# Benemérita Universidad Autónoma de Puebla 

## and

Dual C-P Institute of High Energy Physics, México

## "Higgs physics at futures electron-proton colliders"

Speaker:Jaime Hernandez-Sanchez
LHeC and FCC-eh Collaboration

XXXVI Annual Meeting of the Division of Particles and Fields, September 2022

## Outline

- The futures electron-proton colliders (LHeC, FCC-eh) and their goals.
- LHeC (FCC-he) vs. LHC, ee colliders and FCC-hh.
- Higgs physics BSM at LHeC and FCC-he.
- 2HDM-III as BSM: model with a four-zero Yukawa texture that controls the FCNC.
- Some interesting channels decays at tree level: $\mathrm{H}, \mathrm{h}, \mathrm{A} \rightarrow \mathrm{bs}, \tau \mu, \mathrm{H}+$ $\longrightarrow \mathrm{cb}, \mathrm{ts}$, decays are sensitive to the pattern of Yukawa texture.
- We show the production e $\mathrm{p} \rightarrow \mathrm{q}(\mathrm{h}, \mathrm{H})$ Ve with flavor violating decays of the Higgs bosons ( $\mathrm{h}, \mathrm{H}$ ): cross sections, some distributions and cuts.
- We also present the production e- p $\longrightarrow$ q nu H -, considering H $\longrightarrow c b$


## (닫둔) <br> electrons for eh: ERL-e + FCC-hh [LHC]

- Two 802 MHz Electron LINACs + 2x3 return arcs: using energy recovery in same structure: sustainable technology with power consumption < 100 MW instead of 1 GW for a conventional LINAC.
- Beam dump: no radioactive waste!

■ high electron polarisation of 80-90\%

## Concurrent eh and hh operation with same running time! <br> Genuine Twin Collider idea holds for LHC and FCC-hh.

- ep peak lumi $10^{34} \mathrm{~cm} \mathrm{~s}^{-2} \mathrm{~s}^{-1}$ (based on existing HL-LHC design)

■ Operation scenario: F. Bodry et al. CERN-ACC-2018-0037 [arxiv:1810.13022]

- LHeC [FCC-eh] L= 1000 [2000] fb ${ }^{-1}$ total collected in 10 [20] years

'No' pile-up: <0.1@LHeC; ~1@FCCeh
ERL design detailed in LHeC CDR: J. Phys. G: Nucl. Part. Phys. 39 (2012) 075001 [arXiv:1206.2913] and CDR update CERN-ACC-Note-2020-0002 [arXiv:2007.14491] and submitted to J. Phys. G $\rightarrow$ see Talk \#729 by B Holzer \& Talk \#730 about ERL Facility at Orsay

Uta Klein, 29.07.22 (Talk at ICHEP 2020, Prague)


FIGURE 2|(A) Layout options and footprint of the LHeC in the Geneva basin next to the Geneva airport and CERN. The yellow racetrack corresponds to the LHeC layout that offers optimal performance; in orange, two size variations explored for cost optimization. For reference, the light blue circle depicts the existing tunnel of the LHC; the dark blue circle is the SPS. (B) 3D schematic showing the underground tunnel arrangement. The grey sections indicate the existing SPS and LHC tunnel infrastructures and the yellow section the new LHeC installation.

## This machine could be start around 2032

Brüning O, Seryi A and Verdú-Andrés S (2022) Electron- Hadron Colliders: EIC, LHeC and FCC- eh. Front. Phys. 10:886473.


FIGURE 3 | FCC-eh layout and underground structures of the FCC-eh. (A) The FCC-eh layout next to the FCC and LHC infrastructures. The yellow lines indicate the ERL of the FCC-eh, the light red lines the FCC installation and the dark red the existing LHC tunnel. (B) Schematic layout of the ERL underground structures for the FCC-eh.

