

Lepton Flavor Violation Higgs Decays in the Scotogenic model M. Zeleny Mora ^(a,c) & J. L. Díaz Cruz^(a,c) & O. Félix Beltrán $^{(b,c)}$

^(a) Facultad de Cs. Físico Matemáticas, BUAP, Puebla, Pue., 72570, México. ^(b) Facultad de Cs. de la Electrónica, BUAP, Puebla, Pue., 72570, México.

"Ciencia de frontera desde México"

^(c)Centro Internacional de Física Fundamental (CIFFU), BUAP, Puebla, Pue., 72570,

México.

Abstract

The Scotogenic model is a minimal extension to the Standard Model, which allows describing neutrino masses induced at one loop level. In addition, this model contains a scalar or fermionic Dark matter candidate. The inclusion of a second Higgs doublet inert and heavy right-handed neutrinos, both odd under Z_2 symmetry, allow these new physics issues. In the scalar sector, new interactions appear, among them, the interaction of charged scalar with leptons, which induces the decay of $h \rightarrow l_a l_b$ at one loop level which is not allowed on the SM. We study these signals in this framework, and we obtain large $\mathcal{BR}(h \to l_a l_b)$ in the Scotogenic model in comparison to the SM plus three right-handed Dirac neutrinos.

Introduction

Recent search for LFV Higgs decays at LHC, with center-of-mass energy $\sqrt{s} = 13$ TeV, and an integrated luminosity of 36.1 fb⁻¹, has provided stronger bounds for the corresponding branching ratios. In particular, ATLAS reports $\mathcal{BR}(h \rightarrow e\tau) = 0.47\%(0.34^{0.13}_{-0.10})\%$, $\mathcal{BR}(h \to \mu \tau) = 0.28\% (0.37^{0.14}_{-0.10}\%)$ [1], which are consistent with a zero value. In turn, CMS reports (expected) upper limits on the production cross section times the branching fraction, which vary from 51.9 (57.4) fb to 1.6 (2.1) fb for the $\mu\tau$ and from 94.1 (91.6) fb to 2.3 (2.3) fb for the decay mode $e\tau$ [5].

New Physics models often include a Higgs boson with new features, for instance, besides SM deviations for the Flavor-Conserving (FC) Higgs-fermion couplings, it is possible to have Flavor-Violating (FV) Higgs-fermions interactions. These FV Higgs couplings could arise at tree-level, as in the Two-Higgs Doublet Model (2HDM) of type III, or they could be induced at loop-levels, as in the Minimal SUSY SM (MSSM).

Model

The matter content of the Scotogenic Model with the group $SU(2)_L \otimes U(1)_Y \otimes Z_2$ is given by [4]:

 $(\nu_{La}, l_{La}) \sim (2, -1/2, +), \quad l_{Ra} \sim (1, 1, +), \quad N_{Rk} \sim (1, 0, -),$ $(\phi^+, \phi^0) \sim (2, 1/2, +), \quad (\eta^+, \eta^0) \sim (2, 1/2, -),$

where an inert doublet η and three right-handed neutrinos N_{Ri} odd under Z_2 symmetry have been included. Yukawa sector allows the interaction between left and right-handed neutrinos with scalar doublet η :

$$\mathcal{L}_{Y} = f_{ab} \left(\phi^{-} \nu_{La} + \overline{\phi_{0}} l_{La} \right) l_{Rb} + Y'_{ab} \left(\nu_{La} \eta_{0} - l_{La} \eta^{+} \right) N_{Rb} + \frac{1}{2} M_{k} \overline{N_{Rk}}^{c} N_{Rk} + \text{H. c.}$$
(1)

In this model, the LFV Higgs decays are not allowed at tree level, the most important one loop diagrams comes from odd particles as follows:

