Constraining BSM Discrete Flavor Symmetries with Heavy Scalar Searches at Colliders

Catalina Espinoza

Cátedra Conacyt – IFUNAM

XXXVI Annual Meeting of the DPyC-SMF September 8, 2022

C. Espinoza – Constraining BSM Discrete Flavor Symmetries – XXXVI DPyC-SMF Annual Meeting - September 8, 2022

MOTIVATION

C. Espinoza - Constraining BSM Discrete Flavor Symmetries - XXXVI DPyC-SMF Annual Meeting - September 8, 2022

The Standard Model of Particle Physics can be regarded as one of the most important achievements of fundamental science.

Despite the Standard Model's outstanding successes, by now it is clear that a more fundamental theory is required to tackle several shortcomings and unexplained evidences such as (e.g. J. Ellis, hep-th/9812235):

• Dark matter and dark energy

- Why aren't the particle masses much closer to the Planck mass (10¹⁹ GeV)?
- Why some particle masses are so small (m_ν) and others relatively much larger (m_t)?
- Can all the particle interactions be unified in a simple gauge group?
- What is the origin of the 6 flavours each of quarks and leptons?
- Baryon asymmetry, mixing patterns, quantization of gravity, ...

- Why aren't the particle masses much closer to the Planck mass (10¹⁹ GeV)?
- Why some particle masses are so small (m_ν) and others relatively much larger (m_t)?
- Can all the particle interactions be unified in a simple gauge group?
- What is the origin of the 6 flavours each of quarks and leptons?
- Baryon asymmetry, mixing patterns, quantization of gravity, ...

- Why aren't the particle masses much closer to the Planck mass (10¹⁹ GeV)?
- Why some particle masses are so small (m_ν) and others relatively much larger (m_t)?
- Can all the particle interactions be unified in a simple gauge group?
- What is the origin of the 6 flavours each of quarks and leptons?
- Baryon asymmetry, mixing patterns, quantization of gravity, ...

- Why aren't the particle masses much closer to the Planck mass (10¹⁹ GeV)?
- Why some particle masses are so small (m_ν) and others relatively much larger (m_t)?
- Can all the particle interactions be unified in a simple gauge group?
- What is the origin of the 6 flavours each of quarks and leptons?
- Baryon asymmetry, mixing patterns, quantization of gravity, ...

- Why aren't the particle masses much closer to the Planck mass (10¹⁹ GeV)?
- Why some particle masses are so small (m_ν) and others relatively much larger (m_t)?
- Can all the particle interactions be unified in a simple gauge group?
- What is the origin of the 6 flavours each of quarks and leptons?
- Baryon asymmetry, mixing patterns, quantization of gravity, ...

In this talk I will describe models built with the aim of:

- Provide one (particle) dark matter (DM) candidate.
- Generate the mass hierarchy of quarks and leptons.

In particular I will give examples of Beyond the SM (BSM) theories with the following characteristics:

- Extended scalar sector.
- One or more discrete symmetries.
- DM sector coupled through **Higgs portals**.

In this talk I will describe models built with the aim of:

- Provide one (particle) dark matter (DM) candidate.
- Generate the mass hierarchy of quarks and leptons.

In particular I will give examples of Beyond the SM (BSM) theories with the following characteristics:

- Extended scalar sector.
- One or more discrete symmetries.
- DM sector coupled through **Higgs portals**.

In this talk I will describe models built with the aim of:

- Provide one (particle) dark matter (DM) candidate.
- Generate the mass hierarchy of quarks and leptons.

In particular I will give examples of Beyond the SM (BSM) theories with the following characteristics:

- Extended scalar sector.
- One or more discrete symmetries.
- DM sector coupled through **Higgs portals**.

In this talk I will describe models built with the aim of:

- Provide one (particle) dark matter (DM) candidate.
- Generate the mass hierarchy of quarks and leptons.

In particular I will give examples of Beyond the SM (BSM) theories with the following characteristics:

- Extended scalar sector.
- One or more discrete symmetries.
- DM sector coupled through **Higgs portals**.

In this talk I will describe models built with the aim of:

- Provide one (particle) dark matter (DM) candidate.
- Generate the mass hierarchy of quarks and leptons.

In particular I will give examples of Beyond the SM (BSM) theories with the following characteristics:

- Extended scalar sector.
- One or more discrete symmetries.
- DM sector coupled through **Higgs portals**.

BSM Extended Scalar Sectors

What is the intuition behind multi-scalar sectors?

- One of the simplest recipes to generalize the SM is to include additional scalars (singlets, doublets or even higher SU(2) multiplets).
- As opposed to the SM, multi-higgs models have additional sources of CP violation that might solve the baryon asymmetry problem.
- Extended scalar sectors are necessary in well studied BSM models such as SUSY to ensure the absence of anomalies.

BSM Extended Scalar Sectors

What is the intuition behind multi-scalar sectors?

- One of the simplest recipes to generalize the SM is to include additional scalars (singlets, doublets or even higher SU(2) multiplets).
- As opposed to the SM, multi-higgs models have additional sources of CP violation that might solve the baryon asymmetry problem.
- Extended scalar sectors are necessary in well studied BSM models such as SUSY to ensure the absence of anomalies.

BSM Extended Scalar Sectors

What is the intuition behind multi-scalar sectors?

- One of the simplest recipes to generalize the SM is to include additional scalars (singlets, doublets or even higher SU(2) multiplets).
- As opposed to the SM, multi-higgs models have additional sources of CP violation that might solve the baryon asymmetry problem.
- Extended scalar sectors are necessary in well studied BSM models such as SUSY to ensure the absence of anomalies.

