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Introduction

e Atmospheric electric fields (AEFs), generated by thunderstorms, influence the

acceleration of charged particles.
o  They possibly produce a change in the intensity of the CR detected on the ground.
o  High-altitude observatories such as the Sierra Negra CR Observatory (SN-CRO), located at 4,580
m asl, will have a greater probability of observing the effect of AEFs.

e Objective:
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Cosmic Rays

® CR constantly arrive on
Earth from different
sources in the Universe.

e They produce secondary
particles in EAS.

Taken from [1]
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Taken from [2]




Atmospheric Electric Fields
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Muon Mechanism

e The variation of AEFs entails the
decrease in the intensity of muons.
e Scintillator plastic detectors (E ~ 100

MeV) observe decreases during
thunderstorms.

Taken from [3]
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Dorman’s General Theory

e The intensity of any secondary CR component of type i, may be described by equation:

oo

1,-(ho,Rc,g,T(h),e(h),E(h))=RJD(R)m,-(ho,R,g,T(h),e(h),E(h))dR

Assuming:

AE(h)=E(h)-E, ()

:> (Ni(ho,Rc,go,To(h),eo(h),E(h))] =hfW,-E(h,ho, REGME
E

Ii(ho’Rc’go’To(h)’eo(h)’Eo(h)) 0
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Where the AEF coefficient is:

u/zE(haho’Rc)
= onln R, T (M (MER) e
== I (h R,go,To(h),eo( ),Eo(h))(%:(h)/VIRC(ho’R,ngO(h)’ o(h)’Eo(h))dR

And the coupling function:

DO(R)mi(hOaRago’To(h)’eo(h)an(h))

Wir_(hos R, €0.T, (h).e(h)Ey ()= 1o R 20T, () eg (), Ey (1))
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Simulations

e EXPACS

o  Simulation of secondary RC flux.

O  The intensities of protons, muons, electrons and
positrons were considered as the total charged
component of secondary CR.

o  We fitted exponential functions to the flux of the
charged particle component to find the coupling
function.

e CORSIKA

o  Simulation of EAS.

o The hadronic interactions for our simulations were
modeled with QGSJET 1I-04 for high energies (above
80 GeV) and FLUktuierende KAskade (FLUKA) for
low energies (below 80 GeV).

o Simulation performed with and without a simple

point dipole AEF.
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EXPACS
Results

Fluxes of particles plotted in the graph ¢ (/cm2/s/(MeV/n))

Omni—directional cosmic—ray fluxes calculated by PARMA
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CORSIKA Results
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Solving Dorman’s AEF coefficient equation

e We found an AEF coefficient for the total charged secondary CR component:

Wie(h,hg,R.) =2 x107* % (l":V/-m)_l(g/cmg)_1

e Finally, solving equation 1:

Ali(hy,Re,20.T,(h) e, (R EMR)) _To
(Ii(ho,Rc,giTo (h).e (h),EO(h))J ¥ ({W'E (k1o R NE (R )l

With E(h) = 10 kV/m,E(h) = 20 kV/m and E(h) = 30 kV/m, the intensity variations for the
total charged component were +1.15%, £2.32% and £3.47%, respectively.




Conclusions

Based on the EAS simulations performed with CORSIKA and EXPACS to solve the equations
representing the AEF effect on CR flux proposed by Dorman, we conclude that the effect of
AEF on secondary CRs is significant at the Sierra Negra altitude (4580 m a.s.l.).

e We found that for the total charged component of secondary CRs, the variation attributed to

AEF is 1.15-3.47% at Sierra Negra.
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