}{s} \left(\tau_0^{-1} - \tau_{c,f}^{-1} \right)$$

Gavin, Abdel-Aziz, PRL 97 162302 (2006) Sharma, Pruneau, PRC 79 024905 (2009) STAR, PLB 704, 467–473 (2011)

G₂ widths evolution: Pb-Pb, p-Pb and pp

Data seem to favour small η /s values

V. Gonzalez *et al.* EPJC 81 (2021) 5, 465 No evidence for shear viscous effects in pp & p–Pb based on $G_2^{CI}\sigma_{\Delta\eta}$ • System lifetime too short for viscous forces to play a significant role?

Antideuteron number fluctuations, $\rho_{\bar{p}\bar{d}}$

Simple coalescence models are discarded. Data favor SHM

Correlation antiprotons-antideuterons constrains the correlation volume for baryon number conservation $\leftarrow \rightarrow$ Different from net-proton fluctuation results

a.marin@gsi.de, MWPF2022, Puebla (Mexico)

arXiv :2204.10879, MUSIC+URQMD+COAL matches the data 22

Electromagnetic radiation

Dielectron production in central Pb–Pb at $\sqrt{s_{NN}}$ = 5.02 TeV

Comparison to hadronic cocktail, including:

- N_{coll} -scaled HF measured in pp at \sqrt{s} = 5.02 TeV Phys. Rev. C 102 (2020) 055204
- \rightarrow Vacuum baseline
- Include measured R_{AA} of $c/b \rightarrow e^{\pm}$ Phys. Lett. B 804 (2020) 135377
- \rightarrow Modified-HF cocktail

Intermediate-mass region (IMR) from 1.1 < $m_{\rm ee}$ < 2.7 GeV/ c^2 \rightarrow Consistent with HF suppression & therm. radiation from QGP

Indication for an excess at lower mass

 \rightarrow Compatible with thermal radiation from HG

ALICE

QGP thermal emission

$$R_{\gamma} = N_{\gamma, \mathrm{inc}} / N_{\gamma, \mathrm{dec}} \approx \left(\frac{N_{\gamma, \mathrm{inc}}}{\pi^0} \right)_{\mathrm{meas}} / \left(\frac{N_{\gamma, \mathrm{dec}}}{\pi^0} \right)_{\mathrm{sim}}$$

$$R_{\gamma}^{\rm pQCD} = 1 + N_{coll} \cdot \frac{\gamma_{\rm pQCD}}{\gamma_{\rm decay}}$$

At low p_{T} :

- thermal radiation should dominate
- R_{γ} is close to 1 \rightarrow small thermal and pre-equilibrium photon contribution
- Models with thermal and pre-equilibrium photons, can describe the data better than the calculation including only prompt photons

For $p_T > 3$ GeV/c:

- can be attributed to prompt (hard scattering) photons
- data is consistent with NLO pQCD calculation of prompt photons in pp collisions, scaled with $T_{\rm AA}$

Calculation by W. Vogelsang, using PDF: CT14, FF: GRV

QGP thermal emission

$$N_{\gamma,\text{dir}} = N_{\gamma,\text{inc}} - N_{\gamma,\text{dec}} = \left(1 - \frac{1}{R_{\gamma}}\right) \cdot N_{\gamma,\text{inc}}$$
$$\gamma_{\text{dir}} = \frac{\gamma_{\text{dir}}^*}{\gamma_{\text{incl}}^*} \cdot (\gamma_{\text{incl}})_{\text{real}}$$

New measurement of direct γ in Pb-Pb at 5.02 TeV

- Virtual γ method, 0-10% centrality
- Real γ (conversion method), other centralities

Low $p_T (p_T \leq 3 \text{ GeV/c})$ – "thermal" photons

consistent with model with pre-equilibrium and thermal photons

High p_T ($p_T \gtrsim 3$ GeV/c) – prompt photons • consistent with pQCD expectations

Quarkonia

a.marin@gsi.de, MWPF2022, Puebla (Mexico)

Charmonium dissociation and regeneration

J/ ψ suppression due to color screening in the QGP reduced at low p_T and central rapidity by cc regeneration ~ 100 cc pairs per central Pb-Pb

$$R_{\rm AA} = \frac{1}{\langle N_{\rm coll} \rangle} \frac{dN/dp_{\rm T}|_{\rm PbPb}}{dN/dp_{\rm T}|_{\rm pp}}$$

