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Direct photons measurement 
contains information of initial 
temperature (Teff  297 MeV)≈ 155 MeV
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           Small MB collisions systems as reference to heavy-ions

The RAA  behavior shows a significant 
energy loss of partons due the QGP

Niida, T., Miake, Y. Signatures of QGP 
at RHIC and the LHC. AAPPS Bull. 31, 
12 (2021)
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 Nucl. Part. Sci. 68:211-35

Also observed in p-Pb collisions  CMS  Collaboration, 
Phys. Rev. Letts.,
2016,116, 172302

 CMS  Collaboration,
Physics Letters B 718,
 no. 3, 795–8
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this peak increases 
considering events with
high number of MPI 

Maximum around 3 GeV/c, 
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We propose to extract
MPI from the available ALICE pp collisions data 

using Machine Learning

Based on:

 Antonio Ortiz and Erik A Zepeda 2021 J. Phys. G: Nucl. Part. Phys. 48 085014

Erik Alfredo Zepeda Garcia and Antonio Ortiz, PoS LHCP2021 (2021) 347

Antonio Ortiz, Antonio Paz, José D. Romo, Sushanta Tripathy, Erik A. Zepeda, 
and Irais Bautista, Phys. Rev. D 102, 076014 (2020)
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Analysis: extraction of Nmpi

The extraction of Nmpi is considered a 
regression problem where given a set of 
input variables we try to minimize a loss 
function

Target variable: Nmpi

Strategy for the extraction of Nmpi :

1. Training and Test
2. Monte Carlo validation
3. Data processing

9 / 18



10/09/22 Erik Zepeda - Extraction of Multiparton Interactions from ALICE pp collisions data using Machine Learning

              Training and Test

Training of BDT: simulated events of pp
collisions at s = 13 TeV using Pythia 8 Tune √s = 13 TeV using Pythia 8 Tune 
4C 

Analysis: extraction of Nmpi

10 / 18



10/09/22 Erik Zepeda - Extraction of Multiparton Interactions from ALICE pp collisions data using Machine Learning

We trained two BDT sets: for |η| < 0.8 and |η| 
< 0.5 ranges, with pT > 0.15 GeV/c  

              Training and Test

Training of BDT: simulated events of pp
collisions at s = 13 TeV using Pythia 8 Tune √s = 13 TeV using Pythia 8 Tune 
4C 

Analysis: extraction of Nmpi

10 / 18



10/09/22 Erik Zepeda - Extraction of Multiparton Interactions from ALICE pp collisions data using Machine Learning

We trained two BDT sets: for |η| < 0.8 and |η| 
< 0.5 ranges, with pT > 0.15 GeV/c  

              Training and Test

Training of BDT: simulated events of pp
collisions at s = 13 TeV using Pythia 8 Tune √s = 13 TeV using Pythia 8 Tune 
4C 

                              Input variables

Mid-pseudorapidity charged particle multiplicity (Nch)

Average transverse momentum (〈 pT〉 )

Analysis: extraction of Nmpi

10 / 18



10/09/22 Erik Zepeda - Extraction of Multiparton Interactions from ALICE pp collisions data using Machine Learning

We trained two BDT sets: for |η| < 0.8 and |η| 
< 0.5 ranges, with pT > 0.15 GeV/c  

E. Cuautle et al. Nuclear 
Physics A, 956:749–752, Dec 
2016

              Training and Test

Training of BDT: simulated events of pp
collisions at s = 13 TeV using Pythia 8 Tune √s = 13 TeV using Pythia 8 Tune 
4C 

                              Input variables

Mid-pseudorapidity charged particle multiplicity (Nch)

Average transverse momentum (〈 pT〉 )

Based on their
correlation with Nmpi

Analysis: extraction of Nmpi

10 / 18



10/09/22 Erik Zepeda - Extraction of Multiparton Interactions from ALICE pp collisions data using Machine Learning

We trained two BDT sets: for |η| < 0.8 and |η| 
< 0.5 ranges, with pT > 0.15 GeV/c  

E. Cuautle et al. Nuclear 
Physics A, 956:749–752, Dec 
2016

              Training and Test

Training of BDT: simulated events of pp
collisions at s = 13 TeV using Pythia 8 Tune √s = 13 TeV using Pythia 8 Tune 
4C 

                              Input variables

Mid-pseudorapidity charged particle multiplicity (Nch)

Average transverse momentum (〈 pT〉 )

Based on their
correlation with Nmpi

Deviation between target variable and true value 

Analysis: extraction of Nmpi

10 / 18



10/09/22 Erik Zepeda - Extraction of Multiparton Interactions from ALICE pp collisions data using Machine Learning

We trained two BDT sets: for |η| < 0.8 and |η| 
< 0.5 ranges, with pT > 0.15 GeV/c  

E. Cuautle et al. Nuclear 
Physics A, 956:749–752, Dec 
2016

              Training and Test

Training of BDT: simulated events of pp
collisions at s = 13 TeV using Pythia 8 Tune √s = 13 TeV using Pythia 8 Tune 
4C 

                              Input variables

Mid-pseudorapidity charged particle multiplicity (Nch)

Average transverse momentum (〈 pT〉 )

Based on their
correlation with Nmpi

Deviation between target variable and true value 

Analysis: extraction of Nmpi

10 / 18



10/09/22 Erik Zepeda - Extraction of Multiparton Interactions from ALICE pp collisions data using Machine Learning

         Monte Carlo Validation

BDT were trained with the 2C, 4C and Monash 2013 
PYTHIA 8 models, and HERWIG 7 Soft Tune

Analysis: extraction of Nmpi

11 / 18



10/09/22 Erik Zepeda - Extraction of Multiparton Interactions from ALICE pp collisions data using Machine Learning

