Searches for Beyond the Standard Model Physics at the LHC

JeongEun Lee Seoul National University

On behalf of the CMS Collaborations

10 September 2022

RADPyC2022

XXXVI Particles and Fields Mexican Division Annual Meeting

Discovery of the Standard Model

W and Z discovery Standard Model of Elementary Particles three generations of matter interactions / force carriers (fermions) hosons at CERN(1983) Ш = 2.2 MeV/c a 1.28 GeV/c = 173 1 GeV/r = 124.97 GeV/c² Top quark discovery u C t н W - ev up charm top gluon higgs CERNDOC 290 EVENTS at Fermilab(1995) m4.7 MoV/ci = 4.18 GeV/c Background from = 96 MeV/c CCD processe b d S NW-+TV 4 GeV/c² by Tony M. Liss and Paul L. Tipton down strange bottom photon 1141 AR 92 EVENTS W JET 헐 20 GeV/c W IET =0.511 MeV/c 105.66 MoV/c 1 7768 GeV/r =91.19 GeV/c Z VENTS е μ τ CD - background PER tau Z boson electron muon Z°-e'e BOTTOM PTONS /ENTS ANTIBOTTOM ~ 90 422 Gelde JET Ve VT electron muon tau W boson neutrino neutrino neutrino 20 40 60 80 100 120 INVARIANT MASS M (e'e') (GeV/c2) POSITRON M_T (GeV/c²) Higgs discovery BOTTOM ANTIBOTTOM at CERN (2012) 3 METER \s = 7 TeV. L = 5.1 fb⁻¹ \s = 8 TeV. L = 5.3 fb⁻¹ CMS H→yy vs = 7 TeV, L = 5.1 fb⁻¹ vs = 8 TeV, L = 5.3 fb CMS 3 GeV GeV vears Data 12 ß HIGGS boson Z+X : 150 Events / ZZ (Ζγ*) 10 Events 1000 discovery m_H = 125 GeV Weight Data 500 - S+B Fit ---- B Fit Component ±1σ ATLAS Nature 607,52-59 (2022) 180 S ±2σ 80 100 120 140 160 120 110 130 140 150 m,, (GeV) m₄₁ (GeV) Nature 607,60-68 (2022) CMS

After the Higgs discovery 2012...

Article A portrait of the Higgs boson by the CMS experiment ten years after the discovery

org/10.1038/s41586-022-04892-x	The CMS Collaboration ¹ [™]
1 March 2022	
23 May 2022	In July 2012, the ATLAS and CMS collaborations at the CERN Large Hadron Collider
nline: 4 July 2022	announced the observation of a Higgs boson at a mass of around 125 gigaelectronvol Ten years later, and with the data corresponding to the production of a 30-times large
is	
or updates	humber of Higgs bosons, we have learnet mucer more about the properties of the Higgs boson. The CMS sepriment has observed the Higgs boson in numerous lermionic ar bosonic decay channels, established its spin-parity quantum numbers, determined it mass and measured its production cross-section is narious modes. Here the CMS Collaboration reports the most up-to-date combination of results on the properties the Higgs boson, including the most stringent limit on the cross-section for the production of a pair of Higgs bosons, on the basis of data from protom-proton collisions at a centre of mass energy of 13 teraelectronvolts. Within the uncertainties all these observations are compatible with the predictions of the standard model of elementary particle physics. Much evidence points to the fact that the standard model is a low energy approximation of a more comprehensive theory. Several of the standard model issues originate in the sector of Higgs boson physics. An order of magnitude larger number of Higgs bosons, expected to be examined over the next by sars, will help deepen our understanding of this crucial sector.

- Exploit all production modes.
- Many decay channels accessible for 125 GeV Higgs.

https://doi.o Received: 2 Accepted: 2 Published o Open acces

Check f

- A new data point is updated (μ).
- Evidence-level measurement at the LHC.
- Particle mass range probed covers O(10⁻¹) to O(100) !

