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Jet substructure

● Main idea: organizing jet constituents 
4-momenta into intelligible and transparent 
observables.

Resilience to soft radiation.

● Experimental precision to challenge 
state-of-the-art pQCD calculations and 
constrain parton shower & hadronization 
models of MC generators.

● A field in rapid development!
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Additional inputs for V/H/t vs q/g jet discrimination.

arXiv:2109.03340

Z+jet, quark enriched Dijet, gluon enriched

Soft drop grooming
(algorithm to find the 1st
hard subjet)

https://arxiv.org/abs/2109.03340
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Lund diagrams: a 2D representation of the phase-space of 1→2 splittings

Used for parton shower and jet substructure techniques 
developments.

Experimental proxy for them can be constructed with 
iterative declustering techniques.
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F. Dreyer, G. Salam, G. Soyez, 
JHEP12(2018)064
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Primary Lund plane
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Constructing the primary Lund jet plane
We recluster the constituents of an anti-kT jet using 
the Cambridge–Aachen (C/A) algorithm.

C/A sequentially combines the closest pairs of 
particles (or proto-jets) at each step of the clustering 
process (small →  large angles).

Then, the C/A jet is declustered iteratively
(large →  small angles).

The transverse momentum and splitting angle of the 
soft prong (emission) relative to the hard prong 
(core) are extracted at each declustering iteration,

Gregory Soyez’ sketch

Start with 
C/A jet

Cambridge–Aachen declustering

large angles small angles
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Iterate until the core is a single particle.

Recipe proposed by F. Dreyer, G. Salam, G. Soyez, JHEP12(2018)064
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A specific jet is represented as a number of points in the Lund plane

5

1

2

3

4

5

1

2

3

4

5

ln(R/ΔR)

large angles small angles

ln
(k

T)

Kinematical edge corresponds to



Cristian Baldenegro (LLR)

6G. Salam slide

Gavin Salam’s slide
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Different mechanisms contributing to jet formation can be 
isolated in the Lund plane F. Dreyer, G. Salam, G. Soyez, 
JHEP12(2018)064

Main observable is the 2D emission density:

At LO in the soft- and collinear limit of pQCD, the Lund plane 
is proportional to αS

→ the running of  αS(kT)  sculpts the Lund plane density.
CR = CF = 4/3 for quark jets and CR = CA = 3 for gluon jets.

Can be used to constrain MC generators and is amenable to 
analytical pQCD calculations.

The Lund plane density

A. Lifson, G. Salam, G. Soyez,
JHEP10(2020)170
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Previously measured by ATLAS
and ALICE Collaborations.

Measuring it for the first time in CMS
(SMP-22-007, under review)

F. Dreyer, G. Salam, G. Soyez,
JHEP12(2018)064

pQCD calculation
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Run-2 analysis
● 13 TeV pp collisions, 138 fb-1 of data.

● anti-kT R = 0.4 and R = 0.8 jets with pileup mitigation.

● Lund plane is extracted for jets with pT > 700 GeV 
and |y| < 1.7

● Jet substructure using charged-particles inside the 
jet with pT > 1 GeV and |η| < 2.5 (better angular 
and momentum resolution).

● Jets are ungroomed (we want to see everything!)

We focus on high-pT jets to allow enough phase space for 
perturbative splittings (kTmax = ½ pTjet ΔR ).
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About 60-70% of the jets are quark-jets
w/ our selection. 

CMS, arXiv:2109.03340

https://arxiv.org/abs/2109.03340
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Detector-level Lund jet planes
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0.005 < ΔR < 0.8 0.4 < kT < 280 GeV
(for pTjet = 700 GeV)

Kinematic range for measurement:

R=0.4 R=0.8
(~pixel pitch)

Work in Progress Work in Progress
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Unfolding the Lund plane to stable charged-particle level
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1D unfolding
for number of 
jets for 
normalization 
(“bookkeeping”)

3D unfolding for
for number of emissions
(substructure)
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Corrections derived with uniquely matched truth-level and det-level splittings.

Geometrical matching with window
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Work in Progress Work in Progress
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Unfolding the Lund plane to stable charged-particle level
1. Apply matching purity corrections to raw 

Lund plane (LP*purity).

2. 3D unfold purity-corrected Lund plane 
(pTjet, kT, ΔR)
+ 1D unfolding of jet pT for normalization 
purposes.

We use iterative Bayesian unfolding. 
PYTHIA8 CP5 (nominal) and HERWIG7 CH3 
are used to construct response matrices.

