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Phase transitions

What is a phase transition?

• Transformation of a given substance from one state of matter to
another.

• During the phase transition some quantities change, often in a
discontinuous manner.

• Changes result in variations of external conditions such as pressure,
temperature, etc.
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Phase transitions

When does a phase transition happen?

• In technical terms, they occur when the free energy is non-analytic
(one of its derivatives diverges) for some values of the
thermodynamical variables.

• They result from the interaction of a large number of particles and
in general it does not occur when the system is very small or has a
small number of particles.

• On the phase transition lines the free energies in both phases
coincide.

• Some times it is possible to change the state of a substance without
crossing a phase transition line. Under these conditions one talks
about a crossover transition.
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QCD: The theory of strong interactions

• Gauge theory with the local symmetry group SU(Nc). (In the real
world Nc = 3).

• The fundamental fields are the quarks (matter fields) and gluons
gauge fields.

• Each one of the Nf quark fields belong to the fundamental
representation of the color group which is (Nc)–dimensional,
antiquark fields to the complex conjugate of the fundamental
representation, also (Nc)–dimensional and gluon fields to the
adjoint representation which is (N2

c − 1)–dimensional.
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c − 1.
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The QCD phase diagram
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The QCD phase diagram

• Since the coupling constant runs towards smaller values with
increasing energy scale it is natural to anticipate that confined
and chiral symmetry broken QCD matter undergoes a phase
transition at high energy densities, T ≃ ΛQCD ∼ 200 MeV,
nB ≃ Λ3

QCD ∼ 1 fm−3.
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New multimessenger era

Population of the QCD phase diagram by a typical merger event of two
neutron stars with 1.35 M⊙ each, for t = 7.37 ms (left panel) and

t = 24.54 ms (right panel) after the merging.
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The extended QCD phase diagram
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Heavy-Ion Physics
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Phase diagram explored with Heavy-Ion collisions
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Phase diagram explored with Heavy-Ion collisions

Our current knowledge of the phase diagram is restricted to near
the Temperature-axis.
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Chiral symmetry restoration

• The QCD vacuum within hadrons should be regarded as a medium
responsible for the non-perturbative quark mass.

• In hot and/or dense energetic matter quarks turn bare due to
asymptotic freedom.

• We expect a phase transition from a state with heavy
constituent quarks to another with light current quarks.

• The transition is called chiral phase transition.
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Is there a Critical End Point?

• Most of the effective models suggest the existence of a QCD critical
point (µCEP,TCEP) somewhere in the middle of the phase diagram
where the crossover line becomes a first order transition line.

• Signals are and will be looked for in current and future facilities.
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Lattice QCD pseudo-critical transition

R. Bellwiede, et al., Phys. Lett. B 751, 559-564 (2015).

A. Ayala MWPF-2022 MSPF 14 / 48



Lattice QCD Critical End Point
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Analysis tools: Fluctuations of conserved quantities

• A powerful tool to experimentally locate the CEP is the study of
event-by-event fluctuations in relativistic heavy-ion collisions

Fluctuations are sensitive to the early thermal properties of the
created medium. In particular, the possibility to detect non
Gaussian fluctuations in conserved charges is one of the

central topics in this field
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Analysis tools: Cumulant generating function

• The relation with thermodynamics comes through the partition
function Z, which is the fundamental object

The partition function is also the moment generating function
and therefore the cumulant generating function is given by

lnZ

• Cumulants are extensive quantities. Consider the number N of a
conserved quantity in a volume V in a grand canonical ensemble. It
can be shown that its cumulant of order n can be written as

⟨Nn⟩c,V = χnV

χn are called the generalized susceptibilities
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Analysis tools: Cumulant generating function

Cumulants higher than second order vanish for a Gaussian
probability distribution, non-Gaussian fluctuations are signaled by

non-vanishing higher order cumulants

Two important higher order moments are the skewness S and the
curtosis κ. The former measures the asymmetry of the distribution

function whereas the latter measures its sharpness
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Fluctuations of conserved quantities
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Analysis tools: Cumulant generating function

When the stochastic variable x is normalized to the square root of
the variance, σ, such that x → x̃ = x/σ, the skewness and the

kurtosis are given as the third and fourth-order cumulants

S = ⟨x̃3⟩c , κ = ⟨x̃4⟩c
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Cumulants

For the HRGM,
ratios of cumulatns of even order are equal to 1

In particular, for the square of the variance σ2 and the kurtosis κ
⟨N4⟩c/⟨N2⟩c = κσ2

Look for deviations from 1 in κσ2 as a function of collision
energy as a signal of the CEP.
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Linear sigma model with quarks
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Thermodynamics from the effective potential

Z(T , v) = exp
{
−ΩV eff(v)/T

}
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Effective potential

V eff = V tree + V b + V f + V Ring
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Plasma screening in TFT: Ring diagrams
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Effective potential
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Effective potential
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Partition function in the LSMq up to ring diagram order

Z(v) = exp
{
−ΩV eff(v)/T

}
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Baryon number fluctuations in the LSMq up to ring
diagram order; curtosis