Results

We consider three main constraints to the Scotogenic model, viz, relic density of dark matter, considering N_1 as the dark matter candidate; electroweak parameters and experimental upper bound for radiative decays $\mu \to e\gamma$. Then we assume that the masses of N_1 , η_R , η^{\pm} , must be of the order of $O(10^2)$ GeV, and $\lambda_5 \approx 10^{-10}$. For heavy neutrinos $N_1 \ll N_{2,3}$, then, we fix $M_2 = 10^4$ GeV, $M_3 = 10^5$ GeV. Finally, we also fix $\mu_2 = 1$ GeV without loss of generality, We consider two cases to $\mathcal{BR}(h \to l_a l_b)$ for the Scotogenic model (i) for $m_\eta = 800$ GeV, $m_R = 805$ GeV (solid lines); and (*ii*) for $m_{\eta} = 200$ GeV, $m_R = 205$ GeV (dashed lines).

being M_k the mass of N_{Rk} . In this case, the more general scalar potential under Z_2 symmetry is as follows,

$$V(\Phi,\eta) = \mu_1^2 \left(\Phi^{\dagger} \Phi \right) + \mu_2^2 \left(\eta^{\dagger} \eta \right) + \frac{\lambda_1}{2} \left(\Phi^{\dagger} \Phi \right)^2 + \frac{\lambda_2}{2} \left(\eta^{\dagger} \eta \right)^2 + \lambda_3 \left(\Phi^{\dagger} \Phi \right) \left(\eta^{\dagger} \eta \right) + \lambda_4 \left(\Phi^{\dagger} \eta \right) \left(\eta^{\dagger} \Phi \right) + \frac{\lambda_5}{2} \left[\left(\Phi^{\dagger} \eta \right)^2 + \text{H. c.} \right].$$

$$(2)$$

Neutrino mass is generated by a radiative See-Saw mechanism and is given by

$$\mathcal{M}_{\nu} = \mathbf{Y}' \mathbf{D}_{\Lambda} \mathbf{Y}'^{\top}$$

$$\mathbf{D}_{\Lambda} = \operatorname{diag}(\Lambda_{1}, \Lambda_{2}, \Lambda_{3}),$$

$$\Lambda_{k} = \frac{M_{k}}{16\pi^{2}} \left[\left(\frac{m_{R}^{2}}{M_{k}^{2} - m_{R}^{2}} \log \frac{m_{R}^{2}}{M_{k}^{2}} \right) - \left(\frac{m_{I}^{2}}{M_{k}^{2} - m_{I}^{2}} \log \frac{m_{I}^{2}}{M_{k}^{2}} \right) \right].$$
(3)

where m_R , m_I , m_η and M_k are the masses of η_R , η_I , η^{\pm} and N_{Ri} respectively. Also, k index runs over heavy neutrino masses. Then, if we choose the basis where Yukawa matrix Y' is diagonal, \mathcal{M}_{ν} is diagonal too. So, we can rewrite the Yukawa matrix as follows,

$$\mathbf{Y}' = \operatorname{diag}\left(\sqrt{\frac{m_{\nu_1}}{\Lambda_1}}, \sqrt{\frac{m_{\nu_2}}{\Lambda_2}}, \sqrt{\frac{m_{\nu_3}}{\Lambda_3}}\right) \quad \text{or} \quad Y'_{ij} = \sqrt{\frac{m_{\nu_i}}{\Lambda_i}}\delta_{ij}, \tag{4}$$

where m_{ν_i} (i, j = 1, 2, 3) are the light neutrino masses in normal order. However, as we have noticed, in this basis the matrix to diagonalize the neutrino mass matrix, \mathbf{V}_L^{ν} is equal to identity. On the other hand, the mass matrix of charged leptons will be rotated by \mathbf{V}_L^l to go to the physical basis. Thus, the neutrino mixing matrix is $\mathbf{U}_{\text{PMNS}} = \mathbf{V}_L^{\nu \dagger} \mathbf{V}_L^l = \mathbf{V}_L^l$. Finally, in the physical basis, new Yukawa couplings for the interaction between left-handed lepton doublet and singlet neutrinos given by

$$\mathbf{Y} = \mathbf{Y}' \mathbf{U}_{\text{PMNS}}.$$
 (5)

