Consejo Nacional de Ciencia y Tecnologia

Entanglement entropy in high energy collisions of electrons and protons

Martin Hentschinski
Universidad de las Americas Puebla
Ex-Hacienda Santa Catarina Martir S/N
San Andrés Cholula
72820 Puebla, Mexico
martin.hentschinski@gmail.com

Based on

MH, K. Kutak, Eur.Phys.J.C 82 (2022) 2, 111 arXiv:2110.06156
MH, K. Kutak, R. Straka; arXiv:2207.0943
XXXVI Annual Meeting of the Division of Particles and Fields, Setpember 8-10, 2022, online

Exploring nuclear structure in electron nucleus collisions

Proton breaks up = Deep Inelastic Scattering (DIS)

Elastic scattering: either $Q=0$ or $x=1$

Photon virtuality (=resolution)
$Q^{2}=-q^{2}, \quad \lambda \sim \frac{1}{Q}$
Bjorken x
$x_{B j}=\frac{Q^{2}}{2 p \cdot q}$
"Mass" of the system X
$W^{2}=(p+q)^{2}=M_{p}^{2}+\frac{1-x}{x} Q^{2}$

A NC-DIS event with two jets $e p \rightarrow e^{\prime} \mathrm{Jet}_{1} \mathrm{Jet}_{2}$

> Puzzle:
> proton = pure quantum state \rightarrow zero von
> Neumann entropy
> But produce a plethora of particles in DIS reaction

Possible relation to the

Einstein-Podolsky-Rosen (EPR) paradox

- 2 quantum systems are allowed to interact initially
- Later separated
- Measure physical observable of one system \rightarrow immediate effect on conjugate observable in 2nd system
- Textbook example: $2 e^{-}$in spin singlet etc.

$$
|00\rangle=\frac{1}{\sqrt{2}}(|\uparrow\rangle|\downarrow\rangle-|\downarrow\rangle|\uparrow\rangle)
$$

Einstein-Podolsky-Rosen (EPR) paradox in DIS

Standard argument

- proton boosted to infinite momentum frame + probe 1 quark with virtual photon
- This quark is casually disconnected from the rest of the proton, during the interaction
- Reason why $\sigma_{\text {hadron }}=\hat{\sigma}_{\text {parton }} \otimes P D F$ works

Interaction of virtual photon with 1 quark in Deep Inelastic electron proton Scattering (DIS)

Einstein-Podolsky-Rosen (EPR) paradox in DIS

Interaction of virtual photon with 1 quark in Deep Inelastic electron proton Scattering (DIS)

Standard argument

- proton boosted to infinite momentum frame + probe 1 quark with virtual photon
- This quark is casually disconnected from the rest of the proton, during the interaction
- Reason why $\sigma_{\text {hadron }}=\hat{\sigma}_{\text {parton }} \otimes P D F$ works

But:

- struck quark + remainder form color singlet (confinement) \rightarrow strongly correlated quantum system
- EPR at subatomic scale: strongly correlated, but casually disconnected
[Tu, Kharzeev, Ullrich; 1904.11974]
- Entangled system
- Observed entropy = entanglement entropy?

Entanglement entropy

Entanglement:
2 subsystems A and B

$$
\left|\Psi_{A B}\right\rangle=\sum_{j, k} \alpha_{j k}\left|\Psi_{A, j}\right\rangle \otimes\left|\Psi_{B, k}\right\rangle \text { is entangled, but a }
$$

pure state

$$
\rightarrow S_{A B}=-\operatorname{tr} \hat{\rho}_{A B} \ln \hat{\rho}_{A B}=0
$$

$\hat{\rho}=|\Psi\rangle\langle\Psi|$
Density matrix of a pure state

Entanglement entropy

Entanglement:
2 subsystems A and B

Combined state can

- factorize $\left|\Psi_{A B}\right\rangle=\left|\Psi_{A}\right\rangle \otimes\left|\Psi_{B}\right\rangle$
- Or not (it is "entangled") $\left|\Psi_{A B}\right\rangle=\sum_{j, k} \alpha_{j k}\left|\Psi_{A, j}\right\rangle \otimes\left|\Psi_{B, k}\right\rangle$