PLB 805 (2020) 135434

Charmonium dissociation and regeneration

ALICE

• J/ ψ suppression due to color screening in the QGP Reduced at low p_T and central rapidity by cc regeneration

~ 100 cc pairs per central Pb-Pb

- New result: measured ψ (2S) ~ x 10 lower binding energy !
- To pin down the role of these two mechanisms

 ψ (2S) x2 more suppressed than J/ ψ Hint of regeneration at low $p_{\rm T}$

arXiv: 2210.08893

29

- Clear signal observed by ALICE
- Increase towards lower p_T (reaching **3.9** σ) disfavours effects due to early **B**
- Link to QGP vorticity and spin-orbit coupling?
- \rightarrow Interpretation needs further theory studies

ALICE

Partonic interactions in matter: heavy quarks, jets

Open heavy-flavor production: D⁰, D⁺, D^{*+}

Precise R_{AA} and elliptic flow (v_2 , v_3) non-strange D mesons \rightarrow constraints on to charm quark energy loss models

Intermediate and high p_T:
 Radiative energy loss important

• Low/intermediate p_{T} :

Charm-quark hadronisation via recombination essential

Spatial diffusion coefficients: $1.5 < 2 \pi D_s T_c < 4.5 \rightarrow \text{relaxation time of } \tau_{\text{charm}} \sim 3-8 \text{ fm/}c$

a.marin@gsi.de, MWPF2022, Puebla (Mexico)

Quark-mass dependence of energy loss

Prompt $D^0: c \rightarrow D^0$ Non prompt D^0 : $b \rightarrow c \rightarrow D^0$ $R_{\rm AA}$ ALICE $R_{\mathsf{AA}}^{\mathsf{non-prompt}/}R_{\mathsf{AA}}^{\mathsf{prom}}$ ALICE, Pb–Pb, $\sqrt{s_{NN}} = 5.02 \text{ TeV}$ 0-10%, |y| < 0.5 non-prompt D^o 1.5 prompt D⁰ 1.0 Ran-prompt/ Rprompt 0.5 open markers: p_extrapolated pp reference $p_{\tau}(\text{GeV}/c)$ 10 ALI-PUB-501679

Energy loss predicted to depend on QGP density, but also on quark mass $\Delta E_{c} > \Delta E_{b}$

Less suppression for (non-prompt) D mesons from B decays than prompt D mesons

ALI-PUB-501659

- Data described by models that include collisional and radiative energy loss, and recombination
- Valley structure at low p_T mainly due to formation of D via quark coalescence

Jet quenching: extended reach in p_T and R

New ML method to subtract underlying Pb-Pb event fluctuations from jet energy: 2x better energy resolution

- Large reduction (factor 3-4) of jet yields, down to $p_T = 20 \text{ GeV}/c$
- Lost energy not recovered within the jet "cone"
- Suppression may be even larger for large-cone (R=0.6) low- p_T jets

Microscopic structure of the QGP: acoplanarity

$\Delta_{\text{recoil}} (p_{\text{T,jet}}, \Delta \varphi) = \frac{1}{N_{\text{trig}}} \left. \frac{\mathrm{d}^3 N_{\text{jet}}}{\mathrm{d}\eta_{\text{jet}} \mathrm{d}p_{\text{T,jet}} \mathrm{d}\Delta \varphi} \right _{p_{\text{T}}^{\text{trig}} \in \text{TT}_{\text{S}}}$	$-c_{\text{Ref}} \cdot \frac{1}{N_{\text{trig}}} \left. \frac{\mathrm{d}^3 N_{\text{jet}}}{\mathrm{d}\eta_{\text{jet}} \mathrm{d}p_{\mathrm{T,jet}} \mathrm{d}\Delta\varphi} \right _{p_{\mathrm{T}}^{\text{trig}} \in \mathrm{TT}_{\mathrm{I}}}$	Ref	$T_{AA} = \frac{\Delta_{recoil}(Pb - Pb)}{\Delta_{recoil}(pp)}$	ALICE
10^{-3} 40 $ALICE Preliminary$ $\sqrt{s_{NN}} = 5.02 \text{ TeV}$ $10 < p_{T,jet}^{ch} < 20 \text{ GeV/c}$ 35 $Ch-particle jets, anti-k_T$ $R = 0.4, \eta_{jet} < 0.5$ $TT(20,50) - TT(5,7)$ 25 $Pb-Pb 0-10 %$ 20 Pp $Sys. uncertainty$ 15 0 6 4 2	Δφ broadening for larger F Scattering on QGP constit Medium response to ener	A and small jet p_{T} 0.5 egy loss ?	ALICE Preliminary chparticle jets, anti- k_{T} Data $R = 0.4, \eta_{jet} < 0.5, \pi - \Delta \phi < 0.6$ TT(20,50) - TT(5,7) 20 40 60 80 100 $p_{T,ch}^{jet}$	CAPE 3.4
0 1.6 1.8 2 2.2 2.4 2.6 2.8 3 $\Delta \varphi ~(\mathrm{rad})$	triager hadron	Hint	t of energy recovery at low jet	momenta