BSM Extended Scalar Sectors

Nevertheless, in models with a multi-higgs sector flavour changing neutral currents (FCNC) are often predicted. This is one of the motivations for the introduction of additional discrete symmetries.

C. Espinoza – Constraining BSM Discrete Flavor Symmetries – XXXVI DPyC-SMF Annual Meeting - September 8, 2022

Discrete Symmetries

Among the different type of symmetries, **discrete non-abelian** ones have interesting characteristics:

 When spontaneously broken, no Goldstone bosons surge – In contrast to continuous global symmetries.

Discrete Symmetries

• Their non-abelian nature can lead to the generation of **nontrivial mixing patterns** for quarks and neutrinos.

$$U_{\text{tribi}} = \begin{pmatrix} \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}} & 0\\ -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}}\\ -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \end{pmatrix}, \qquad M_{\nu} = U_{\text{tribi}}^* \begin{pmatrix} m_1 & 0 & 0\\ 0 & m_2 & 0\\ 0 & 0 & m_3 \end{pmatrix} U_{\text{tribi}}^{\dagger}$$

C. Espinoza - Constraining BSM Discrete Flavor Symmetries - XXXVI DPyC-SMF Annual Meeting - September 8, 2022

- If one has an extended scalar sector it is also natural to assume that all or some of the scalars **transform non-trivially** under it.
- The assignment of non-trivial charges to the scalars will dictate the analytical form of the scalar potential and the Yukawa terms.
- In particular, the phenomenology of the scalar sector will reflect the underlying symmetry.
- This means that **collider constraints** from scalar searches can be used to probe such symmetries.
- This constraints are actually complementary to those in the matter sector from e.g. FCNC.

- If one has an extended scalar sector it is also natural to assume that all or some of the scalars **transform non-trivially** under it.
- The assignment of non-trivial charges to the scalars **will dictate** the analytical form of the scalar potential and the Yukawa terms.
- In particular, the phenomenology of the scalar sector will reflect the underlying symmetry.
- This means that **collider constraints** from scalar searches can be used to probe such symmetries.
- This constraints are actually complementary to those in the matter sector from e.g. FCNC.

- If one has an extended scalar sector it is also natural to assume that all or some of the scalars **transform non-trivially** under it.
- The assignment of non-trivial charges to the scalars **will dictate** the analytical form of the scalar potential and the Yukawa terms.
- In particular, the phenomenology of the scalar sector will reflect the underlying symmetry.
- This means that **collider constraints** from scalar searches can be used to probe such symmetries.
- This constraints are actually complementary to those in the matter sector from e.g. FCNC.

- If one has an extended scalar sector it is also natural to assume that all or some of the scalars **transform non-trivially** under it.
- The assignment of non-trivial charges to the scalars **will dictate** the analytical form of the scalar potential and the Yukawa terms.
- In particular, the phenomenology of the scalar sector will reflect the underlying symmetry.
- This means that **collider constraints** from scalar searches can be used to probe such symmetries.
- This constraints are actually complementary to those in the matter sector from e.g. FCNC.

- If one has an extended scalar sector it is also natural to assume that all or some of the scalars **transform non-trivially** under it.
- The assignment of non-trivial charges to the scalars **will dictate** the analytical form of the scalar potential and the Yukawa terms.
- In particular, the phenomenology of the scalar sector will reflect the underlying symmetry.
- This means that **collider constraints** from scalar searches can be used to probe such symmetries.
- This constraints are actually complementary to those in the matter sector from e.g. FCNC.

HIGGS PORTALS

C. Espinoza – Constraining BSM Discrete Flavor Symmetries – XXXVI DPyC-SMF Annual Meeting - September 8, 2022

In the particular case of a DM sector coupled through Higgs portals:

Higgs portals

• LHC constraints from SM invisible Higgs decays nicely complement Direct Detection limits.

Higgs portals

- For DM masses above 100 GeV up to several TeV, collider constraints from heavy scalar searches "propagate" to the DM sector.
- For example, in multi-higgs models several additional heavy scalars are predicted.

C. Espinoza - Constraining BSM Discrete Flavor Symmetries - XXXVI DPyC-SMF Annual Meeting - September 8, 2022

Higgs portals

- For DM masses above 100 GeV up to several TeV, collider constraints from heavy scalar searches "propagate" to the DM sector.
- For example, in multi-higgs models several **additional heavy scalars** are predicted.

• The couplings and mass spectrum of such scalars are constrained thanks to decades of collider searches.

C. Espinoza - Constraining BSM Discrete Flavor Symmetries - XXXVI DPyC-SMF Annual Meeting - September 8, 2022

• This has immediate repercussions in the DM sector since the scalars mediate e.g. the scattering DM - nucleon cross section.

$$L_{\text{eff}} = \sum_{k} \overline{\Psi_{R}^{C}} c_{\Psi}^{k} \Psi_{R} \ h_{k} + \sum_{k,q} \overline{q} c_{q}^{k} q \ h_{k}$$

• The scattering amplitude will depend directly on the scalar masses which are directly constrained from collider searches.

$$\mathcal{M}_k = \frac{4M_\Psi m_N}{q^2 + m_{h_k}^2} c_\Psi^k c_N^k \,\,\delta_{ss'} \delta_{rr'}$$

C. Espinoza – Constraining BSM Discrete Flavor Symmetries – XXXVI DPyC-SMF Annual Meeting - September 8, 2022

• This effectively helps to limit the parameter space of the DM sector.