> FCC-ee could be start around 2037/2045 FCC-hh around 2070's FCC Collaboration CDR Volumen I-4

## SM Higgs Production in ep



## Total cross section [fb]

(LO QCD CTEQ6L1 $\mathrm{M}_{\mathrm{H}}=125 \mathrm{GeV}$ )

| c.m.s. energy | 1.3 TeV <br> LHeC | 3.5 TeV <br> FCC-eh |
| :--- | :--- | :--- |
| CC DIS | 109 <br> 21 | 560 |
| NC DIS |  | 127 |
| P=-80\% <br> CC DIS <br> NC DIS | 196 | 1008 |


$\rightarrow$ In ep, direction of quark (FS) is well defined.
-Scale dependencies of the LO calculations are in the range of 5-10\%. Tests done with MG5 and CompHep.

- NLO QCD corrections are small, but shape distortions of kinematic distributions up to 20\%. QED corrections up to 5\%.
[J. Blumlein, G.J. van Oldenborgh , R. Ruckl, Nucl.Phys.B395:3559,1993]
[B.Jager, arXiv:1001.3789]

Signal


Charged current (CC) H->bb (0.063 pb)


Neutral current (NC) H->bb (0.012 pb)

- CC: $\mathrm{H}->\mathrm{bb}$ process is chosen as the signal because the cross section is larger than NC: H->bb process and NC rejection cut decreases large number of NC BG.

Background


CC Z production (0.29 pb) Single top production (0.43 pb)
NC multi jets

Masahiro Tanaka, Masahiro Kuze, Masaki Ishitsuka (Tokyo Institute of Technology) Uta Klein (Liverpool University)
25 June 2015, LHeC Workshop 2015 @ CERN and Chavannes-de-Bogis

- Mass reconstructed with 1 st and 2 nd minimum $\eta$ b-jets.
- Signal region is defined as $[100,130] \mathrm{GeV}$.


Events in signal region

| Signal H->bb | $119 \pm 2$ |
| :---: | :---: |
| CCijij no top | $9 \pm 3$ |
| CC single top | $17 \pm 2$ |
| CC Z | $7 \pm 1$ |
| NC Z | 0 |
| PAjij | $73 \pm 17$ |
| CCbkg total | $33 \pm 4$ |
| NCbkg total | $73 \pm 17$ |

- Errors are weighted
$S / \sqrt{ } B=11.5$
- We can detect $\mathrm{H}->\mathrm{bb}$ signal in good efficiency.
- Peak around 80 GeV is Z boson from CC background.
- PAijjj background has large statistical error due to small statistics.
- Electron tagging of Photo-production events could further suppress BG under peak.


## Analysis Framework and Detector*

## Event generation

- SM or BSM production
- CC \& NC DIS background by MadGraph5/MadEvent


## - Fragmentation

- Hadronization
by PYTHIA (modified for ep)*


## Fast detector simulation <br> by Delphes <br> $\rightarrow$ test of LHeC detector

## S/B analysis $\rightarrow$ cuts or BDT

- Calculate cross section with tree-level Feynman diagrams (any UFO) using pT of scattered quark as scale (CDR ŝ ) for ep processes with MadGraph5 ; parton-level x-check CompHep
- Fragmentation \& hadronisation uses ep-customised Pythia.
- Delphes 'detector'
$\rightarrow$ displaced vertices and signed impact parameter distributions $\rightarrow$ studied for LHeC and FCC-eh SM Higgs; and for extrapolations [PGS for CDR and until 2014]
- 'Standard' GPD LHC-style detectors used and further studied based on optimising Higgs measurements, i.e. vertex resolution a la ATLAS IBL, excellent hadronic and elmag resolutions using 'best' state-of-the art detector technologies (no R\&D 'needed')
- Analysis requirements fed back to ep detector design

[^0]
## Higgs in ep - clean $\mathrm{S} / \mathrm{B}$, no pile-up

$\rightarrow$ further improvements using BDT
Uta Klein \& Daniel Hampson \& Izzy Harris BSc 2017


Main systematic checks: variations of background contribution and tagging efficiencies
Assuming background in control regions understood to 2\% and negligible MC statistics for background in signal region; SM Higgs bb contribution in cc controlled by genuine Hbb measurement and $b$ and $c-j e t$ correlation, see e.g. methodology ILC Hcc study arXiv: 0909.1052 [ILC Zqq-Hcc study got $8.8 \%$ for Hcc signal strength for $\mathrm{M}_{\mathrm{H}}=120$ $\mathrm{GeV} \boldsymbol{\sigma}_{\text {pol }}(\mathrm{Hcc})=6.9 \mathrm{fb}$ with similar Hcc, Hbb event numbers but factor 6.8 higher SM background than LHeC]