         Monte Carlo Validation

BDT were trained with the 2C, 4C and Monash 2013 
PYTHIA 8 models, and HERWIG 7 Soft Tune

Aplication to simulations of pp collisions at s = 5.02, 7 √s = 13 TeV using Pythia 8 Tune 
and 13 TeV using PYTHIA 8 Tune 4C

Analysis: extraction of Nmpi

11 / 18



10/09/22 Erik Zepeda - Extraction of Multiparton Interactions from ALICE pp collisions data using Machine Learning

         Monte Carlo Validation

BDT were trained with the 2C, 4C and Monash 2013 
PYTHIA 8 models, and HERWIG 7 Soft Tune

Aplication to simulations of pp collisions at s = 5.02, 7 √s = 13 TeV using Pythia 8 Tune 
and 13 TeV using PYTHIA 8 Tune 4C

Validation consisted in comparing the BDT results with the 
information provided by PYTHIA 8 Tune 4C

Analysis: extraction of Nmpi

11 / 18



10/09/22 Erik Zepeda - Extraction of Multiparton Interactions from ALICE pp collisions data using Machine Learning

         Monte Carlo Validation

BDT were trained with the 2C, 4C and Monash 2013 
PYTHIA 8 models, and HERWIG 7 Soft Tune

Aplication to simulations of pp collisions at s = 5.02, 7 √s = 13 TeV using Pythia 8 Tune 
and 13 TeV using PYTHIA 8 Tune 4C

Validation consisted in comparing the BDT results with the 
information provided by PYTHIA 8 Tune 4C

Analysis: extraction of Nmpi

11 / 18



10/09/22 Erik Zepeda - Extraction of Multiparton Interactions from ALICE pp collisions data using Machine Learning

         Monte Carlo Validation

BDT were trained with the 2C, 4C and Monash 2013 
PYTHIA 8 models, and HERWIG 7 Soft Tune

Aplication to simulations of pp collisions at s = 5.02, 7 √s = 13 TeV using Pythia 8 Tune 
and 13 TeV using PYTHIA 8 Tune 4C

Validation consisted in comparing the BDT results with the 
information provided by PYTHIA 8 Tune 4C

Cover the model 
dependence 

Analysis: extraction of Nmpi

11 / 18



10/09/22 Erik Zepeda - Extraction of Multiparton Interactions from ALICE pp collisions data using Machine Learning

         Monte Carlo Validation

BDT were trained with the 2C, 4C and Monash 2013 
PYTHIA 8 models, and HERWIG 7 Soft Tune

Aplication to simulations of pp collisions at s = 5.02, 7 √s = 13 TeV using Pythia 8 Tune 
and 13 TeV using PYTHIA 8 Tune 4C

Validation consisted in comparing the BDT results with the 
information provided by PYTHIA 8 Tune 4C

For higher 
multiplicities, we 
observe a deviation 
with respect to the 
linear trend

Cover the model 
dependence 

Analysis: extraction of Nmpi

11 / 18



10/09/22 Erik Zepeda - Extraction of Multiparton Interactions from ALICE pp collisions data using Machine Learning

         Monte Carlo Validation

BDT were trained with the 2C, 4C and Monash 2013 
PYTHIA 8 models, and HERWIG 7 Soft Tune

Aplication to simulations of pp collisions at s = 5.02, 7 √s = 13 TeV using Pythia 8 Tune 
and 13 TeV using PYTHIA 8 Tune 4C

Validation consisted in comparing the BDT results with the 
information provided by PYTHIA 8 Tune 4C
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multiplicities, we 
observe a deviation 
with respect to the 
linear trend

A. Ortiz et al.Journal of 
Physics G: Nuclear and 
Particle Physics,
44(6):065001, Apr 2017

Compatible with

High multiplicity pp 
collisions can only 
be produced 
selecting high 
multiplicity jets

Cover the model 
dependence 
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At higher multiplicities an increase in Nmpi is
improbable.
High multiplicity can only be reached 
selecting events with high multiplicity jets

This characteristic is explained 
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13% 
improvement

The extraction of Nmpi 
improves considering
more information in
the training
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Using the ALICE data which consist on transverse momentum spectra as a function
of event multiplicity for pp collisions at s = 7 TeV, we report√s = 13 TeV using Pythia 8 Tune 〈 Nmpi〉 = 3.89 ± 1.01.  Result being compared 
with〈 Nmpi〉 = 3.76 ± 1.01 and 4.65 ± 1.01 for s = 5.02 and 13 TeV, which shows low energy dependence √s = 13 TeV using Pythia 8 Tune 
consistent with PYTHIA.  This result provides experimental evidence of MPI in hadronic interactions.

Conclusions

Using the available ALICE pp collisions data, we reported Nmpi /〈 Nmpi〉 as a function of 
Nch / 〈 Nch〉 for s = 5.02, 7 and 13 TeV√s = 13 TeV using Pythia 8 Tune .  For Nch  / 〈 Nch〉 < 3 we observe  a linear increase , while for 
Nch / 〈 Nch〉 > 4 a deviation with respect to the linear trend. This result is consistent with the ALICE 
collaboration analysis.
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The extraction of Nmpi  improves considering more information in the BDT training, computing the multiplicity in 
the forward region. Which opens the posibility to extract the number of MPI event by event and in this way, 
study the particle production as a function of MPI.

Conclusions

Based on verifications performed with Monte Carlo event generators, and in the agreement of our results with the 
ALICE collaboration measurements. Our approach is robust and can be used by experiments in order to study the
particle production as a function of MPI. This can help to the understanding of heavy ion-like features observed in 
pp collisions data.
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