C. Espinoza – Constraining BSM Discrete Flavor Symmetries – XXXVI DPyC-SMF Annual Meeting - September 8, 2022

S4 MODEL

C. Espinoza – Constraining BSM Discrete Flavor Symmetries – XXXVI DPyC-SMF Annual Meeting - September 8, 2022

S4 Model

We propose¹ a BSM model with a multi-higgs sector:

- Three Higgs doublets H_1 , H_2 and H_3 plus one scalar singlet DM candidate ϕ .
- Contains a proposed **non-abelian discrete S4 Symmetry**, the symmetry of all possible permutations of 4 objects.
- In the scalar sector only 2 Higgs doublets transform non-trivially with respect to S4:

 $H_I \equiv (H_1, H_2) \sim \mathbf{2}$

¹ A. E. Cárcamo-Hernández, C. E., J. C. Gómez-Izquierdo, J. Marchant, M. Mondragón. In preparation.

C. Espinoza - Constraining BSM Discrete Flavor Symmetries - XXXVI DPyC-SMF Annual Meeting - September 8, 2022
S4 Model

We propose¹ a BSM model with a multi-higgs sector:

- Three Higgs doublets H_1 , H_2 and H_3 plus one scalar singlet DM candidate ϕ .
- Contains a proposed **non-abelian discrete S4 Symmetry**, the symmetry of all possible permutations of 4 objects.

 In the scalar sector only 2 Higgs doublets transform non-trivially with respect to S4:

 $H_I \equiv (H_1, H_2) \sim \mathbf{2}$

¹A. E. Cárcamo-Hernández, C. E., J. C. Gómez-Izquierdo, J. Marchant, M. Mondragón. In preparation.

C. Espinoza - Constraining BSM Discrete Flavor Symmetries - XXXVI DPyC-SMF Annual Meeting - September 8, 2022

S4 Model

We propose¹ a BSM model with a multi-higgs sector:

- Three Higgs doublets H_1 , H_2 and H_3 plus one scalar singlet DM candidate ϕ .
- Contains a proposed **non-abelian discrete S4 Symmetry**, the symmetry of all possible permutations of 4 objects.
- In the scalar sector only 2 Higgs doublets transform **non-trivially** with respect to S4:

$$H_I \equiv (H_1, H_2) \sim \mathbf{2}$$

¹ A. E. Cárcamo-Hernández, C. E., J. C. Gómez-Izquierdo, J. Marchant, M. Mondragón. In preparation.

C. Espinoza - Constraining BSM Discrete Flavor Symmetries - XXXVI DPyC-SMF Annual Meeting - September 8, 2022

Dark Sector

• The third doublet and the dark scalar are invariant with respect to S4:

$$H_3 \sim \mathbf{1}, \ \phi \sim \mathbf{1}$$

• We minimally couple the dark scalar to the Higgs doublets:

 $V \supset (\lambda_a H_1^{\dagger} H_1 + \lambda_b H_2^{\dagger} H_2 + \lambda_c H_3^{\dagger} H_3) \phi^2$

 In addition, the dark scalar φ is charged under an additional Z₂ to ensure its stability.

Dark Sector

• The third doublet and the dark scalar are invariant with respect to S4:

$$H_3 \sim \mathbf{1}, \ \phi \sim \mathbf{1}$$

• We minimally couple the dark scalar to the Higgs doublets:

$$V \supset (\lambda_a H_1^{\dagger} H_1 + \lambda_b H_2^{\dagger} H_2 + \lambda_c H_3^{\dagger} H_3) \phi^2$$

 In addition, the dark scalar φ is charged under an additional Z₂ to ensure its stability.

Dark Sector

• The third doublet and the dark scalar are invariant with respect to S4:

$$H_3 \sim \mathbf{1}, \ \phi \sim \mathbf{1}$$

• We minimally couple the dark scalar to the Higgs doublets:

$$V \supset (\lambda_a H_1^{\dagger} H_1 + \lambda_b H_2^{\dagger} H_2 + \lambda_c H_3^{\dagger} H_3) \phi^2$$

 In addition, the dark scalar φ is charged under an additional Z₂ to ensure its stability.

Scalar Potential

The S4 symmetry **dictates the analytical form** of the scalar potential:

$$\begin{split} V &= -\mu_{1}^{2} \left(H_{1}^{\dagger}H_{1}\right) - \mu_{2}^{2} \left(H_{2}^{\dagger}H_{2}\right) - \mu_{3}^{2}H_{3}^{\dagger}H_{3} + \lambda_{1} \left(H_{1}^{\dagger}H_{1} + H_{2}^{\dagger}H_{2}\right)^{2} + \lambda_{2} \left(H_{2}^{\dagger}H_{1} - H_{1}^{\dagger}H_{2}\right)^{2} \\ &+ \lambda_{3} \left[\left(H_{1}^{\dagger}H_{2} + H_{2}^{\dagger}H_{1}\right)^{2} + \left(H_{1}^{\dagger}H_{1} - H_{2}^{\dagger}H_{2}\right)^{2} \right] \\ &+ \lambda_{4} \left[\left(H_{1}^{\dagger}H_{2} + H_{2}^{\dagger}H_{1}\right) \left(H_{1}^{\dagger}H_{3} + H_{3}^{\dagger}H_{1}\right) + \left(H_{1}^{\dagger}H_{1} - H_{2}^{\dagger}H_{2}\right) \left(H_{2}^{\dagger}H_{3} + H_{3}^{\dagger}H_{2}\right) \right] \\ &+ \lambda_{5} \left(H_{3}^{\dagger}H_{3}\right) \left(H_{1}^{\dagger}H_{1} + H_{2}^{\dagger}H_{2}\right) + \lambda_{6} \left[\left(H_{3}^{\dagger}H_{1}\right) \left(H_{1}^{\dagger}H_{3}\right) + \left(H_{3}^{\dagger}H_{2}\right) \left(H_{2}^{\dagger}H_{3}\right) \right] \\ &+ \lambda_{7} \left[\left(H_{3}^{\dagger}H_{1}\right)^{2} + \left(H_{3}^{\dagger}H_{2}\right)^{2} + \left(H_{1}^{\dagger}H_{3}\right)^{2} + \left(H_{2}^{\dagger}H_{3}\right)^{2} \right] + \lambda_{8} \left(H_{3}^{\dagger}H_{3}\right)^{2} \end{split}$$