## The Phenomenological Higgs Landscape (Revisited)

## Future ep colliders could make important contribution to Higgs physics!

- Mass
- Width (viaVV scattering)
- Spin-Parity
- Coupling
-hVV, hff
- 3h,4h, hhVV
- Exotic Higgs Decay
- $h$ to invisible
- h to 4 b
> Reducing PDF \& Alpha_s uncertainties in Higgs measurements

See talk given by Voica Radescu

- FCNC coupling

[^1]
## Top Yukawa Coupling @ LHeC

B.Coleppa, M.Kumar, S.Kumar, B.Mellado, PLB770 (2017) 335
$\mathrm{SM}: \quad \mathcal{L}_{\text {Yukawa }}=-\frac{m_{t}}{v} \bar{t} t h-\frac{m_{b}}{v} \bar{b} b h$,

BSM: Introduce phases of top-Higgs and bottom-Higgs couplings

$$
\begin{aligned}
\mathcal{L}= & -\frac{m_{t}}{v} \bar{t}\left[\kappa \cos \zeta_{t}+i \gamma_{5} \sin \zeta_{t}\right] t h \\
& -\frac{m_{b}}{v} \bar{b}\left[\cos \zeta_{b}+i \gamma_{5} \sin \zeta_{b}\right] b h .
\end{aligned}
$$

Enhancement of the DIS cross-section as a function of phase



Observe/Exclude non-zero phase to better than $4 \sigma$
$\rightarrow$ With Zero Phase: Measure ttH coupling with $17 \%$ accuracy at $\mathrm{LHeC} \rightarrow$ extrapolation to FCC-eh: ttH to $1.7 \%$

## Branching for invisible Higgs

Values given in case of $2 \sigma$ and $\mathrm{L}=1 \mathrm{ab}^{-1}$

| Delphes <br> detectors | LHeC [HE-LHeC] <br> $1.3 \quad[1.8 ~ T e V]$ | FCC-eh <br> 3.5 TeV |
| :--- | :--- | :--- |
| LHC-style | $4.7 \% \quad[3.2 \%]$ | $1.9 \%$ |
| First 'ep-style' | $5.7 \%$ | $2.6 \%$ |
| +BDT Optimisation | $5.5 \%\left(4.5 \%^{*}\right)$ | $1.7 \%\left(2.1 \%^{*}\right)$ |

LHeC parton-level, cut based <6\% [Y.-L.Tang et al. arXiv: 1508.01095]

Satoshi Kawaguchi, Masahiro Kuze Tokyo Tech


PORTAL to Dark Matter ?
$\checkmark$ Uses ZZH fusion process to estimate prospects of Higgs to invisible decay using standard cut/BDT analysis techniques
$\checkmark$ Full MG5+Delphes analyses, done for 3 c.m.s. energies $\rightarrow$ very encouraging for a measurement of the branching of Higgs to invisible in ep down to $5 \%$ [1.2\%] for 1 [2] ab- ${ }^{-1}$ for LHeC [FCC-eh]
$\checkmark$ A lot of checks done: We also checked LHeC $\leftrightarrow \rightarrow$ FCC-he scaling with the corresponding cross sections (* results in table): Downscaling FCC-he simulation results to LHeC would give $4.5 \%$, while up-scaling of LHeC simulation to FCC-he would result in $2.1 \% \rightarrow$ all well within uncertainties of projections of $\sim 25 \%$
$\rightarrow$ further detector and analysis details have certainly an impact on results $\rightarrow$ enhance potential further

BSM: channel $h \longrightarrow$ sb e.g. Cases in 2HDM-III


The background is reduced a lot In the 2HDM; $\mathrm{H}=\mathrm{h} 0, \mathrm{H} 0$
For H 0 the coupling $V V H 0$ is proportional to $\operatorname{Cos}(\beta-\alpha)$ and $V V h 0$ to $\operatorname{Sin}(\beta-\alpha)$