ALI-PREL-52490

Pb-Pb / pp

 $\Delta_{
m recoil}~(
m GeV/c imes
m rad)^{-1}$

Exploring angular dependence: groomed jet radius

PRL 128 (2022) 102001

- Suppression of large angles
- Enhancement of small angles

First experimental evidence for modification of angular scale of groomed jets in HIC

Nuclear physics at the LHC

d/p and ³He/p vs multiplicity

Ratios:

- increase with multiplicity and saturation at high multiplicities
- interplay between the evolution of the yields and of the system size with multiplicity

Coalescence model provides a better description of the data

LHC,... also (anti)nuclei factory

- Accessible in Run 2 : d, t, ${}_{\Lambda}{}^{3}$ H, 3 He, 4 He
- Production not yet fully understood:
- nucleon coalescence vs statistical hadronization

Strong impact on dark matter searches in Space, e.g. $\chi_0\chi_0 \rightarrow d$, ³He +X (AMS-02, GAPS, BESS)

- Ordinary antinuclei hadroproduction by cosmics is major background
- Antinuclei absorption in space poorly constrained

³He absorption in ALICE and in the Galaxy

 $|\eta| < 0.8$

 $\langle A \rangle = 17.4$

 $\langle A \rangle = 31.8$

 $\langle A \rangle = 17.4$

2

3

 $\sigma_{\rm inel}(^3\overline{\rm He})$

4.5

3.5 3

2.5 H

2

1.5 1 0.5

0 E

ALI-PUB-501526

0

p (GeV/c)

GEANT4

95% confidence upper limit

5

arXiv: 2202.01549

Experiment-driven estimate of absorption probability of antinuclei and DM searches and from cosmic-ray background in the Galaxy

Novel technique to use detector material as \overline{d} and ${}^{3}\overline{He}$ absorber: measure σ_{inel}

Antimatter-matter imbalance at the LHC

Precise μ_B measurement at the LHC

Direct cancellation of correlated uncertainties \rightarrow Uncertainties reduced wrt thermal model fit by a factor ~6

$^{3}_{\Lambda}H$ lifetime and B_{Λ}

arXiv: 2209.07360

Hypertriton lifetime and Λ binding energy measured with high precision Weakly bound state

a.marin@gsi.de, MWPF2022, Puebla (Mexico)

Run 3 and Run 4

ALICE 2 Upgrade

Improve tracking resolution at low p_{T}

x50 statistics increase for most observables

Run 3+4: 13 nb⁻¹ Pb-Pb 50 kHz (Pb-Pb) ~ 1 MHz (pp) Online reconstruction all events to storage!

Commissioning with pilot beam and start of Run 3

3.5

p (GeV/c)

Measured $dN_{cb}/d\eta$ compatible with previous results

a.marin@gsi.de, MWPF2022, Puebla (Mexico)

Pb-Pb collisions at the LHC at record energy: 5.36 TeV

Friday November 18, 5 PM

ALICE 2.1: Upgrades in LS3

CERN-LHCC-2019-018

ITS3

~ 6x less material budget 2x tracking precision and efficiency at low p_{T}

10-1

x

10-6

Study saturation/shadowing at low-x with direct photons in pp and p-Pb

Significant constraints to gluon nPDF at $10^{-5} < x < 10^{-2}$

a.marin@gsi.de, MWPF2022, Puebla (Mexico)

ALICE

Run 5 and Run 6

ALICE beyond Run 4

Heavy-ion Town meeting 2018:
"Next-generation heavy-ion experiment"
D. Adamova et al. ArXiv: 1902.01211