We have 8 quartic couplings plus 3 couplings from the scalar portals to the DM sector, 1 mass parameter of the dark scalar and the quotient of the Higgs independent vevs make a total of 13 free parameters.

Electroweak symmetry breaking

With EWSB the Higgs doublets acquire non-zero vacuum expectation values:

- For simplicity we assume the alignment of two of these vevs (those of H₁ and H₂): v₁ = v₂
- The mass spectra is obtained by diagonalizing the mass matrices, for example for the **CP-even physical scalars** (*h*, *H* and *H*₃):

 $diag(m_h^2, m_H^2, m_{H3}^2) = Z^H M_s^2 Z^{HT}$

We denote by h the SM Higgs-like scalar.

Electroweak symmetry breaking

With EWSB the Higgs doublets acquire non-zero vacuum expectation values:

- For simplicity we assume the alignment of two of these vevs (those of H₁ and H₂): v₁ = v₂
- The mass spectra is obtained by diagonalizing the mass matrices, for example for the **CP-even physical scalars** (*h*, *H* and *H*₃):

 $diag(m_h^2, m_H^2, m_{H3}^2) = Z^H M_s^2 Z^{HT}$

We denote by h the SM Higgs-like scalar.

Electroweak symmetry breaking

With EWSB the Higgs doublets acquire non-zero vacuum expectation values:

- For simplicity we assume the alignment of two of these vevs (those of H₁ and H₂): v₁ = v₂
- The mass spectra is obtained by diagonalizing the mass matrices, for example for the **CP-even physical scalars** (*h*, *H* and *H*₃):

$$diag(m_h^2, m_H^2, m_{H3}^2) = Z^H M_s^2 Z^{HT}$$

• We denote by **h** the SM Higgs-like scalar.

CP-even scalars

• The mass matrix of the CP-even scalars has the form:

$$M_s^2 = \begin{pmatrix} a & d & f \\ d & b & e \\ f & e & c \end{pmatrix}$$

where each matrix element is a function of the quartic couplings in the scalar potential.

• Simplifying further with the aid of the minimization conditions, for this particular model the eigenvalues of the mass matrix can be approximated by analytical equations...

CP-even scalars

• The mass matrix of the CP-even scalars has the form:

$$M_s^2 = \begin{pmatrix} a & d & f \\ d & b & e \\ f & e & c \end{pmatrix}$$

where each matrix element is a function of the quartic couplings in the scalar potential.

• Simplifying further with the aid of the minimization conditions, for this particular model the eigenvalues of the mass matrix can be approximated by analytical equations...

CP-even scalars

We obtain:

$$m_{h}^{2} = \frac{1}{3}(a+b+c-2\sqrt{x_{1}}\cos[\Xi_{s}/3])$$

$$m_{H}^{2} = \frac{1}{3}(a+b+c+2\sqrt{x_{1}}\cos[(\Xi_{s}-\pi)/3])$$

$$m_{H3}^{2} = \frac{1}{3}(a+b+c+2\sqrt{x_{1}}\cos[(\Xi_{s}+\pi)/3])$$

where

$$x_1 = a^2 + b^2 + c^2 - ab - ac - bc + 3(d^2 + f^2 + e^2)$$

C. Espinoza - Constraining BSM Discrete Flavor Symmetries - XXXVI DPyC-SMF Annual Meeting - September 8, 2022

CP-even scalars

And:

$$\Xi_{s} = \begin{cases} \arctan\left(\frac{\sqrt{4x_{1}^{3} - x_{2}^{2}}}{x_{2}}\right) & , \quad x_{2} > 0\\ \pi/2 & , \quad x_{2} = 0\\ \arctan\left(\frac{\sqrt{4x_{1}^{3} - x_{2}^{2}}}{x_{2}}\right) + \pi & , \quad x_{2} < 0 \end{cases}$$

with

$$\begin{array}{rcl} x_2 &=& -(2a-b-c)(2b-a-c)(2c-a-b) \\ && +9[(2c-a-b)d^2+(2b-a-c)f^2+(2a-b-c)e^2]-54def \\ \end{array}$$
Note that $\Xi_s \in [-\pi/2, 3\pi/2]$ so m_H^2 is always grater than m_h^2 but m_{H3}^2 can be smaller than m_h .

C. Espinoza - Constraining BSM Discrete Flavor Symmetries - XXXVI DPyC-SMF Annual Meeting - September 8, 2022

Sub-TeV heavy scalars

The point of showing you this is that we can focus the analysis to a region of parameter space where **all the scalars have masses sub-TeV**.

• This is achieved by imposing the condition:

$$x_2 = 0$$

 This is a quadratic equation in one of the quartic couplings (λ₅). We can always choose this parameter such that the condition is fulfilled.

Sub-TeV heavy scalars

The point of showing you this is that we can focus the analysis to a region of parameter space where **all the scalars have masses sub-TeV**.