Beyond the Standard Model Physics : Open questions

Big Open questions

Experimental results-SM misfits

Unknown Phenomena

COMPOSITION OF B-meson decays, Flavor Anomalies ? **Too many SM parameters ?** THE UNIVERSE Standard Model of Elementary Particles R(D* **HFLAV-EOS** $\Delta \gamma^2 = 1.0$ contours Gra Higgs? 21% Dark Matr Dar W^+ H alone? BaBar12 u C t 0.35 up charm top gluon ^{higgs} elementary? 0.3 b d S B $D^{(\star)}$ Average photon Why 3 Gen? bottom down strange Belle15 0.25 $R(\mathbf{D}^{(\star)}) = \frac{\mathscr{B}(\mathbf{B} \to \mathbf{D}^{(\star)} \tau \nu)}{\mathscr{B}(\mathbf{B} \to \mathbf{D}^{(\star)} \ell \nu)} > \mathrm{SM}$ μ e Belle17 World Average R(D) = 0.339 ± 0.026 ± 0.014 R(D*) = 0.295 ± 0.010 ± 0.010 * Dark Energ Neutrino type? 0.2 Higi 16, Gambino 19 Z boson electron muon tau 0 = -0.38ONS Dirac? Matter-antimatter asymmetry? Ve 0.4 0.5 νμ Majorana? R(D) L. electron muon tau Muon g-2 ? SM misfit W boson neutring $\vec{\mu}_{\ell} = g_{\ell} \left(\frac{q}{2m_{\ell}} \right) \vec{s}$ where $g_{\ell} = 2(1 + a_{\ell})$ PRL126(2021)14 **Hierarchy** BNL q-2 Naturalness? FNAL q-2 + 80.50 Experimental unc. 68% CL Light supersymmetry LEP2/Tevatron 4.2σ Science. 376 (6589) 2022 ".0.14 0.12 80.45 **Gravity**? **Neutrino mass?** f M_w [GeV] SU(3), tandard Mod Experimen 튚 0.10 Average Strong Unification ? lio, Chicago 21.0 21.5 17.5 18.0 18.5 19.0 19.5 20.0 20.5 10.08 st a., × 10⁹ - 1165900 Strong CP? 8 0.06 80.40 5 0.04 SU(2) etc... GUT Flectroweak full 0.02 U(1)Anomalous W mass ? U(1)em õ Electromagnetic 80.35 10-20 10-25 10-29 10-16 THE STANDARD MODEL & 10-13 Distance of interaction (cm) Energy (Gev) 10⁶ 10¹¹ $L(cm) \simeq$ E(Gev) 171 172 173 174 175 176 177 178 10¹⁵ m, [GeV] 10^{2}

5

Theory question

Big Open questions

New theoretical ideas and direction

The Large Hadron Collider (LHC)

General Purpose Detectors at LHC

CMS **ATLAS A Toroidal LHC Apparatus Compact Muon Solenoid** CMS DETECTOR 44m STEEL RETURN YOKE Total weight : 14,000 tonnes 12,500 tonnes SILICON TRACKERS Overall diameter : 15.0 m Pixel (100x150 um2) ~1.9 m2 ~124M channels Microstrips (80-180 µm) ~200 m² ~9.6M channels Overall length : 28.7 m Magnetic field : 3.8 T SUPERCONDUCTING SOLENOID Niobium titanium coil carrying ~18,000 A MUON CHAMBERS Barrel: 250 Drift Tube, 480 Resistive Plate Chambers Endcaps: 540 Cathode Strip, 576 Resistive Plate Chambers PRESHOWER Silicon strips ~16 m² ~137,000 channels FORWARD CALORIMETER Steel + Quartz fibres ~2,000 Channels 25m CRYSTAL ELECTROMAGNETIC CALORIMETER (ECAL) ~76,000 scintillating PbWO₄ crystals **Tile calorimeters** HADRON CALORIMETER (HCAL) LAr hadronic end-cap and Brass + Plastic scintillator ~7,000 channels forward calorimeters Pixel detector Toroid magnets LAr electromagnetic calorimeters Transition radiation tracker Solenoid magnet Muon chambers