• Letter of Intent for ALICE 3: <u>CERN-LHCC-2022-009</u>, arXiv: 2211.02491

Recommendation to proceed with R&D

ALICE 3 detector

- Compact, ultra-lightweight all-silicon tracker $\rightarrow \sigma_{pT}/p_T \sim 1-2\%$.
- Vertex detector with unprecedent pointing resolution $\sigma_{\rm DCA} \simeq 10 \ \mu m$ ($p_{\rm T} = 0.2 \ {\rm GeV/c}$)
- Large acceptance $|\eta| < 4$, $p_T > 0.02 \text{GeV}/c$
- Particle identification \rightarrow

 $\gamma,\,e^\pm,\,\mu^\pm$, K $^\pm$, $\pi^{\,\pm}$

• Fast readout and online processing

Physics reach improves dramatically!

ALICE 3 : Physics topics

- Precision differential measurements of dileptons
 - Evolution of the quark-gluon plasma
 - Mechanisms of chiral symmetry restoration in the QGP

- Systematic measurements of (multi-) heavy-flavoured hadrons down to low p_T
 - Transport properties in the QGP down to thermal scale
 - Mechanisms of hadronization from the QGP

- Hadron interaction and fluctuation measurements
 - Existence and nature of heavy-quark exotic bound states and interaction potential
 - Search for super-nuclei (light nuclei with c)
 - Search for critical behaviour in event-by-event fluctuations of conserved charges

Electromagnetic radiation

e⁺ QGP e⁻ γ^{*} γ^γ γ^γ

- Average T of the QGP with e^+e^- using thermal dielectron m_{ee} spectrum for $m_{ee} > 1.1 \text{ GeV}/c^2$ (QGP radiation dominated)
- Requirements:
 - Good e PID down to low p_{T}
 - Small detector material budget (γ background)
 - Excellent pointing resolution (heavy-flavour decay electrons)

Possible with ALICE 3 due to excellent pointing resolution and small material budget

Chiral symmetry restoration

Study chiral symmetry restoration (CSR) mechanisms using thermal dielectron spectrum $m_{ee} < 1.2$ GeV

ALICE 3 access to CSR mechanisms like ρ -a₁ mixing

Heavy flavour transport

 $\frac{dN}{d\phi} \propto 1 + 2v_2 \text{cos2}(\varphi - \psi)$

Interactions with the plasma generate azimuthal anisotropy v2:

Understanding of transport properties of the QGP requires heavy-flavor probes Expect beauty thermalization slower than cham \rightarrow smaller v_2

Need ALICE 3 performance (pointing resolution, acceptance) for precision measurement of e.g. Λ_c , Λ_b , and multi-charm v_2

Mechanisms of hadron formation

Multi-charm baryons: test how independently produced quarks form hadrons

- Contribution from single parton scattering is very small
- Very large enhancement predicted by Statistical hadronization model in Pb-Pb collisions
- Progress relies on the reconstruction of complex decay chains

Large enhancements: unique sensitivity to thermalisation and hadronisation dynamics a.marin@gsi.de, MWPF2022, Puebla (Mexico)

Multi-charm baryon reconstruction in ALICE 3

First ALICE 3 tracking layer at 5 mm

• Track Ξ^- before it decays, Ξ^- pointing resolution Unique access with ALICE 3 in Pb-Pb collisions

Reconstruction of Ξ_{cc}^{++} decay in the ALICE 3 tracker

Conclusions

- Immense amount of results obtained in Run 1 and Run 2
 →detailed insights into QGP properties
- Rich QCD research programme

 \rightarrow pQCD, hadron interactions, formation of hadrons and nuclei

- Run 3 started
 - \rightarrow ALICE 2 detector taking data
- Preparations for Run 4
- ALICE 3 LOI endorsed by LHCC for Run 5 + 6
 - \rightarrow Moving forward to the R&D phase

Extra slides

π^0 and η mesons

 $π^0: 0.2 ≤ p_T < 200 GeV/c$ η: 0.4 ≤ $p_T < 50 GeV/c$

π^0 and η mesons

•NLO using NNFF1.0 FF describes the π^0 spectrum •PYTHIA overshoots data and does not describe shape of spectra •New FF are needed for the η meson

a.marin@gsi.de, MWPF2022, Puebla (Mexico)

π^0 and η mesons

ALI-PREL-504677

In central heavy-ion collisions particles with similar masses have similar $\langle p_T \rangle$ (hydrodynamic expansion)