• This is achieved by imposing the condition:

 $x_2 = 0$

 This is a quadratic equation in one of the quartic couplings (λ₅). We can always choose this parameter such that the condition is fulfilled.

In this region of parameter space defined by the slice $x_2 = 0$, the expressions for the masses simplify:

$$m_{h}^{2} = \frac{1}{3}(a+b+c-2\sqrt{x_{1}})$$
$$m_{H}^{2} = \frac{1}{3}(a+b+c+2\sqrt{x_{1}})$$
$$m_{H3}^{2} = \frac{1}{3}(a+b+c)$$

We call this slice "the symmetric gap" region, since the square of the scalar masses are separated by the same amount:

$$\Delta \equiv 2\sqrt{x_1}/3 = m_H^2 - m_{H3}^2 = m_{H3}^2 - m_h^2$$

C. Espinoza - Constraining BSM Discrete Flavor Symmetries - XXXVI DPyC-SMF Annual Meeting - September 8, 2022

Thanks to the simplification of the equations:

- Control over the values of the masses is achieved by eliminating three quartic couplings in favor of them.
- This allows us to make a scan of parameter space in which we fix the mass of *h* at around 125 GeV and take $m_{H3} < 1000$ GeV.
- Using public tools^{*} we impose hard cuts discarding points not complying with positivity and stability of the scalar potential, and exclusion limits from scalar searches at Tevatron, LEP and LHC.

* EVADE, JHEP 03 (2019), 109, HiggsBounds, Eur. Phys. J. C 80 (2020) no.12, 1211.

Thanks to the simplification of the equations:

- Control over the values of the masses is achieved by eliminating three quartic couplings in favor of them.
- This allows us to make a scan of parameter space in which we fix the mass of h at around 125 GeV and take $m_{H3} < 1000$ GeV.
- Using public tools* we impose hard cuts discarding points not complying with positivity and stability of the scalar potential, and exclusion limits from scalar searches at Tevatron, LEP and LHC.

* EVADE, JHEP 03 (2019), 109, HiggsBounds, Eur. Phys. J. C 80 (2020) no.12, 1211.

Thanks to the simplification of the equations:

- Control over the values of the masses is achieved by eliminating three quartic couplings in favor of them.
- This allows us to make a scan of parameter space in which we fix the mass of h at around 125 GeV and take $m_{H3} < 1000$ GeV.
- Using public tools* we impose hard cuts discarding points not complying with positivity and stability of the scalar potential, and exclusion limits from scalar searches at Tevatron, LEP and LHC.

* EVADE, JHEP 03 (2019), 109, HiggsBounds, Eur. Phys. J. C 80 (2020) no.12, 1211.

- Couplings of the 125 GeV SM Higgs-like scalar (SPheno, Comput. Phys. Commun. 183 (2012), 2458-2469 ,SARAH, Adv. High Energy Phys. 2015 (2015), 840780)
- Gluon fusion and b-quark associated production of scalars and their decay rates to tau leptons. (SUSHI, Comput. Phys. Commun. 184 (2013), 1605-1617)
- DM-nucleon scattering cross sections. (MicrOmegas, Comput. Phys. Commun. 231 (2018), 173-186)
- Relic density of the dark scalar. (MicrOmegas, Comput. Phys. Commun. 231 (2018), 173-186)

- Couplings of the 125 GeV SM Higgs-like scalar (SPheno, Comput. Phys. Commun. 183 (2012), 2458-2469 ,SARAH, Adv. High Energy Phys. 2015 (2015), 840780)
- Gluon fusion and b-quark associated production of scalars and their decay rates to tau leptons. (SUSHI, Comput. Phys. Commun. 184 (2013), 1605-1617)
- DM-nucleon scattering cross sections. (MicrOmegas, Comput. Phys. Commun. 231 (2018), 173-186)
- Relic density of the dark scalar. (MicrOmegas, Comput. Phys. Commun. 231 (2018), 173-186)

- Couplings of the 125 GeV SM Higgs-like scalar (SPheno, Comput. Phys. Commun. 183 (2012), 2458-2469 ,SARAH, Adv. High Energy Phys. 2015 (2015), 840780)
- Gluon fusion and b-quark associated production of scalars and their decay rates to tau leptons. (SUSHI, Comput. Phys. Commun. 184 (2013), 1605-1617)
- DM-nucleon scattering cross sections. (MicrOmegas, Comput. Phys. Commun. 231 (2018), 173-186)
- Relic density of the dark scalar. (MicrOmegas, Comput. Phys. Commun. 231 (2018), 173-186)

- Couplings of the 125 GeV SM Higgs-like scalar (SPheno, Comput. Phys. Commun. 183 (2012), 2458-2469 ,SARAH, Adv. High Energy Phys. 2015 (2015), 840780)
- Gluon fusion and b-quark associated production of scalars and their decay rates to tau leptons. (SUSHI, Comput. Phys. Commun. 184 (2013), 1605-1617)
- DM-nucleon scattering cross sections. (MicrOmegas, Comput. Phys. Commun. 231 (2018), 173-186)
- Relic density of the dark scalar. (MicrOmegas, Comput. Phys. Commun. 231 (2018), 173-186)

