DEPLOYMENT OF TWO COMPACT, REFRACTIVE IACTs HAWC's EYE AT VERY HIGH ALTITUDES

IMPLEMENTACIÓN DE DOS IACTs COMPACTOS REFRACTIVOS HAWC'S EYE A MUY GRANDES ALTURAS

JOSÉ SERNA $^{\dagger 1}$

R. Alfaro¹, J. Audehm², T. Bretz², G. Do², M.M. González³, A. Iriarte³, F. Maslowski², Y. Pérez³, F. Rehbein², M. Schaufel⁴, and I. Torres⁵

¹ Instituto de Física, Universidad Nacional Autónoma de México, Mexico

- ² Physics Institute III A, RWTH Aachen University, Germany
- ³ Instituto de Astronomía, Universidad Nacional Autónoma de México, Mexico
- ⁴ Physics Institute III B, RWTH Aachen University, Germany
- ⁵ Instituto Nacional de Astrofísica, Óptica y Electrónica, Mexico

[†] Speaker

EXTENSIVE AIR-SHOWERS (EAS) INDUCED BY GAMMA-RAYS

 Gamma-rays
 Energy
 Arrival direction

Development of gamma-ray air showers

http://mpi-hd.mpg.de

GAMMA-RAYS INDIRECT DETECTION TECHNIQUES

Imaging Air-Cherenkov Telescopes (IACTs): MAGIC, HESS, VERITAS y CTA[†]

http://www.hawc-observatory.org

Wide Field-of-view Detectors (WFD): **HAWC**, LHAASO y SWGO[†]

3

[†]In development

GAMMA-RAYS INDIRECT DETECTION TECHNIQUES

IACTs

- Telescopes with ~5 m to ~25 m of diameter
- Collects the Cherenkov light produced in the atmosphere
- Duty cycle: 5% ~ 10%
- Particular environmental conditions
 - No sunlight, no moonlight, no albedo, no rain, no clouds, no artificial lights, no snow...
 - Just clear nights
- Angular resolution ~0.01°
- Energy range: from ~10 GeV to ~10 TeV
- Observation of point sources
- Can not do simultaneous observations
- High production cost

WFDs

- Extended arrays of detectors (hundreds of m²)
- Collects the Cherenkov light produced in an specific medium
- Duty cycle: >95%
- Do not need specific environmental conditions
- Angular resolution: ~0.1°
- Energy range: from ~100 GeV to >100 TeV
- Observation of extended sources
- Can perform simultaneous observations
- High cost of production

Hybrid Performance

The main problem to develop an hybrid observatory is the high cost of production

HAWC'S EYE

Prototype of a refractive, compact, low-cost IACT

HAWC'S EYE STATUS

- Two functional HAWC's Eye telescopes located at the HAWC's site
- Four successful observation campaigns
 - Hybrid observations

HAWC's EYE PERFORMANCE

HE01+HAWC HE02+HAWC

- Events detected by hybrid observations
- HAWC's Eyes positions reconstructed with the event distributions

HE01+HE02+HAWC

(Serna, 2022)

HAWC's EYE PERFORMANCE

- Both energy thresholds at E_T ≈ 39.8 TeV
- Detected events with energies
 E > 100 TeV

HAWC'S EYE PERFORMANCE

- Zenith angle geometrically reconstructed
- Quality cut: $\theta_{HAWC} < 6.5^{\circ}$
- Very good zenith reconstruction with the HAWC's Eye telescopes

SUMMARY AND CONCLUSIONS

- Totally functional compact IACT prototype
- Excellent performance during the stereo and hybrid observations
- Low cost of production
 - More telescopes can be build
- New techniques of reconstruction and estimation of data parameters
 - Random Forest, machine learning techniques, etc.
 - Estimation of energy and arrival direction
- Ideal candidate as a complement for current and future WFD
 - Gamma-ray observatories: HAWC and SWGO
 - Neutrino observatories: IceCube

BACKUP SLIDES

IMAGING AIR-CHERENKOV TELESCOPES (IACTS)

- Collects the Cherenkov radiation
 produced in the atmosphere
- Telescopes with big reflective area

http://www.cta-observatory.org

http://www.hawc-observatory.org

WIDE FIELD-OF-VIEW DETECTORS (WFDS)

- Collects the Cherenkov light produced in a specific medium inside the detectors
 - The medium can be water, ice, etc.
- Extended arrays of several detectors

THE HAWC OBSERVATORY

- Located at Volcán Sierra Negra, Mexico
- Altitude: 4,100 m a.s.l.
- **Duty cycle** > 95%
- 300 Water Cherenkov Detectors (WCDs) and 350 outriggers
- WCD size: 7.3 m of diameter and 5 m tall

- WCD capacity: 200,000 L each one
- 1,200 Photo-Multiplier Tubes (PMTs)
 - 4 PMTs in each WCD
- Energy range: from 300 GeV to 250 TeV
- Angular resolution: ~0.1°

- Instantaneous FoV of 2 sr
 - 2/3 of the visible sky
- ► **HAWC's footprint**: ~200,000 m²
 - ~100,000 m² with the outriggers

HAWC's EYE

- Compact IACT (Bretz, 2018)
- Fresnel lens $f \approx D \approx 0.5$ m
- Camera: 61(+3) SiPMs SenseL
 MicroFJ based pixels
- Solid hex-to-square guidelines of PMMA (Winston cones)
- ► **FoV**: 1.5°/Px ~12° total
- FACT's DAQ (Anderhum, 2013)
- 72 channels of DRS4 DAQ
- Low cost: ~10,000 eur per telescope

HILLAS PARAMETERS

EVENT'S CORES DISTRUBUTION IN THE CAMERAS

- Isotropic distribution of the cores in the camera
- Low-signal spots consistent with hardware damage (HE02)

HE01

HE02

HE02 CAMERA DAMAGES

- Pixels with functional SiPM but without Winston cone
- Pixels without SiPM neither Winston cone
- Distributions consistent with the hardware damages in the camera
 - Correct performance of the software
 - Correct performance of the DAQ system
- Indirect confirmation of the good performance of the telescopes

HAWC's EYE PERFORMANCE