## Further BSM Higgs Studies

## Example: Charged Higgs

- $H \pm$, in Vector Boson Scattering
[Georges Azuelos, Hao Sun, and Kechen Wang, 1712.07505 ]
- $H \pm \pm$, in Vector Boson Scattering
[H. Sun, X. Luo, W. Wei and T. Liu, Phys. Rev. D 96, 095003 (2017)]
- $H+$, in 2HDM type III, $p e \rightarrow v j H \rightarrow v j c b$
[J. Hernández-Sánchez et al., 1612.06316]


## Production of $\mathrm{H}+$ in ep collider



We focus in $\mathrm{H}+\longrightarrow>$ cb, in 2HDM-III (also in MHDM) could be relevant

$$
\text { BR }(\mathrm{H}+\longrightarrow \mathrm{cb}) \sim 0.9 \text { in 2HDM-III }
$$

$\sim 0.8$ in MHDM (A.Akeroyd, S. Moretti and J. Hernandez-Sanchez, PRD 85, I I5002 (2012)) .

## Higgs in ee vs ep

ee Dominant Higgs productions:

ee



- Current data (LEP/LHC) sensitive to NP in EW (Higgs) $\leqslant 1 \%$ (~10\%)
- FCC can largely improve our knowledge of the EW/Higgs sectors. As with current data, no single machine can do all the work...

- Apart from a strong EW/Higgs program, FCC-ee is also fundamental to maximize the physics output of the FCC-eh/hh

Jorge de Blas (Talk at IIth FCCee workshop, CERN, 2019)

## BSM: Some arguments o motivations 2HDM-III

The 2HDM-II could be transformed into 2HDM-III through the loops-effects of sfermions and gauginos
Andreas Crivellin, Phys.Rev. D83 (201I) 05600 I
In models with more than one Higgs doublet the MFV case is more stable in suppressing FCNCs than the hypothesis of NFC when the quantum corrections are taken into account.
A.J. Buras, M.V. Carlucci, S. Gori and G. Isidori, Higgs-mediated FCNCs: Natural Flavour Conservation vs. Minimal Flavour Violation, JHEP 10 (2010) 009 [arXiv:1005.5310].

Similar phenomenology in MHDM with flavor symmetries (Nearest-NeighborInteraction texture)
G. C. Branco, L. Lavoura and F. Mota, Phys. Rev. D 39, 3443 (1989)

Alfredo Aranda, Cesar Bonilla, J.Lorenzo Diaz-Cruz. Phys.Lett. B717 (2012) 248-251
2HDMs is studied in renormalization group evolution of the Yukawa couplings and the cases when the Z2-symmetry is broken, called non-diagonal models.
J. Bijnens, J. Lu and J. Rathsman, Constraining General Two Higgs Doublet Models by the Evolution of Yukawa Couplings , JHEP 05 (2012) 118

## Yukawa textures in the 2HDM-III

The Yukawa textures are consistents with the relations between quarks masses and flavor mixing parameters.

Yukawa textures could come of a theory more fundamental and it could be a flavor symmetry.
H. Fritzsch, Z. Z. Xing, Prog.Part. Nucl. Phys. 45 (2000) I.
H. Fritzsch, Z. Z. Xing, Phys. Lett. 555 (2003)63.

## Yukawa sector in 2HDM type III

$$
\begin{aligned}
& \mathcal{L}_{Y}=Y_{1}^{u} \bar{Q}_{L} \Phi_{1} u_{R}+Y_{2}^{u} \bar{Q}_{L} \Phi_{2} u_{R}+Y_{1}^{d} \bar{Q}_{L} \Phi_{1} d_{R}+Y_{2}^{d} \bar{Q}_{L} \Phi_{2} d_{R}, \\
& M_{f}=\frac{1}{\sqrt{2}}\left(v_{1} Y_{1}^{f}+v_{2} Y_{2}^{f}\right), \quad f=u, d, l, \\
& \left(\begin{array}{ccc}
0 & C_{f} & 0
\end{array}\right) \quad \bar{M}_{f}=V_{f L}^{\dagger} M_{f} V_{f R} . \\
& \text { The off-diagonal terms are constrained } \\
& \text { by CKM } \\
& \text { F. González, O. Félix-Beltrán, J.Hernandez-Sanchez, S. Moretti, R. Noriega, A. Rosado, Phys.Lett. B742 (20I5) } \\
& \text { 347-352. } \\
& \text { J. Hernandez-Sanchez, L. Lopez-Lozano, R. Noriega, A. Rosado, Phys.Rev. D85 (2012) 07I30 I }
\end{aligned}
$$