- LHC for couplings to the SM Higgs-like scalar h (HiggsSignals, Eur. Phys. J. C 81 (2021) no.2, 145, and references therein)
- ATLAS (LHC) for scalar production via gluon fusion and b-quark associated production (ATLAS, Phys. Rev. Lett. 125 (2020) no.5, 051801, P. Bechtle, et. al. Eur. Phys. J. C 75 (2015) no.9, 421, HiggsBounds, Eur. Phys. J. C 80 (2020) no.12, 1211, and references therein)
- XENON 1T for DM direct detection limits (XENON 1T, Phys. Rev. Lett. 121 (2018) no.11, 111302, DDcalc, Eur. Phys. J. C 77 (2017) no.12, 831, and references therein)
- PLANCK for DM relic density (PLANCK, Astron. Astrophys. 641 (2020), A6)

- LHC for couplings to the SM Higgs-like scalar h (HiggsSignals, Eur. Phys. J. C 81 (2021) no.2, 145, and references therein)
- ATLAS (LHC) for scalar production via gluon fusion and b-quark associated production (ATLAS, Phys. Rev. Lett. 125 (2020) no.5, 051801, P. Bechtle, et. al. Eur. Phys. J. C 75 (2015) no.9, 421, HiggsBounds, Eur. Phys. J. C 80 (2020) no.12, 1211, and references therein)
- XENON 1T for DM direct detection limits (XENON 1T, Phys. Rev. Lett. 121 (2018) no.11, 111302, DDcalc, Eur. Phys. J. C 77 (2017) no.12, 831, and references therein)
- PLANCK for DM relic density (PLANCK, Astron. Astrophys. 641 (2020), A6)

- LHC for couplings to the SM Higgs-like scalar h (HiggsSignals, Eur. Phys. J. C 81 (2021) no.2, 145, and references therein)
- ATLAS (LHC) for scalar production via gluon fusion and b-quark associated production (ATLAS, Phys. Rev. Lett. 125 (2020) no.5, 051801, P. Bechtle, et. al. Eur. Phys. J. C 75 (2015) no.9, 421, HiggsBounds, Eur. Phys. J. C 80 (2020) no.12, 1211, and references therein)
- XENON 1T for DM direct detection limits (XENON 1T, Phys. Rev. Lett. 121 (2018) no.11, 111302, DDcalc, Eur. Phys. J. C 77 (2017) no.12, 831, and references therein)
- PLANCK for DM relic density (PLANCK, Astron. Astrophys. 641 (2020), A6)

- LHC for couplings to the SM Higgs-like scalar h (HiggsSignals, Eur. Phys. J. C 81 (2021) no.2, 145, and references therein)
- ATLAS (LHC) for scalar production via gluon fusion and b-quark associated production (ATLAS, Phys. Rev. Lett. 125 (2020) no.5, 051801, P. Bechtle, et. al. Eur. Phys. J. C 75 (2015) no.9, 421, HiggsBounds, Eur. Phys. J. C 80 (2020) no.12, 1211, and references therein)
- XENON 1T for DM direct detection limits (XENON 1T, Phys. Rev. Lett. 121 (2018) no.11, 111302, DDcalc, Eur. Phys. J. C 77 (2017) no.12, 831, and references therein)
- PLANCK for DM relic density (PLANCK, Astron. Astrophys. 641 (2020), A6)

Likelihood function

The comparison is done through a **composite likelihood function**:

• $\log \mathcal{L} = \log \mathcal{L}_{DD} + \log \mathcal{L}_{\Omega h^2} + \log \mathcal{L}_{m_h} + \log \mathcal{L}_{ATLAS}$

• We scan the parameter space of the model to construct the **likelihood profile** and find the best fit point (BFP) that maximizes the likelihood function (Diver, Eur. Phys. J. C 77 (2017) no.11, 761, P. Scott, Eur. Phys. J. Plus 127 (2012), 138)

Phenomenology

- This "control" plot shows the mass of the SM Higgs-like scalar as a function of $\tan\beta \propto v_1/v_3$.
- **Dark regions** of the parameter space **are highly disfavored**, they correspond to small values of the likelihood function away from the maximum.

C. Espinoza – Constraining BSM Discrete Flavor Symmetries – XXXVI DPyC-SMF Annual Meeting - September 8, 2022

Phenomenology

- As expected the bright region stands around 125 GeV.
- The first result inferred from the analysis is that the model is congruent with experimental observations only for small values of tan β.

C. Espinoza – Constraining BSM Discrete Flavor Symmetries – XXXVI DPyC-SMF Annual Meeting - September 8, 2022

Heavy scalars

- This is the likelihood profile corresponding to the H₃ CP-even scalar as a function of tan β.
- The mass value of this scalar that best fits the likelihood function stands around 265 GeV.

C. Espinoza – Constraining BSM Discrete Flavor Symmetries – XXXVI DPyC-SMF Annual Meeting - September 8, 2022

Heavy scalars

• The frontier between the two blue tones approximately corresponds to **68%** of confidence level (C.L.), while the frontier with the black region corresponds to approximately **95% C.L.**

C. Espinoza – Constraining BSM Discrete Flavor Symmetries – XXXVI DPyC-SMF Annual Meeting - September 8, 2022

Heavy scalars

• The analysis allow us to constrain the mass of this scalar in between 240 and 300 GeV with a C.L. of 68%.

C. Espinoza - Constraining BSM Discrete Flavor Symmetries - XXXVI DPyC-SMF Annual Meeting - September 8, 2022

Heavy scalars

- This is the corresponding likelihood profile of the heaviest H
 CP-even scalar as a function of tan β.
- For this case the mass value that best fits the likelihood function stands around **350 GeV**.

C. Espinoza – Constraining BSM Discrete Flavor Symmetries – XXXVI DPyC-SMF Annual Meeting - September 8, 2022

Heavy scalars

• With the analysis we can limit the mass of this scalar to the range **325** - **400 GeV** at 68% of C.L.