Semiconductor tracker

Compact Muon Solenoid (CMS)

Data taking at LHC

LHC data taking

CMS

Run 1

-1

60

Run 1 : 7 TeV (2010-11), 8 TeV (2012) Run 2 : 13 TeV (2015-2018) Run 3 : 13.6 TeV (2022-2025) \leftarrow this July

High-Luminosity LHC (HL-LHC) 14 TeV (2029-42) 3000 fb⁻¹

2010, 7 TeV, 45.0 pb⁻¹

2012, 8 TeV, 23.3 fb⁻¹
 2015, 13 TeV, 4.3 fb⁻¹

2018, 13 TeV, 67.9 fb⁻¹
 2022, 13.6 TeV, 10.4 fb⁻¹

1 Jan

1 lan

2016, 13 TeV, 41.6 fb⁻¹
 2017, 13 TeV, 49.8 fb⁻¹

Run 2

1 lan

2011. 7 TeV. 6.1 fb⁻¹

Overview of BSM searches at CMS

BSM program at the LHC has a broad and diverse topic to results

CMS EXO B2G SUSY public results ATLAS EXOT HDBS SUSY public results

Search Strategy

• Target BSM signatures :

- New resonance will emerge at high mass spectra with various final states !
- Single final state often can probes many BSM scenario, so analyses are mainly "signature based" :
 - Resonance search : dileptons, dijet, diboson (+lepton flavor violated, trijet, triboson .. etc)
- Also, **Model-independent** result can be obtained and used to reinterpreted various models

• Background Estimates :

- SM Backgrounds are evaluated with Simulation
- Define **Control Region (CR)** in the data to evaluate a given SM background in most searches.
- Validation Regions (VR) is used to cross-check a background method.

Advanced Identification algorithm

- Exploiting the latest jet substructure and novel ML algorithms
- Heavy resonances can produce highly Lorentz boosted decay products W/Z/H-tagged jet, t/b/q/g-tagged jet.

Soft drop algorithm

Removes soft and wide-angle radiation

 $\frac{\min(p_{\mathsf{T}1}, p_{\mathsf{T}2})}{p_{\mathsf{T}1} + p_{\mathsf{T}2}} > z_{\mathsf{cut}} \left(\frac{\Delta R_{12}}{R_0}\right)^{\beta}$

N-subjettiness

Compatibility of a jet with having N-prong substructure

$$au_{N} = rac{1}{d_{0}} \sum_{i} p_{\mathrm{T},i} \min \left[\Delta R_{1,i}, \Delta R_{2,i}, \dots, \Delta R_{N,i}
ight]$$

 τ_2/τ_1 : 2-prong jet (W/Z like) τ_3/τ_2 : 3-prong jet (top-like)

Deep Learning Based algorithm at CMS:

Jet Tagging evolution in CMS

Search for New Force carriers/Boson

Spin-1 W'/Z'	in many model; Sequential Standard Model (SSM), Heavy Vector Triplet Model (HVT), composite Higgs model
Spin-2 Graviton (G) Spin-0 Radion (<i>φ</i>) Spin-1 W_{кк}	in extra dimension model (ED)
Spin-0 h, H, H⁺, A	in the extended higgs sector introduce additional higgs 2 Higgs doublet model (2HDM), SUSY
Spin-0/1 leptoquarks	Possible explanation for flavor anomalies (B meson decay, muon g-2)
Spin-0 Axion-like particle	Possible solution to Strong-CP problem (DM candidate)

Heavy gauge boson W' \rightarrow *Iv* Search (1/5)

- Golden channel : High $p_T I$ (e or mu) and p_T^{miss}
 - \circ Search for excess in high M_{τ} tail
 - Target BSMs : SSM, sUED model, RPV SUSY