## Seesaw mechanism in MSSM

Flavor Violation among the Sleptons. In the leptonic sector, we begin with a Lagrangian:

$$
\begin{align*}
&-\mathcal{L}=\bar{E}_{R} Y_{E} L_{L} H_{d}+\bar{\nu}_{R} Y_{\nu} L_{L}+\frac{1}{2} \nu_{R}^{\top} M_{R} \nu_{R}  \tag{1}\\
& \frac{d}{d \log Q}\left(m_{\tilde{L}}^{2}\right)_{i j}=\left(\frac{d}{d \log Q}\left(m_{\tilde{L}}^{2}\right)_{i j}\right)  \tag{2}\\
&\left.+\frac{1}{16 \pi^{2}}\left[n_{\tilde{L}}^{2} Y_{\nu}^{\dagger} Y_{\nu}\right) Y_{\nu}^{\dagger} Y_{\nu} m_{\tilde{L}}^{2}+2\left(Y_{\nu}^{\dagger} m_{\tilde{\nu}_{R}}^{2} Y_{\nu}+m_{H_{u}}^{2} Y_{\nu}^{\dagger} Y_{\nu}+A_{\nu}^{\dagger} A_{\nu}\right)\right]_{i j} \\
&\left(\Delta m_{\tilde{L}}^{2}\right)_{i j} \simeq-\frac{\log \left(M / M_{R}\right)}{16 \pi^{2}}\left(6 m_{0}^{2}\left(Y_{\nu}^{\dagger} Y_{\nu}\right)_{i j}+2\left(A_{\nu}^{\dagger} A_{\nu}\right)_{i j}\right) \tag{3}
\end{align*}
$$

where $m_{0}$ is a common scalar mass evaluated at the scale $Q=M$, and $i \neq j$. If we further assume that the $A$-terms are proportional to Yukawa matrices, then:

$$
\begin{equation*}
\left(\Delta m_{\tilde{L}}^{2}\right)_{i j} \simeq \xi\left(Y_{\nu}^{\dagger} Y_{\nu}\right)_{i j} \tag{4}
\end{equation*}
$$

K.S. Babu, C. Kolda, Phys. Rev. Lett. 89,24I 802 (2002).

> 2HDM-III + Yukawa texture contain the following information:

It could come from a more fundamental theory (susy models with seesaw mechanism).
$+$
Yukawa texture is the flavor symmetry of the model and do not require of the discrete flavor symmetry.
$+$

The Higgs potential must be expressed in the most general form.
J. L. Diaz-Cruz, J. Hernandez-Sanchez, S. Moretti, R. Noriega, A. Rosado, Phys.Rev. D79 (2009) 095025 J. Hernandez-Sanchez, S. Moretti, R. Noriega-Papaqui, A. Rosado, JHEP I307 (2013) 044

$$
\begin{aligned}
\mathcal{L}^{\bar{f}_{i} f_{j} \phi}= & -\left\{\frac{\sqrt{2}}{v} \bar{u}_{i}\left(m_{d_{j}} X_{i j} P_{R}+m_{u_{i}} Y_{i j} P_{L}\right) d_{j} H^{+}+\frac{\sqrt{2} m_{l_{j}}}{v} z_{i j} \bar{\nu}_{L} I_{R} H^{+}+H . c .\right\} \\
& -\frac{1}{v}\left\{\bar{f}_{i} m_{f_{i}} f_{i j}^{f} f_{j} h^{0}+\bar{f}_{i} m_{f_{i}} H_{i j}^{f} f_{j} H^{0}-i \bar{f}_{i} m_{f_{i}} f_{i j}^{f} f_{j} \gamma_{5} A^{0}\right\}
\end{aligned}
$$

where $\phi_{i j}^{f}(\phi=h, H, A), X_{i j}, Y_{i j}$ and $Z_{i j}$ are defined as:

$$
\begin{aligned}
\phi_{i j}^{f} & =\xi_{\phi}^{f} \delta_{i j}+G\left(\xi_{\phi}^{f}, X\right), \quad \phi=h, H, A, \\
x_{i j} & =\sum_{l=1}^{3}\left(V_{\mathrm{CKM}}\right)_{i l}\left[x \frac{m_{d_{l}}}{m_{d_{j}}} \delta_{l j}-\frac{f(X)}{\sqrt{2}} \sqrt{\frac{m_{d_{l}}}{m_{d_{j}}}} \tilde{x}_{l j}^{d}\right] \\
Y_{i j} & =\sum_{l=1}^{3}\left[Y \delta_{i l}-\frac{f(Y)}{\sqrt{2}} \sqrt{\frac{m_{u_{l}}}{m_{u_{i}}}} \tilde{x}_{i l}^{u}\right]\left(V_{\mathrm{CKM}}\right)_{l j}, \\
z_{i j}^{\prime} & =\left[Z \frac{m_{l_{j}}}{m_{l j}} \delta_{i j}-\frac{f(Z)}{\sqrt{2}} \sqrt{\frac{m_{l_{j}}}{m_{l j}}} \tilde{x}_{i j}^{\prime}\right] .
\end{aligned}
$$

With this structure in different limits one can have different 2HDM

$$
\left(g_{2 H D M-I I I}^{f_{u} i f_{d} j H^{+}}=g_{2 H D M-a n y}^{f_{u} i f_{d} j H^{+}}+\Delta g^{f_{u} i f_{d} j H^{+}}\right)
$$

J. Hernandez-Sanchez, S. Moretti, R. Noriega-Papaqui, A. Rosado, JHEP07 (2013) 044

| 2HDM-III | $X$ | $Y$ | $Z$ | $\xi_{h}^{u}$ | $\xi_{h}^{d}$ | $\xi_{h}^{\prime}$ | $\xi_{H}^{u}$ | $\xi_{H}^{d}$ | $\xi_{H}^{\prime}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2HDM-I-like | $-\cot \beta$ | $\cot \beta$ | $-\cot \beta$ | $c_{\alpha} / s_{\beta}$ | $c_{\alpha} / s_{\beta}$ | $c_{\alpha} / s_{\beta}$ | $s_{\alpha} / s_{\beta}$ | $s_{\alpha} / s_{\beta}$ | $s_{\alpha} / s_{\beta}$ |
| 2HDM-II-like | $\tan \beta$ | $\cot \beta$ | $\tan \beta$ | $c_{\alpha} / s_{\beta}$ | $-s_{\alpha} / c_{\beta}$ | $-s_{\alpha} / c_{\beta}$ | $s_{\alpha} / s_{\beta}$ | $c_{\alpha} / c_{\beta}$ | $c_{\alpha} / c_{\beta}$ |
| 2HDM-X-like | $-\cot \beta$ | $\cot \beta$ | $\tan \beta$ | $c_{\alpha} / s_{\beta}$ | $c_{\alpha} / s_{\beta}$ | $-s_{\alpha} / c_{\beta}$ | $s_{\alpha} / s_{\beta}$ | $s_{\alpha} / s_{\beta}$ | $c_{\alpha} / c_{\beta}$ |
| 2HDM-Y-like | $\tan \beta$ | $\cot \beta$ | $-\cot \beta$ | $c_{\alpha} / s_{\beta}$ | $-s_{\alpha} / c_{\beta}$ | $c_{\alpha} / s_{\beta}$ | $s_{\alpha} / s_{\beta}$ | $c_{\alpha} / c_{\beta}$ | $s_{\alpha} / s_{\beta}$ |

- $\mu$-e universality in $\tau$ decays
- Leptonic meson decays $B \rightarrow \tau \nu, D \rightarrow \mu \nu, D_{s} \rightarrow \mu \nu, \tau \nu$ and semileptonic decays $B \rightarrow D \tau \nu$
- $B \rightarrow X_{s} \gamma$ decays
- $B^{0}-\bar{B}^{0}$ mixing
- Eelectro-weak precision test(including S,T,U oblique parameters)