C. Espinoza - Constraining BSM Discrete Flavor Symmetries - XXXVI DPyC-SMF Annual Meeting - September 8, 2022

CP-odd scalars

• These are the likelihood profiles associated with the **pseudo-scalars** denoted A and A2.

C. Espinoza – Constraining BSM Discrete Flavor Symmetries – XXXVI DPyC-SMF Annual Meeting - September 8, 2022
CP-odd scalars

 In these cases the analysis is not deep enough to significantly constrain the masses of these scalars.

C. Espinoza - Constraining BSM Discrete Flavor Symmetries - XXXVI DPyC-SMF Annual Meeting - September 8, 2022

Dark sector: relic density

• This is the likelihood profile for **the relic density** as a function of the dark scalar mass (not including the likelihood function of the relic density).

C. Espinoza – Constraining BSM Discrete Flavor Symmetries – XXXVI DPyC-SMF Annual Meeting - September 8, 2022

Dark sector: relic density

• We can see that in most of the explored parameter space the dark scalar contribute only in a **sub-optimal way to the observed abundance.**

C. Espinoza – Constraining BSM Discrete Flavor Symmetries – XXXVI DPyC-SMF Annual Meeting - September 8, 2022

Dark sector: relic density

 However, close to 5% of the explored parameter space comprising a mass interval in-between 800 GeV and 10 TeV can explain the observed DM abundance.

C. Espinoza – Constraining BSM Discrete Flavor Symmetries – XXXVI DPyC-SMF Annual Meeting - September 8, 2022

Dark sector: Elastic cross section

• This likelihood profile corresponds to **the elastic DM** - **nucleon cross section** as a function of the mass of the dark scalar.

C. Espinoza – Constraining BSM Discrete Flavor Symmetries – XXXVI DPyC-SMF Annual Meeting - September 8, 2022

Dark sector: Elastic cross section

• The red curve shows the **XENON 1T** experiment exclusion curve.

Dark sector: Elastic cross section

• For this observable, the mass of the dark scalar that best fits the likelihood function (not shown) stands around **1.6 TeV**.

C. Espinoza - Constraining BSM Discrete Flavor Symmetries - XXXVI DPyC-SMF Annual Meeting - September 8, 2022

Q4 MODEL

C. Espinoza - Constraining BSM Discrete Flavor Symmetries - XXXVI DPyC-SMF Annual Meeting - September 8, 2022

Q4 Model

We made² a similar analysis for a BSM model with **non-abelian Q4 discrete symmetry**:

- The discrete D_N symmetry is that of a regular polygon of N sides, and occurs in nature e.g. in poly-atomic molecules.
- The discrete non-abelian group Q₄ (or binary dihedral group with N = 4) can be seen as the group cover of D₄, and has pseudo-real representations which is advantageous for chiral theories.
- In this model we propose a scalar sector with 2 Higgs doublets and 1 real scalar singlet that **mixes with the CP-even scalars**.
- The scalar singlet is further coupled to a **right handed heavy neutrino DM candidate**.

² A. E. Cárcamo-Hernández, C. E., J. C. Gómez-Izquierdo, M. Mondragón. To appear in EPJ Plus. C. Espinoza - Constraining BSM Discrete Flavor Symmetries - XXXVI DPyC-SMF Annual Meeting - September 8, 2022

Q4 Model

We made² a similar analysis for a BSM model with **non-abelian Q4 discrete symmetry**:

- The discrete D_N symmetry is that of a regular polygon of N sides, and occurs in nature e.g. in poly-atomic molecules.
- The discrete non-abelian group Q_4 (or binary dihedral group with N = 4) can be seen as the group cover of D_4 , and **has pseudo-real representations** which is advantageous for chiral theories.
- In this model we propose a scalar sector with 2 Higgs doublets and 1 real scalar singlet that mixes with the CP-even scalars.
- The scalar singlet is further coupled to a **right handed heavy neutrino DM candidate**.

² A. E. Cárcamo-Hernández, C. E., J. C. Gómez-Izquierdo, M. Mondragón. To appear in EPJ Plus. C. Espinoza - Constraining BSM Discrete Flavor Symmetries - XXXVI DPyC-SMF Annual Meeting - September 8, 2022

Q4 Model

We made² a similar analysis for a BSM model with **non-abelian Q4 discrete symmetry**:

- The discrete D_N symmetry is that of a regular polygon of N sides, and occurs in nature e.g. in poly-atomic molecules.
- The discrete non-abelian group Q_4 (or binary dihedral group with N = 4) can be seen as the group cover of D_4 , and **has pseudo-real representations** which is advantageous for chiral theories.
- In this model we propose a scalar sector with 2 Higgs doublets and 1 real scalar singlet that **mixes with the CP-even scalars**.
- The scalar singlet is further coupled to a **right handed heavy neutrino DM candidate**.

² A. E. Cárcamo-Hernández, C. E., J. C. Gómez-Izquierdo, M. Mondragón. To appear in EPJ Plus. C. Espinoza - Constraining BSM Discrete Flavor Symmetries - XXXVI DPyC-SMF Annual Meeting - September 8, 2022

Q4 Model

We made 2 a similar analysis for a BSM model with **non-abelian Q4 discrete symmetry**:

- The discrete D_N symmetry is that of a regular polygon of N sides, and occurs in nature e.g. in poly-atomic molecules.
- The discrete non-abelian group Q_4 (or binary dihedral group with N = 4) can be seen as the group cover of D_4 , and **has pseudo-real representations** which is advantageous for chiral theories.
- In this model we propose a scalar sector with 2 Higgs doublets and 1 real scalar singlet that **mixes with the CP-even scalars**.
- The scalar singlet is further coupled to a **right handed heavy neutrino DM candidate**.