 $\rightarrow \phi$ meson ($m_{\phi} \approx m_{p}$) mass ordering breaks down for peripheral collisions and in pp and p-Pb

Constraining initial condition and QGP medium properties

a.marin@gsi.de, MWPF2022, Puebla (Mexico)

300

Strong interaction between hadrons

Koonin-Pratt equation, M.Lisa, S. Pratt et al., Ann.Rev.Nucl.Part.Sci. 55 (2005) 357-402

$$C(k^*) = \zeta(k^*) \cdot \frac{N_{same}(k^*)}{N_{mixed}(k^*)} = \int S(r) \left| \psi(\vec{k}^*, \vec{r}) \right|^2 d^3r$$

Emission source

Two-particle wave function

 $\overrightarrow{p_1}$

 $\psi(\vec{r},\vec{k})$

Schrödinger Equation: $V(r) \rightarrow |\psi(\vec{k}^*, \vec{r})|^2$ relative wave function for the pair

ALICE

p and d absorption in ALICE

2 3 p (GeV/c)PRL 125(2020) 162001

(b)

p (GeV/c)

(d)

ALICE

 $p-Pb \sqrt{s_{NN}} = 5.02 \text{ TeV}$

2

 $p-Pb \sqrt{s_{NN}} = 5.02 \text{ TeV}$

 $\langle Z \rangle = 14.8, \langle A \rangle = 31.8, |\eta| < 0.8$

 $-- \sigma_{inel}(\overline{d} + \langle A \rangle)$ Geant4

 $\begin{array}{c} \hline \sigma_{\text{inel}}(\mathbf{d} + \langle \mathbf{A} \rangle) \text{ Geant4} \\ \hline \bullet \text{ Data (ITS+TPC+TOF)} \\ \hline \sigma_{\text{inel}}(\mathbf{d} + \langle \mathbf{A} \rangle) \pm 1\sigma \\ \hline \sigma_{\text{inel}}(\mathbf{d} + \langle \mathbf{A} \rangle) \pm 2\sigma \end{array}$

ALICE

 $\langle Z \rangle = 14.8, \langle A \rangle = 31.8, |\eta| < 0.8$

 $-- \sigma_{inel}(\overline{p} + \langle A \rangle)$ Geant4

 $\sigma_{\text{inel}}(\overline{p} + \langle A \rangle) \pm 1\sigma$

 $\sigma_{inel}(\overline{p} + \langle A \rangle) \pm 2\sigma$

3

3

2.5

2

1

0 0

З

2

0

0

a.marin@gsi.de, MWPF2022, Puebla (Mexico)

Strong interaction between hadrons

Nature 588 (2020) 232

Koonin-Pratt equation, M.Lisa, S. Pratt et al., Ann. Rev. Nucl. Part. Sci. 55 (2005) 357-402

Strong interaction between hadrons

Test for lattice QCD calculations of strong h-h and h-h-h interactions

Important input for the equation-of-state of neutron stars (which contain hyperon-rich matter)

First measurement of p-D correlation function:

- Coulomb+ attractive strong interaction describes data better
- Estimate of QCD scattering parameters

Residual strong interaction between charm and light hadrons

 $D\pi$ correlation function suggests deviation from the Coulomb baseline

Simultaneous fit to same and opposite sign correlations to study the isospin dependence

 π^+D^+ : I = 3/2 channel π^+D^- : I = 3/2 (33%), I = 1/2 (66%)

Extracted scattering parameters are lower than lattice QCD expectations

• Suggest a small rescattering of D mesons in the hadronic phase of HI collisions

Hadronization of charm quarks from pp...

PRD 105 (2022) L011103

 $d\sigma^{cc}/dy|_{y=0}$ (µb) FONLL **NNLO** 10² • ALICE (pp, |y| < 0.5), PRD 105 L011103 ALICE Preliminary (p-Pb/A, -0.96<y<0.04) 10 \diamond PHENIX (pp, |y| < 0.5) 4×10⁻² 10⁻¹2×10⁻¹ 2 3 4 10 *√s* (TeV) ALI-PREL-503060

~40% increase driven by observed baryon enhancement Data on the upper edge of FONLL and NNLO calculations

Significant baryon enhancement with respect to e⁺e⁻ or e⁻p ~30% c --> baryons in pp and pPb a.marin@gsi.de, MWPF2022, Puebla (Mexico)