Finally with all these above constraints one can find: $\chi_{k k}^{f} \sim 1$ and $\left|\chi_{i j}^{f}\right| \leq 0.5$,
The 2HDM-III as effective Lagrangian that induce at tree level flavor violating signatures like $\mathrm{h}, \mathrm{H} \longrightarrow \mathrm{sb}, \tau \mu$ and $\mathrm{H}+\rightarrow \mathrm{cb}$, ts, decays can be relevant in the parameter space of the model.

$$
\begin{gathered}
\operatorname{BR}\left(B \rightarrow X_{s} \gamma\right)_{N L O}=B_{S L}\left|\frac{V_{t s}^{*} V_{t b}}{V_{c b}}\right|^{2} \frac{6 \alpha_{e m}}{\pi \theta(z) \kappa(z)}\left[|D|^{2}+A+\Delta\right], \\
\delta C_{(7,8)}^{0, e f f}\left(\mu_{W}\right)=\left|\frac{Y_{33}^{u} Y_{32}^{u *}}{V_{t b} V_{t s}}\right| C_{(7,8), Y Y}^{0}\left(y_{t}\right)+\left|\frac{X_{33}^{u} Y_{32}^{u *}}{V_{t b} V_{t s}}\right| C_{(7,8), X Y}^{0}\left(y_{t}\right), \\
\left|\frac{Y_{33} Y_{32}^{*}}{V_{t b} V_{t s}}\right|=\left[\left(Y-\frac{f(y)}{\sqrt{2}} \chi_{33}^{u}\right)-\sqrt{\frac{m_{c}}{m_{t}}}\left(\frac{V_{c b}}{V_{t b}}\right) \frac{f(Y)}{\sqrt{2}} \chi_{23}^{u}\right]\left[\left(Y-\frac{f(y)}{\sqrt{2}} \chi_{33}^{u}\right)-\sqrt{\frac{m_{c}}{m_{t}}}\left(\frac{V_{c s}}{V_{t s}}\right) \frac{f(Y)}{\sqrt{2}} \chi_{23}^{u}\right]^{*}, \\
\left|\frac{X_{33} Y_{32}^{*}}{V_{t b} V_{t s}}\right|=\left[\left(X-\frac{f(X)}{\sqrt{2}} \chi_{33}^{d}\right)-\sqrt{\frac{m_{s}}{m_{b}}}\left(\frac{V_{t s}}{V_{t b}}\right) \frac{f(X)}{\sqrt{2}} \chi_{23}^{d}\right]\left[\left(Y-\frac{f(y)}{\sqrt{2}} \chi_{33}^{u}\right)-\sqrt{\frac{m_{c}}{m_{t}}}\left(\frac{V_{c s}}{V_{t s}}\right) \frac{f(Y)}{\sqrt{2}} \chi_{23}^{u}\right]^{*},
\end{gathered}
$$

$$
B^{0}-\bar{B}^{0} \text { mixing }
$$

$$
\left|\frac{Y_{33} Y_{32}^{*}}{V_{t b} V_{t s}}\right|<0.25, \quad-1.7<R e\left[\frac{X_{33} Y_{32}^{*}}{V_{t b} V_{t s}}\right]<0.7 . \quad\left(80 \mathrm{GeV} \leq m_{H^{ \pm}} \leq 300 \mathrm{GeV}\right)
$$

As the four-zero texture controls the FCNC, then the most general Higgs potential could be considered for the 2HDM-III

$$
\begin{aligned}
V\left(\Phi_{1}, \Phi_{2}\right)= & \mu_{1}^{2}\left(\Phi_{1}^{\dagger} \Phi_{1}\right)+\mu_{2}^{2}\left(\Phi_{2}^{\dagger} \Phi_{2}\right)-\left(\mu_{12}^{2}\left(\Phi_{1}^{\dagger} \Phi_{2}\right)+\text { H.c. }\right)+\frac{1}{2} \lambda_{1}\left(\Phi_{1}^{\dagger} \Phi_{1}\right) \\
& +\frac{1}{2} \lambda_{2}\left(\Phi_{2}^{\dagger} \Phi_{2}\right)^{2}+\lambda_{3}\left(\Phi_{1}^{\dagger} \Phi_{1}\right)\left(\Phi_{2}^{\dagger} \Phi_{2}\right)+\lambda_{4}\left(\Phi_{1}^{\dagger} \Phi_{2}\right)\left(\Phi_{2}^{\dagger} \Phi_{1}\right) \\
& +\left(\frac{1}{2} \lambda_{5}\left(\Phi_{1}^{\dagger} \Phi_{2}\right)^{2}+\left(\lambda_{6}\left(\Phi_{1}^{\dagger} \Phi_{1}\right)+\lambda_{7}\left(\Phi_{2}^{\dagger} \Phi_{2}\right)\right)\left(\Phi_{1}^{\dagger} \Phi_{2}\right)+\text { H.c. }\right)
\end{aligned}
$$