Model independent Limit and application (2/5)

First EFT Interpretation with Iv data (3/5)

New **Indirect search** in effective field theory (EFT) NP can induce universal effect on SM predictions : the oblique EW parameters; S, T, W and Y. Parameterizing in the framework of EFT

NP
weight
$$\left| \frac{P_{\rm W}}{P_{\rm W}^{(0)}} \right|^2 = \left(1 + \frac{(2t^2 - 1)W}{1 - t^2} + \frac{t^2 Y}{1 - t^2} - \frac{W(q^2 - m_{\rm W}^2)}{m_{\rm W}^2} \right)^2$$

This is the first time using LHC data to constraint on *W* oblique parameter in lv channel.

Significantly improving the constraint obtained from LEP data (gray).

Composite Higgs Model (4/5)

The basic structure of the composite Higgs scenario

- → Composite sector + Elementary sector (SM quarks, leptons, gauge bosons, <u>no Higgs</u>)
- → Higgs boson = pseudo Nambu-Goldstone boson of broken symmetry
- → It allows Higgs boson to be considerably lighter than confinement scale confinement scale m_{*}
- → If EWSB effects small (m_* would be ~1 TeV or above)

First Interpretation the Composite Higgs Model (4/5)

Exploiting Important interplay between direct W' (coupling) limits and indirect constraints from precise Higgs measurements and EW W parameter.

Set new constraints on composite Higgs model parameter (m*-g*) :

Direct search for **W' in SSM and HVT** models

Indirect constraint on **oblique** *W* **parameter** $W = -1.2^{+0.5}_{-0.6} \times 10^{-4}$

Indirect constraint on Higgs measurement $\Delta \mu_{\rm H} < 0.20 {
m at } 95\% {
m CL}$

Paired-dijet Search (1/4)

Paired-dijet Search (2/4)

Paired-dijet Search (3/4)

138 fb⁻¹ (13 TeV)

Observed

2

Expected ± 1 s.d.

Expected ± 2 s.d.

-- Top squark: t̃ t̃^{*} → (d̄ s̄)(ds)

RPV coupling λ₃₁₂, B(ds)=1-

2.5

First paired-dijet resonances Search (4/4)

Heavy resonance $X \rightarrow Y(bb)H(bb)$ Search (1/3)

CMS-B2G-21-003, arxiv:2204.12413

Search for **2 new scalars** (X, Y) in 4b Motivated from NMSSM Higgs scalars model

- 2 large-R b-pair jets from Y and H
- M₁(H) : 110 140 GeV , M₁(Y) > 60 GeV
- To increase signal sensitivity, special techniques are used to reconstruct the final states containing the collimated bb pairs

New jet substructure tool; ParticleNet

jet as kind of "particle cloud", clustered to get information

ParticleNet is the state of art : a GNN trained on jet particles that outputs a classifier score for different signal jets.

Boosted jets: Increasing transverse momentum

Boosted Boson tagging techniques :ParticleNet (2/3)

CMS

Heavy resonance $X \rightarrow Y(bb)H(bb)$ Search (3/3)

2D fit to (M_X - M_Y) in SR, SB, M_J(top) to estimate SM backgrounds.

Multijet background

estimated in SRs "Pass to Fail Ratio" ttbar background

estimated I+ 1 bjet + ptmiss + large-R jet (3 categories : bqq, bq, other)

 $M_{J}(top)$ is fit to data with all-jet categories.

- Model-independent limit is interpreted in the NMSSM, TRSM.
- If $M_{Y} = M_{H}$ (125 GeV), $\sigma_{X} \cdot B(H \rightarrow bb) \sim 5e-2 \text{ fb}$
- Factor 2 improved than previous HH→bbbb CMS result (ParticleNet)

X \rightarrow **YH** Complementary Sensitivity

Heavy resonance $X \rightarrow Y(bb)H(\gamma\gamma)$ Search (1/3)

Signal identified with Neural Network (NN) training, Boosted Decision Tree (BDT) using b-jet ID, photon ID and kinematic variables.