Conclusiones

- The largest values of $\mathcal{BR}(h \to l_a l_b)$ are reached for $M_1 = 100$ GeV, which are: $\mathcal{BR}(h \to \mu \tau)_{800} \approx$ $\mathcal{BR}(h \to e\tau)_{800} \approx 10^{-7} \text{ and } \mathcal{BR}(h \to e\mu)_{800} \approx 10^{-8}, \text{ also } \mathcal{BR}(h \to \mu\tau)_{200} \approx \mathcal{BR}(h \to \mu\tau)_{20} \approx \mathcal{BR}(h \to \mu\tau)_$ $(e\tau)_{200} \approx 10^{-9}$ and $\mathcal{BR}(h \to e\mu)_{200} \approx 10^{-10}$.
- In the Scotogenic model the LFV Higgs decays are larger than the derived from the SM plus direac neutrinos which is the order of $\mathcal{BR}(h \to l_a l_b)_{SM} \approx 10^{60} < \mathcal{BR}(h \to l_a l_b)_{Scoto}$.
- Our results are in agreement with the approximate results of [2, 3].

References

[1] G. Aad et. al. Searches for lepton-flavour-violating decays of the Higgs boson in s=13 TeV pp collisions with the ATLAS detector. Physics Letters B, 800:135069, 2020. [2] Juan Herrero-García, Nuria Rius, and Arcadi Santamaria. Higgs lepton flavour violation: Uv

Interactions

The interactions involved in LFV Higgs decays are summarized as follows

Vertex	Coupling	Vertex	Coupling
hG^+G^-	$-irac{m_h^2}{v}$	$h\eta^+\eta^-$	$-\frac{2i\left(m_{\eta}^2-\mu_2^2\right)}{v}$
$G^- l_a^+ \nu_k$	$irac{\sqrt{2}}{v}m_a U_{ka}^*P_L$	$G^+ l_b^- \nu_k$	$irac{\sqrt{2}}{v}m_b U_{kb}P_R$
hG^+W^-	$\left -\frac{i}{2}g(p_+ - p_0)_{\mu}\right $	hW^+G^-	$\left -\frac{i}{2}g(p_0-p)_{\mu}\right $
$W^- l_a^+ \nu_k$	$-i\frac{g}{\sqrt{2}}U_{ka}^*\gamma_{\mu}P_L$	$W^+ l_b^- \nu_k$	$-irac{g}{\sqrt{2}}U_{kb}\gamma_{\mu}P_{L}$
$\eta^{-}l_{a}^{+}N_{k}$	$iY_{ka}^*P_R$	$\eta^+ l_a^- N_k$	$iY_{kb}P_L$
$hW^+_\mu W^ u$	$igm_Wg_{\mu u}$		

completions and connection to neutrino masses. Journal of High Energy Physics, 2016(11):84, Nov 2016.

[3] Raghavendra Srikanth Hundi. Lepton flavor violating Z and Higgs decays in the scotogenic model. Eur. Phys. J. C, 82(6):505, 2022.

[4] Ernest Ma. Verifiable radiative seesaw mechanism of neutrino mass and dark matter. *Phys. Rev.* D, 73:077301, Apr 2006.

[5] A. M. Sirunyan, A. Tumasyan, W. Adam, F. Ambrogi, T. Bergauer, J. Brandstetter, M. Dragicevic, J. Erö, A. Escalante Del Valle, and et al. Search for lepton flavour violating decays of a neutral heavy Higgs boson to $\mu\tau$ and $e\tau$ in proton-proton collisions at $\sqrt{s} = 13$ TeV. Journal of High *Energy Physics*, 2020(3), Mar 2020.

[6] M. Zeleny-Mora, J. Lorenzo Díaz-Cruz, and O. Félix-Beltrán. The General One-loop Structure for the LFV Higgs Decays $H_r \rightarrow l_a l_b$. 12 2021.