3. Apply matching efficiency corrections 
(LP*1/efficiency). This is the fully corrected 
Lund jet plane.
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1D unfolding of 
pTjet spectra for 
normalization

3D unfolding for
for Nemissions
(substructure)
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Fully corrected Lund planes
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R=0.4 R=0.8

Accessible only with R =0.8

Work in Progress Work in Progress



Cristian Baldenegro (LLR)

MPI

ISR

Plateau due to 
running coupling

hadronization

Fully corrected Lund plane
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Work in Progress
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Systematic uncertainties
Dominant (2–10%):

● MC modeling (herwig7 vs pythia8)
● Track inefficiency uncertainties

Subleading ( < 1%):

● Response matrix stats
● Regularization bias
● Pileup reweighting uncertainties
● Jet energy corrections (JEC) and resolution 

uncertainties (JER)
● HEM15/16 module malfunction in 2018

Total experimental uncertainties are of the order of 2–5% 
throughout (most of) the Lund plane; they increase to 
10% at the kinematic edge of the Lund plane (z = 0.5).
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Work in Progress
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High-kT
(perturbative region)
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Low-kT
(nonperturbative region)

PYTHIA8 generates more splittings in nonperturbative region by 10-20%.

Work in Progress Work in Progress
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Wide angles Small angles
(collinear limit)

Strong constraints on parton shower & hadronization in H7 and P8
17

Work in Progress Work in Progress



Cristian Baldenegro (LLR)

Running coupling in the jet radiation pattern

naïve LO prediction with 1-loop 
β-function, nf = 5, and ΛQCD = 0.2 GeV,
CR =CF = 4/3 yields reasonable 
description of data.
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Recall LO pQCD prediction,

In principle, one could extract αS 
from the Lund plane. 

Work in Progress
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Summary & prospects
● Jet radiation pattern mapped to Lund plane for R = 0.4 and R = 0.8 jets.

Running of αS sculpts the emission density.

● Strong constraints on MC generators in perturbative and nonperturbative 
regions.

● Plans for a comparison with NLO+LL+NP analytical calculations.

● Planning to go for a public conference note this Fall.
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BACK-UP

20



Cristian Baldenegro (LLR)

21

Later times

Early times

Medium-induced 
radiation

Unresolved
color charges
(coherence)

Resolved color 
charges
(decoherence)

Outside medium
(vacuum)

ln(kT/GeV)

ln(1/ΔR)

Lund jet plane in heavy-ion collisions

Can it be measured in 
AA collisions?

More challenging due 
to UE

Density of emissions does not obey 
vacuum rules
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In contact with theorists for NLO+LL+NP calculations for paper

A. Lifson, G. Salam, G. Soyez, JHEP10(2020)170
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Existing calculations are precise within 5-7% in perturbative region.
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Purity and efficiency corrections

Purity (efficiency) corrections on the order of 80-95% (75-95%). Corrections w/ PYTHIA8 and HERWIG7 are the same within 1-3%. 23

Work in Progress
Work in Progress
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Response matrices (1D projections)
Nearly diagonal response in ln(kT) and ln(R/ΔR). Losses at high kTtrue due to tracking inefficiencies. 
Mismatches at high kT true.

24

Work in Progress Work in Progress
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Systematic uncertainties (AK8 jets)

Dominant (2–10%):

● MC modeling (herwig7 vs pythia8)
● Track inefficiency uncertainties

Subleading ( <~ 1%):

● Response matrix stats
● Pileup reweighting uncertainties
● Regularization bias
● Jet energy corrections (JEC) and resolution 

uncertainties (JER)
● HEM15/16 issue (2018 data)

Total experimental uncertainties are of the order of 2–5% 
throughout (most of) the Lund plane; they increase to 
~12% at the kinematic edge of the Lund plane (z = 0.5).
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High-kT
(perturbative region)

26

Low-kT
(nonperturbative region)

R=0.8 results
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Wide angles Small angles
(collinear limit)

Strong constraints on parton shower & hadronization in H7 and P8
27

R=0.8 results



Comparison with ATLAS measurement (ln(1/z) vs ln(R/ΔR) )

We match ATLAS’ jet selection (pTjet1 > 675 GeV, pTjet2/pTjet1 > 2/3, |ηJet| < 2.1 , R = 0.4)

arXiv:2004.03540

z=pTsoft/(pTsoft+pThard)Unfolded Lund plane

28

https://arxiv.org/abs/2004.03540


Mismatches are more likely to occur when pTsoft ≈ pThard
Mismatches cumulate at zTruth = pTsoft/(pTsoft+pThard) ≈ 0.5, which is the edge of the Lund plane.

pTsoft ≈ pThard, z ≈ 0.5, sensitivity to PU

29

Mismatches zTruth
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Mismatched splittings
2% of the splittings are wrongly matched. Large angle, high-kT true splittings might be mismatched to small angle, 
low-kT det-level splittings. The reco-level C/A tree history diverges from the truth-level C/A tree history.

Mismatches are irreducible and need to be modelled in the response matrix.

30mismatches

example 
of mismatches

1

23

Work in ProgressWork in Progress
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Mismatches are more likely to occur when pTsoft ≈ pThard
Pileup tracks that are not successfully removed by PUPPI will be clustered.
If pTsoft ≈ pThard at truth-level, the soft prong could be promoted to hard prong at reco-level.

Also, due to tracking inefficiencies, the hard prong can be demoted to soft prong at reco-level.

