

Restringiendo la poblacion de TeV halos en M31

A. Andrés, M. M. González, M. F. Carreón, T. Capistrán

Universidad Nacional Autónoma de México - Instituto de Astronomía

División de Rayos Cósmicos

27 de marzo de 2023

TeV halos

Observaciones:

HAWC y LHAASO: regiones extendidas de rayos γ alrededor de pulsares de edad media

Se consideran una nueva fuente de rayos γ : halos de Teraelectronvolt (TeV halos)

Modelo

Compton inverso, difusión

- El ~ 10 % de \dot{E} se convierte en pares e^-e^+ (Hooper et al., 2017, Phys Rev D, 96)
- Coeficiente de difusión local menor al promedio medido para la Galaxia (Abeysekara et al., Science, 2017: 358.6365)

(Sudoh et al, 2019, Phys Rev D, 100)

TeV halos

"Exceso de TeV" medido para el plano Galáctico

Los TeV halos son las fuentes dominantes a energías de TeV en nuestra Galaxia

¿Cuál es la contribución de los TeV halos a la emisión en TeV de cualquier otra galaxia?

Linden & Buckman, 2018, Phys Rev Let, 120

Galaxia de Andrómeda (M31)

Galaxia espiral de mayor tamaño más cercana a la Tierra ($d_{
m M31}=785\pm25~
m kpc$)

Emite en la banda de energía de los rayos γ

 $\rm M31 \rightarrow exceso$ de rayos γ difuso, a energías de GeV similar al de nuestra Galaxia

- Materia oscura (DM)
- Pulsares de milisegundos (MS pulsars)

En M31, el modelo favorable es el de MS pulsars

Fuente: NASA/GALEX

Propiedades de M31 y Vía Láctea (MW)

Observable	MW	M31
Propiedades globales		
Morfología	Sbcl-II	Sbl-II,
Masa ($10^{10} M_{\odot})$		
Visible	5 - 6	5.9-10
Total	40 - 55	107-140
Disco		
Semi eje mayor (kpc)	13	26
SFR total (M_{\odot} yr $^{-1}$)	$\sim 1-5$	0.35-1.0
Masa $(10^{10} M_{\odot})$		
disco	3.5 - 5	7 - 12
estelar	3.0	6
gas	0.7	0.6
HI	0.4	0.5
H ₂	0.11	0.02 - 0.04

Modelo de emisión de población de TeV halos

Modelo propuesto por Xu & Hooper, (2022):

$$E_{\gamma} = \int_{E_{\min}}^{E_{\max}} N_0 \, E\left(rac{E}{E_0}
ight)^{-\xi} dE,$$

con N_0 , E, ξ tomados del tercer catálogo de HAWC.

 \dot{E} y $\langle E_{\rm rot} \rangle$ tomados y calculados con el catálogo ATNF (Manchester et al, 2005).

 $\Psi_{
ho}^{
m MW}=1.4$ pulsar/sigo, tomado de Lorimer et al, (2006)

Modelo

Tomando el espectro para la población de TeV halos en M31:

$$F_{\gamma}^{\rm pop,M31} = \int_{E_{\rm min}}^{E_{\rm max}} N_0^{\rm pop,M31} E\left(\frac{E}{E_0}\right)^{-\xi} \exp\left(-\frac{E}{E_c}\right) \ dE$$

 $E_c = 50 \text{ TeV}$ (Xu & Hooper, 2022; Abeysekara et al 2020)

Se compara con los Upper Limits reportados por la colaboración de HAWC en M31 (Albert et al., 2020) $\xi = 2.5, E_0 = 1 \text{ TeV}$

Emisión de población de TeV halos

Monogem

PSR J0622+3749

Nombre	d	Ė	F_{γ}	η
	(kpc)	$(10^{34} { m erg s}^{-1})$	$(10^{-11} \text{ TeV cm}^{-2} \text{ s}^{-1})$	$(\times 10^{-2})$
Geminga	0.250	3.26	5.72	2.10
Monogem	0.288	3.80	2.99	1.25
PSR J0622+3749	1.60	2.71	0.52	9.55

A. Andrés (IA - UNAM)

TeV halos en M31

Emisión estimada

Eficiencia promedio de Geminga y Monogem

 \sim 1 orden de magnitud por debajo de los Upper Limits

Emisión de TeV halos únicamente

Flujo a 1 TeV en el plano Galáctico

Abramowski et al., 2014, Phys Rev D, 90

Panel superior

- **Regiones negras:** Regiones de emisión significativa (S)
- **Regiones blancas:** Regiones de emisión difusa (D)

Panel central: Flujo a 1 TeV para la región S

Panel inferior: Flujo a 1 TeV para la región D

Líneas rojas: Emisión por rayos cósmicos (hadrónicos)

 $\begin{array}{l} N_0^S = 4.48 \times 10^{-10} \ {\rm TeV^{-1}} \ {\rm cm^{-2}} \ {\rm s^{-1}} \\ N_0^H = 1.15 \times 10^{-10} \ {\rm TeV^{-1}} \ {\rm cm^{-2}} \ {\rm s^{-1}} \end{array}$

A. Andrés (IA - UNAM)

Emisión estimada

Por debajo de las observaciones escaladas de MW

¿Qué pasa al considerar la eficiencia de PSR J0622+3749?

Emisión estimada

La emisión aumenta y se acerca más a los UL

Por encima de las observaciones escaladas de MW TeV halos $\rightarrow \sim 1$ orden de magnitud inferior a los Upper Limits, Casos de mayor eficiencia \rightarrow consistente/comparable con los Upper Limits

La distancia o cercanía de los pulsares entre sí parece ser un parámetro determinante en la estimación

Eficiencia puede estar afectada por campos magnéticos/coeficiente de difusión local

Trabajo a futuro

Emisión de RCs de M31 con modelos más realistas

Recalcular los Upper Limits de HAWC usando los nuevos algoritmos de reconstrucción y los datos más recientes