Hilbert space: $\mathscr{H}_{A B}=\mathscr{H}_{A} \otimes \mathscr{H}_{B}$
$\left|\Psi_{A B}\right\rangle=\sum_{j, k} \alpha_{j k}\left|\Psi_{A, j}\right\rangle \otimes\left|\Psi_{B, k}\right\rangle$ is entangled, but a
pure state
$\rightarrow S_{A B}=-\operatorname{tr} \hat{\rho}_{A B} \ln \hat{\rho}_{A B}=0$
$\hat{\rho}=|\Psi\rangle\langle\Psi|$
Density matrix of a pure state

Entanglement \& density matrix

Now: do not observe system B
QM: anything can happen in $B \rightarrow$ sum over all possibilities that can occur in the system B

For the density matrix of system A (observed): sum over all B states

Use Mathematical trick
(Schmidt decomposition):
Density matrix of a mixed system,
if state $\left|\Psi_{A B}\right\rangle$ was entangled

Entanglement \& density matrix

Now: do not observe system B
QM: anything can happen in $B \rightarrow$ sum over all possibilities that can occur in the system B

For the density matrix of system A (observed): sum over all B states

Use Mathematical trick
(Schmidt decomposition):

Density matrix of the subsystem A: $\hat{\rho}_{A}=\operatorname{tr}_{B} \hat{\rho}_{A B}=\sum p_{j}\left|\Psi_{A, j}\right\rangle\left\langle\Psi_{A, j}\right|, \quad p_{j}=|\beta|_{j}^{2}$
Density matrix of a mixed system,
if state $\left|\Psi_{A B}\right\rangle$ was entangled

Deep Inelastic Scattering

DIS: do not observe the entire proton, but only parts of it
[Gribov, loffe, Pomeranchuk, SJNP, 2, 549 (1966)];
[loffe, PLB 30B, 123, (1969)]
[Kharzeev, Levin; 1702.03489]

- Observed entropy = entanglement entropy

Demonstrating this, is a challenge ...

- Pure state at $Q^{2} \rightarrow 0=$ observe entire proton
- But this is the region, where $\alpha_{s}(Q)$ is not small \neq perturbation theory; concept of quarks and gluons as degrees of freedom at least difficult
- Unobserved region subject to non-perturbative dynamics

Result by Kharzeev \& Levin

- Entanglement entropy was calculated for 2D conformal field theories [Holzhey, Larsen, Wilczek; 1994], [Calabrese, Cardi; 2006]
L : studied region
ϵ : regularization scale $=$ resolution
- Identify $\epsilon=\frac{1}{m} \ll L=\frac{1}{x} \epsilon$, find $S=\frac{c}{3} \ln 1 / x$

$$
S=\frac{c}{3} \ln \frac{L}{\epsilon}
$$

- Entropy in $1+1$ toy model of non-linear QCD evolution (not entanglement): $S=\Delta \ln (1 / x)$

In the proton rest frame:

- parton (of the the photon) fluctuation over
 long. distance $L=\frac{1}{m_{p} x}$
- Proton probes partonic fluctuation with resolution $\epsilon=\frac{1}{m} \ll L=\frac{1}{x} \epsilon$
- Proton probes only region $\epsilon \ll L$ of the entire interaction

$$
S=\frac{c}{3} \ln \frac{L}{\epsilon}=\frac{c}{3} \ln \frac{1}{x}
$$

Figure taken from [Kharzeev, Levin; 1702.03489]

$1+1$ non-linear model of non-linear QCD evolution in $Y=\ln (1 / x)$
[Levin, Lubinsky; arXiv:hep-ph/0308279]
$p_{n}(Y)$ probability to encounter n color dipoles (~gluons) in the proton

Subject to Cascade equation:

$$
\frac{d}{d Y} p_{n}(Y)=-\Delta n p_{n}(Y)+\Delta(n-1) p_{n-1}(Y)
$$

Yields entropy $S=-\sum_{n} p_{n} \ln p_{n} \rightarrow \Delta Y=\Delta \ln 1 / x$

$1+1$ non-linear model of non-linear QCD evolution in $Y=\ln (1 / x)$
[Levin, Lubinsky; arXiv:hep-ph/0308279]
$p_{n}(Y)$ probability to encounter n color dipoles (~gluons) in the proton