Z(v) = exp
{
−ΩV eff(v)/T

}
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Effective phase diagram
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Freeze-out line Randrup & Cleymans, PRC 74, 047901 (2006)

µB(
√
sNN) =

d

1 + e
√
sNN

d = 1.308GeV, e = 0.273GeV−1
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Baryon number fluctuations in the LSMq
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STAR and HADES recent results
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Dedicated experiments to explore QCD phase diagram
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MPD Collaboration
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NICA Complex JINR

NICA Accelerator Complex in Dubna

NICA Center  

Nuclotron (c=251,5 m)

Collider - 2022

BM@N: 
data taking 
started 
in 2018

Booster (c=211 m)

SPD TDR - 2021 

applied research infrastructure - 2022

MPD - 2022 

Budget: approx. 500 M$

Ion Sources
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MPD Schedule (see V. Riabov’s talk)
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MPD Collaboration
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Summary

• Rich structure of the QCD phase diagram

• International interest in the field shows up in the several present and
future experiments designed to explore the properties of strongly
interacting matter subject to extreme conditions

• Deviations from HRG behavior when using LSMq as an effective
QCD model up to ring diagrams contribution.

• Ring diagrams inclusion is equivalent to introducing screening effects
at finite T and µB .

• CEP signaled by divergence of κσ2

• 786 MeV < µCEPB < 849 MeV and TCEP ∼ 70.3 MeV

• CEP found at low T and high µB (NICA, HADES?)
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¡Muchas Gracias!
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BACKUP
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Analysis tools: Fluctuations of conserved quantities

• For a probability distribution function P(x) of an stochastic variable
x , the moments are defined as

⟨xn⟩ =
∫
dx xnP(x)

• We can define the moment generating function G (θ) as

G (θ) =
∫
dx exθP(x)

• from where

⟨xn⟩ = dn

dθnG (θ)
∣∣
θ=0
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Analysis tools: Cumulant generating function

K (θ) = lnG (θ)

• The cumulants of P(x) are defined by

⟨xn⟩c =
dn

dθn
K (θ)

∣∣∣∣
θ=0

,

⟨x⟩c = ⟨x⟩,
⟨x2⟩c = ⟨x2⟩ − ⟨x⟩2 = ⟨δx2⟩,
⟨x3⟩c = ⟨δx3⟩,
⟨x4⟩c = ⟨δx4⟩ − 3⟨δx2⟩2.
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Analysis tools: Fluctuations of conserved quantities

• For example, the variance of Q is given

⟨δQ2⟩Ω = ⟨(Q − ⟨Q⟩V )2⟩Ω =
∫
V dx1dx2⟨δn(x1)δn(x2)⟩

• The integrand on the right-hand side is called a correlation function,
whereas the left-hand side is called a (second order) fluctuation

We see that fluctuations are closely related to correlation
functions

In relativistic heavy-ion collisions, fluctuations are measured on
an event-by-event basis in which the number of some charge or

particle species is counted in each event
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Higher moments, larger sensitivity to correlation length ξ

• In HIC’s, the simplest measurements of fluctuations are
event-by-event variances in observables such as multiplicities or mean
transverse momenta of particles.

• At the CEP, these variances diverge approximately as ξ2. They
manifest as a non-monotonic behavior as the CEP is passed by
during a beam energy scan.

• In a realistic HIC, the divergence of ξ is tamed by the effects of
critical slow down (the phenomenon describing a finite and possibly
large relaxation time near criticality).

• However, higher, non-Gaussian moments of the fluctuations depend
much more sensitively on ξ.

• Important to look at the Kurtosis κ (proportional to the
fourth-order cumulant C4), which grows as ξ7.
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Analysis tools: Cumulant generating function

• The relation with thermodynamics comes through the partition
function Z, which is the fundamental object

The partition function is also the moment generating function
and therefore the cumulant generating function is given by

lnZ

• Cumulants are extensive quantities. Consider the number N of a
conserved quantity in a volume Ω in a grand canonical ensemble. It
can be shown that its cumulant of order n can be written as

⟨Nn⟩c,Ω = χnΩ

χn are called the generalized susceptibilities
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Susceptibilities

• Experimentally it is easier to measure the central moments M:
M ijk

BQS = ⟨(B − ⟨B⟩)i (Q − ⟨Q⟩)j(S − ⟨S⟩)k⟩.
• On the other hand, derivatives of lnZ with respect to the chemical
potentials give the susceptibilities χ:

χijk
BQS =

∂i+k+j(P/T 4)

∂ i (µB/T )∂j(µQ/T )∂k(µS/T )
; P =

T

Ω
lnZ.

=⇒ χXY =
1

Ω
T 3M11

XY
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Fixing the parameters a2, λ and g from LQCD Phys. Rev. Lett.

125, 052001 (2020)

At the phase transition, the effective potential is flat at
v = 0. This property can be exploited to find the suitable
values of the model parameters a, λ and g at the critical

temperature Tc for µB = 0
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