Extract signal from 2D fit $(M_{\gamma}-M_{H})$ in window of M_{χ} .

$$\widetilde{M}_{\rm X} \equiv m_{\gamma\gamma\rm jj} - m_{\gamma\gamma} - m_{\rm jj} + m_{\rm H} + m_{\rm H,Y}$$

CMS-HIG-21-011

First time looking at NMSSM and TRSM $(X \rightarrow YH)$ motivated searches also RS bulk ED $(X \rightarrow HH)$. X = Bulk Radion or KK Graviton

Heavy resonance $X \rightarrow Y(bb)H(\gamma\gamma)$ Search (2/3)

Hints for New physics with Higgs (3/3)

Heavy resonance $X \rightarrow H(bb)Y(\gamma\gamma)$;

´ Excess 3.8σ (local), 2.8σ (global) at M_y = 90-125 GeV, M_x = 650GeV

Interesting excess with Higgs observed from CMS :

More data are needed to find out the origin !

Leptoquarks (LQ)

R(D*)

0.35

0.3

0.25

0.2

LHCb15

LHCb18

Belle17

- Leptoquarks can couple to both leptons and quarks
 - Both scalar and vector bosons are possible.
- Carry fractional electric charge
- Processes can violate lepton flavor universality (LFU)
 - Possible hints for Flavor-anomalies in B decays
 - strongly couple to 3rd generation SM fermions
- Predicted in RPV SUSY, GUTs and Composite models.

 $\Delta \chi^2 = 1.0$ contours

BaBar12

Spring 2019

 $P(\chi^2)$ =

 3.1σ away

from the SM

HFLAV-EOS

+ Average of SM predictions R(D) = 0.299 ± 0.003

 $R(D^*) = 0.258 \pm 0.00^4$

Overview of leptoquark searches at CMS

Overview of CMS leptoquark searches

3rd generation LQ with tau+b

Non-resonant LQ in t-channel

Newly search for the non-resonant production of τv and $\tau \tau$ via t-channel New

Search for New Fermions

• Vector-like quarks (VLQ)

- \circ VLQs are colored spin $\frac{1}{2}$ fermions
- L/R-handed transform in the same way
- Mass from mixing, not Higgs.
- Many extensions of SM have VLQs

• Heavy Neutral Leptons (HNL)

- Potential BSM solutions for neutrino mass :
 - Type-I Seesaw models : HN mix with SM v
 - **Type-III** Seesaw models : SU(2) triplet $\Sigma^0, \Sigma^+, \Sigma^-$ leptons
 - Left-Right Symmetry model (LRSM) : W_R, Z' along with 3 HN_R
 - Composite model
- If HN is Majorana neutrino, Lepton Number Violation is possible

Overview of Vector-like Fermion searches at CMS

+

Vector-like quark Pair production

Vector-like Lepton

VLQ pair in leptonic states (TT, BB)

Vector Like Lepton (VLL) pair in 4b+NT

Heavy Majorana neutrino (HN) pair in 2I+Nj

HN can be pair produced from Z' in LR Symmetric Model First result in CMS with 13 TeV (ATLAS 8 TeV)

More complicated topology : 3 SRs

- \circ 2 resolved (0 AK8Jet, 2 leptons) m_N/m_z, ~1
- 1 resolved + 1 boosted (1 AK8Jet, 1 or 2 leptons)
- \circ 2 boosted (2 AK8Jet, 0-2 leptons) m_N/m_{Z'} << 1

Combinations of dilepton(same-flavor)+jets

Summary

- Large number of BSM scenarios and signatures explored with LHC Run-2 data.
- No discovery yet, Sensitivity significantly improved with novel techniques.
- New challenging models/signatures are probed for the first time.
- Many intriguing results to follow up in Run-3 and beyond.
- More result in <u>CMS publications</u>.

Collisions That Changed The World

Backup