Subject to Cascade equation:

$$
\frac{d}{d Y} p_{n}(Y)=-\Delta n p_{n}(Y)+\Delta(n-1) p_{n-1}(Y)
$$

Yields entropy $S=-\sum p_{n} \ln p_{n} \rightarrow \Delta Y=\Delta \ln 1 / x$
Conformal field theory $\quad S=\frac{c}{3} \ln 1 / x$

Result by Kharzeev \& Levin

- $1+1$ toy model of non-linear QCD evolution:
- gluon distribution function $x g(x)=e^{\Delta \ln 1 / x}$
- $\left\langle n_{\text {gluons }}\right\rangle=x g(x)$
- Identification: $S=\ln [x g(x)]=\ln n_{\text {gluons }} \cdots \cdots$
- Additional proposal: (partonic) entropy = entropy of final state hadrons $S_{h} \sim S$
\rightarrow test this through event-by-event measurements of the hadronic final state in DIS

Where measure this?

- future: EIC
- Right now: analyze existing data of HERA $\rightarrow \mathrm{H} 1$ Collaboration

$$
S_{\text {hadron }}=\sum P(N) \ln P(N)
$$

$P(N)$: particle multiplicity distribution

H1 collaboration: results [arXiv:2011.01812]

- [Kharzeev, Levin; 1702.03489] Particle \# at certain $\ln 1 / x$:
$n_{\text {partons }}=x g\left(x, Q^{2}\right), \quad S(x, Q)=\ln \left[x g\left(x, Q^{2}\right)\right]$
- Reason: glue dominates at low x
- H1 collaboration: LO HERAPDF
- "The predictions from the entanglement approach based on the gluon density again fail to describe $S_{\text {hadron }}$ in magnitude. However, at low Q the slope of $S_{\text {gluon }}$ has some similarities with that observed for Shadron, while it becomes steeper than observed with increasing $Q^{\prime \prime}$
[Kharzeev, Levin; 2102.09773]: try something based on LO BFKL \& seaquarks
- XXXVI Annual Meeting DPyC SMF

Our approach: PDFs from unintegrated gluon

[Catani, Hautmann, NPB 427 (1994) 475]: idea: use collinear factorization in light-cone gauge [Curci, Furmanski, Petronzio; NPB 175 (1980) 27]
\rightarrow calculate all order low x resumed DGLAP splitting functions

- Yields Transverse Momentum splitting function for gluon quark splitting
- Splitting = collinear PDF with partonic initial state

- Can calculate gluon and seaquark PDFs from BFKL unintegrated gluon distribution, subject to $\ln (1 / x)$ evolution
see also [Hautmann, MH, Jung; 1205.1759]

Based on [Kharzeev, Levin; 2102.09773]: only seaquark \rightarrow not even close to data Gluon alone is better

Proposal: why \# of gluons, better: \# of partons = quarks + gluons

Great happiness, but there are some flaws ...

- incorrect normalization constant for HSS gluon \rightarrow correct constant overshoots data
- H1 collaboration measures charged hadron multiplicity, yet we calculate entropy for all hadrons roughly related by a factor 2/3
- In the model: $x g(x)=C \cdot e^{\Delta Y}$ possible + possible (pre-

$$
S_{\text {part. }}(x)=\ln \left[\frac{x g(x)}{B}\right]+1+\mathcal{O}\left[\frac{B}{x g(x)}\right]
$$

asymptotic constant in expansion of entropy)
for $S \sim 3.5$, this makes a difference

Integrate PDF (somehow) number of patrons
$n_{g}\left(Q^{2}\right)=\int_{0}^{1} d x g\left(x, Q^{2}\right)$,
H1: (seems) \# of partons in a certain bin
$n_{g}(\bar{x})=\int_{x_{\min }}^{x_{\max }} d x g\left(x, Q^{2}\right)$,
Problem: depends on bin size
\# of partons/bin size (and infinitesimal limit)

$$
\bar{n}_{g}\left(x, Q^{2}\right)=\frac{d n_{g}}{d \ln (1 / x)}=x g\left(x, Q^{2}\right) .
$$

Updated plots

$5<Q^{2}<10 \mathrm{GeV}^{2}$

Still with normalization issue, x-dependence well described

Include now LO HERAPDF works actually pretty well!

Why do we care?

Thanks a lot!
M. Hentschinski (UDLAP)

- 08/09/22
- XXXVI Annual Meeting DPyC SMF
First steps: towards low Q^{2}

Appendix