² A. E. Cárcamo-Hernández, C. E., J. C. Gómez-Izquierdo, M. Mondragón. To appear in EPJ Plus. C. Espinoza - Constraining BSM Discrete Flavor Symmetries - XXXVI DPyC-SMF Annual Meeting - September 8, 2022

Q4: Mass spectra of the scalar sector

• In this model we have **3 physical CP-even scalars** one of which corresponds to a SM Higgs-like, the other two are heavier and denoted *H*₃ and *H*.

C. Espinoza – Constraining BSM Discrete Flavor Symmetries – XXXVI DPyC-SMF Annual Meeting - September 8, 2022

Q4: Mass spectra of the scalar sector

This is the likelihood profile for the H₃ scalar showing the dependence of the quotient of the Higgs vevs (tan β) in the mass of H₃.

C. Espinoza – Constraining BSM Discrete Flavor Symmetries – XXXVI DPyC-SMF Annual Meeting - September 8, 2022

Q4: Mass spectra of the scalar sector

• Solid lines are contours of 68% and 95% of C.L. and the star points to the best fit point (BFP) or maximum of the composite likelihood function.

C. Espinoza – Constraining BSM Discrete Flavor Symmetries – XXXVI DPyC-SMF Annual Meeting - September 8, 2022

Q4: Mass spectra of the scalar sector

• For this model the mass of the *H*₃ scalar that maximizes the composite likelihood is found to be around **260 GeV** and contained in an interval **in-between 150 - 350 GeV** at 68% of C.L.

C. Espinoza – Constraining BSM Discrete Flavor Symmetries – XXXVI DPyC-SMF Annual Meeting - September 8, 2022

Q4: Mass spectra of the scalar sector

• These are the likelihood profiles for the scalar *H* and the **pseudo-scalar** *A*. The mass of *A* turns out to be around **720 GeV** at the BFP while the scalar *H* is very heavy around **33 TeV** at the BFP (no symmetric gap present in this model so the analysis is made over the full parameter space).

C. Espinoza - Constraining BSM Discrete Flavor Symmetries - XXXVI DPyC-SMF Annual Meeting - September 8, 2022

Q4 dark sector: relic density

 Being the dark matter candidate a spin 1/2 fermion the phenomenology is somewhat different from the scalar DM case.

C. Espinoza - Constraining BSM Discrete Flavor Symmetries - XXXVI DPyC-SMF Annual Meeting - September 8, 2022

Q4 dark sector: relic density

• This is the likelihood profile of the **relic density** as a function of the mass of the DM fermion (not including the likelihood function for the relic density).

C. Espinoza – Constraining BSM Discrete Flavor Symmetries – XXXVI DPyC-SMF Annual Meeting - September 8, 2022

Q4 dark sector: relic density

 As this plot evidences, DM fermion masses below around 2.5 TeV would be overproduced during the freeze-out epoch, so they are excluded despite being consistent with e.g. direct detection constraints (as some regions below 2 TeV have large likelihood function value with respect to the direct detection data).

C. Espinoza - Constraining BSM Discrete Flavor Symmetries - XXXVI DPyC-SMF Annual Meeting - September 8, 2022

Q4 dark sector: relic density

From this analysis we find that this DM candidate can accommodate the observed DM abundance if its mass is in-between 2.5 and 20 TeV, we further find the BFP (not shown) corresponds to a DM mass of 6 TeV.

C. Espinoza - Constraining BSM Discrete Flavor Symmetries - XXXVI DPyC-SMF Annual Meeting - September 8, 2022

Q4 dark sector: Elastic scattering cross section

 This is the likelihood profile corresponding to the elastic spin-independent DM-nucleon scattering cross section. We compare with exclusion limits of the XENON 1T experiment and its projection to 200 tons.

C. Espinoza – Constraining BSM Discrete Flavor Symmetries – XXXVI DPyC-SMF Annual Meeting - September 8, 2022

Q4 dark sector: Elastic scattering cross section

• The analysis shows that more than half the currently allowed region will be probed with the high sensitivity of the 200 ton future experiment.

C. Espinoza - Constraining BSM Discrete Flavor Symmetries - XXXVI DPyC-SMF Annual Meeting - September 8, 2022

CONCLUSIONS

C. Espinoza - Constraining BSM Discrete Flavor Symmetries - XXXVI DPyC-SMF Annual Meeting - September 8, 2022

Conclusions

- We have employed the strategy of using the phenomenology of the scalar sector of BSM models to constrain discrete symmetries complementing the usual ones coming from FCNC limits.
- When the BSM model contains Higgs portals to the DM sector the constraints from the scalar sector influence also the phenomenology of the DM candidate.

Conclusions

- We exemplified this strategy analyzing the scalar and DM sectors of two BSM models with respective discrete symmetries S4 and Q4.
- The results of these analysis are complementary and enrich the respective matter sector analysis such as those coming from the generation of the fermion masses and mixing patterns.

Acknowledgments

- I would like to thank my collaborators A.E. Cárcamo-Hernández, J.C. Gómez-Izquierdo, J. Marchant and M. Mondragón.
- I would like to thank the support of Conacyt Cátedra No. 341 and IF-UNAM.

Thank you for your attention!

C. Espinoza - Constraining BSM Discrete Flavor Symmetries - XXXVI DPyC-SMF Annual Meeting - September 8, 2022