Reco-level jetParticle-level jet

soft prong

hard prong

soft prong → hard prong

hard prong → soft prong

pileup vertex 31lost track
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Existing measurements by ATLAS and ALICE

ATLAS used the ln(1/z) vs ln(1/ΔR) representation using
pT > 675 GeV AK4 jets. Separation of perturbative and 
nonperturbative regions is more difficult in this picture.

ALICE used AK4 jets with 20 < pTjet < 120 GeV 
using the ln(kT) vs ln(1/ΔR) representation. 
Sensitivity to low-kT splittings at wide angles.

https://arxiv.org/abs/2004.03540
https://cds.cern.ch/record/2759456

32

https://arxiv.org/abs/2004.03540
https://cds.cern.ch/record/2759456
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Lund plane can be used as a tagger: 
W-jet vs QCD jet

Invariant masses manifest as diagonal 
cuts in the LP.

Large angle, hard splittings suppressed 
due to color-singlet nature of W boson.

Excellent bkg rejection vs signal efficiency 
performance (possibly better than mass + 
jet-shape discriminators).

33Gavin Salam’s slide

F. Dreyer, G. Salam, G. Soyez, JHEP12(2018)064

W mass
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Medium-induced 
radiation

Resolved color 
charges
(decoherence)

Outside medium
(vacuum)

ln(kT/GeV)

ln(1/ΔR)

z = ½ 

Can we access the basic building blocks of medium-induced radiation as we 
do in pp?

Can we measure the 
full Lund plane in AA?
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Fake splittings due to UE in AA collisions at large ΔR
Subjets w/ UE (embedded)Subjets w/o UE (no embedding)
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Correspondence with true emissions is lost
→ not unfoldable at large angles

Strategies to mitigate large UE:

● Analyze one sufficiently hard emission (grooming). One can then 
use tighter grooming conditions (large zcut).

● Increase jet pT.

● Lund jet plane at small ΔR ≪ R

● Heavy-flavor subjets; ensures subjet is not from uncorrelated 
background.

Fake splittings

ALI-SIMUL-155665
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Other issues in AA jet declustering measurements
● Kinematical bias; broad early hard 

vacuum showers → jet is more 
quenched.

● Quark/gluon fraction not well-known in 
AA collisions.

● Medium-response may have an effect at 
large angles (subject to modeling)

Some of these effects can be mitigated with 
quark-enriched samples (V-jet, HF-tagged jets), 
which are statistically hungry. Will benefit 
greatly from upcoming Run-3 data.

See Bharadwaj’s talk on ɣ+jet substructure.
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quark
Unquenched
spectra

Measured jet pT

Quenched
gluon jet

Quenched
quark jet

dN/dpT gluon

Final energy selection Initial energy selection

Unquenched jets

Quenched jets

Du, Pablos, Tywoniuk, JHEP 21 (2020), 20636
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Soft drop grooming:

Decluster until you find the first subject that satisfies

Line of constant z = zCut  (β= 0)

Jet grooming in AA collisions
Advantages:

✅  Suppression of UE and non perturbative 
effects with increasingly large zCut.

✅  Calculable with pQCD techniques.

✅  Can be unfolded.

Disadvantages:

❌ Information loss (exactly one emission 
per jet).

❌ Reduction of phase-space due to zCut 
(highly asymmetric subjets are removed).

zg=

ln(kT/GeV)

ln(1/ΔR)
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Groomed observables (one hard emission)
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Resolution length of QGP Splitting function
Hard kicks from quasi-particles?
(Molière scatterings)

ALICE, PhysRevLett.128.102001 Dynamical kT grooming
(hardest subjet)

Narrowing due to decoherence effects? 
Or survivor bias?
See Bharadwaj’s talk.

Could we be cutting away 
in-medium splittings with zCut cut?

CMS, arXiv:1708.09429 

ALI-PREL-505640

https://journals.aps.org/prl/pdf/10.1103/PhysRevLett.128.102001
https://arxiv.org/abs/1708.09429
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Primary Lund plane at small angles?

Large UE background in AA collisions is 
absent at small angles 2 < ln(1/ΔR) < 5.4
(0.005 < ΔR < 0.1).

Loss of phase-space can be 
compensated with higher jet pT, but 
sacrifices quenching effects.
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Embedded vs non-embedded substructure is the same
for ΔR < 0.1. Unfolding-safe region at small angles.

Green region is dominated by UE
(medium-response might contribute 
here too)

Novel tools and observables for jet physics in heavy-ion collisions, 
arXiv:1808.03689 

https://arxiv.org/abs/1808.03689
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Dead cone region to study medium-induced radiation effects

Small angles is sensitive to mass 
effects + UE is suppressed.

Color factors fixed by HF tagging.

Main challenge: contamination of 
B/D-hadron decays.
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Direct observation of dead cone effect 
by ALICE using iterative declustering 
techniques in D-jets (pp collisions)

ALICE, arXiv:2106.05713