Charm fragmentation functions are not universal

- $\frac{H_c}{D^0} = \frac{f(c \to H_c)[\%]}{39.1 \pm 1.7(stat)^{+2.5}_{-3.7}(syst)}$
- $D^+ ~~17.3 \pm 1.8 (stat)^{+1.7}_{-2.1} (syst)$
- $D_s^+ ~~7.3 \pm 1.0 (stat)^{+1.9}_{-1.1} (syst)$
- $\Lambda_c^+ ~~20.4 \pm 1.3 (stat) ^{+1.6}_{-2.2} (syst)$
- $\Xi_c^0 = 8.0 \pm 1.2 (stat)^{+2.5}_{-2.4} (syst)$
- $D^{*+} \quad 15.5 \pm 1.2 (stat)^{+4.1}_{-1.9} (syst)$

Charm baryon/meson enhancement: pp→Pb-Pb

arXiv:2112.08156

Additional dynamics in QGP

 $\Lambda_{\rm c}/{\rm D}^{\rm 0}$ enhancement at intermediate $p_{\rm T}$ relative to pp

- similar to light flavor hadrons
- parton recombination at play also for c quarks
- mass-dependent p_{T} shift from collective flow

Dead- cone effect now exposed by ALICE

Charm splitting function in jets

arXiv: 2208.04857

Charm-tagged jets \rightarrow first direct experimental constraint of the splitting function of heavy-flavour quarks

- Z_g distribution appears steeper than that of light quarks and gluons
- heavy-flavour quarks on average have fewer perturbative emissions compared to light quarks and gluons a.marin@gsi.de, MWPF2022, Puebla (Mexico)

Electromagnetic radiation

ALICE

ALICE 3:

- Probe time dependence of T Double differential spectra: T vs mass, $p_{T,ee}$
- Access time evolution of flow

Dilepton v_2 vs mass and p_{Tee} possible

Expected statistical errors of T as a function of $p_{T,ee}$

Complementary measurements with real photons. Different systematic uncertainties \rightarrow reduce overall uncertainties

a.marin@gsi.de, MWPF2022, Puebla (Mexico)

R. Rapp, Adv. High Energy Phys. 2013 (2013) 148253 P.M Hohler and R. Rapp, Phys. Lett. B 731 (2014) 103 ALICE CERN-LHCC-2022-009

DD azimuthal correlations

Angular decorrelation directly probes QGP scattering

- Sensitive to energy loss mechanisms, degree of thermalization
- Strongest signal at low *p*_T

Very challenging measurement: need good purity, efficiency and η coverage

- Include double charm states, potentially weakly bound states
- Investigate structure with two particle momentum correlations and yields, arXiv:2203.13814
- Understand dissociation and regeneration in QGP \rightarrow unique access to low $p_T \chi_{c1}$ (3872)

Possible with ALICE 3 thanks to excellent pointing resolution + large acceptance

ALICE

Electrical conductivity of the medium

Large acceptance tracker

60 m² silicon pixels detector Based on CMOS Active Pixel sensor technology

9+3 (barrel + disk) tracking layers

- Compact: r_{out} ~ 80 cm, z_{out} ~ ±400 cm
- Large coverage : $|\eta| < 4$
- Hight spatial resolution: s pos ~5 μ m (req. <10 μ m)
- Timing resolution: ~ 100 ns
- Very low material budget
 - 1% X_0 per layer overall $\rightarrow X/X_0$ (total) < 10%
- Low power: ~20 mW/cm²

Relative p_{T} resolution $\propto \frac{\sqrt{x/X_0}}{B \cdot L}$

- 1% over large acceptance
- Integrated magnetic field crucial (2T)
- Overall material budget critical

Particle identification

Time-of-flight detector

- 2 barrel + 1 forward TOF layers (R = 19 & 85 cm, z = 405 cm)
- With silicon timing sensors
- **Ring-imaging Cherenkov detectors**
- 1 barrel + 1 forward layer
- Aerogel radiators with continuous coverage from TOF Large acceptance electromagnetic calorimeter
- Pb-scintillator sampling calorimeter + at $\eta \sim 0$ crystal calorimeter
- Photon & high p electron identification
 Muon identifier
- Absorber & 2 layers of muon detectors
- Muons down to $p_T > 1.5 \text{ GeV/c}$

Forward conversion tracker

- Thin tracking disks in 3 < η < 5 in its own dipole field
- Very low p_T photons (< 10 MeV)