The custodial symmetry, pertubativity and unitarity are imposed and we obtain the following parameters of Higgs potential:

$$
\begin{array}{ll}
\text { for } \tan \beta \leq 10: \quad\left|\lambda_{6,7}\right| \leq 1, \quad \lambda_{6}=-\lambda_{7} \\
\sin (\beta-\alpha) \sim 1, & \mu_{12} \sim v
\end{array}
$$

The masses of $\mathrm{ma}, \mathrm{mH}+$ and MH are chosen by STU obliques parameters

[^2]

FIG. 1. Event rates for each benchmark scenario over the $(X, Y)$ plane computed as $\sigma\left(e p \rightarrow \nu_{e} h j\right) \times \mathrm{BR}(h \rightarrow$ $c \bar{c}) \times \epsilon_{c}^{2} \times 1 \mathrm{ab}^{-1}$. Here, we have $E_{p}=50 \mathrm{TeV}$ and $E_{e^{-}}=60 \mathrm{GeV}\left(\right.$ with $\left.P_{L}^{e^{-}}=-80 \%\right)$.

Limits for masses of neutral Higgs bosons:

An additional state with the same mass of the Higgs boson of SM is not ruled out, in particular the 2HDM-I could render it [ arXiv:1307.1347 [hep-ph]].

CMS Collaboration analyse the range $110 \mathrm{GeV}<\mathrm{MH}_{\mathrm{H}}<150 \mathrm{GeV}$ in the almost case degenerate for the masses of Higgs boson, which is not excluded yet.

This result can be employed for CP-odd state.

Recently for CP-odd sate in any 2HDM, CMS has ruled out the range $225 \mathrm{GeV}<\mathrm{m}_{\mathrm{A}}<$ 1000 GeV , considering low values of $\tan \beta$ [A. M. Sirunyan et al. (CMS), Eur. Phys. J. C 79, 564 (2019), arXiv:1903.00941 [hep-ex]].

Limits for masses of charged Higgs bosons:
CMS and ATLAS Collab-oration has imposed for the range of the mass $80 \mathrm{GeV}<\mathrm{mH}^{ \pm}<160$ GeV , a higher limit for $\mathrm{BR}\left(\mathrm{t} \mathrm{H}^{+} \mathrm{b}\right)=2-3 \%$, assuming $\mathrm{BR}\left(\mathrm{H}^{+} \rightarrow \tau+v\right)=1[\mathrm{~V}$. Khachatryan et al. (CMS), JHEP 11, 018 (2015), arXiv:1508.07774 [hep-ex]],[M. Aaboud et al. (ATLAS), JHEP 09, 139 (2018), arXiv:1807.07915 [hep-ex]].

On the other hand, when $\mathrm{BR}\left(\mathrm{H}^{+} \rightarrow \mathrm{cs}^{-}\right)=1$ is assumed, CMS collaboration establish $\mathrm{BR}(\mathrm{t} \rightarrow$ $\left.\mathrm{H}^{+} \mathrm{b}\right) \sim 20 \%$ in the mass range $90 \mathrm{GeV}<\mathrm{mH}^{ \pm}<160 \mathrm{GeV}$ [V.Khacha- tryan et al. (CMS), JHEP 12 , 178 (2015), arXiv:1510.04252 [hep-ex]], [A. M. Sirunyan et al. (CMS), Phys. Rev. D 102, 072001 (2020), arXiv:2005.08900 [hep-ex]].

Besides, for the case $\mathrm{BR}\left(\mathrm{H}^{+} \rightarrow \mathrm{c} \mathrm{b}\right)=1$ and in the mass range $90 \mathrm{GeV}<\mathrm{mH} \pm 160 \mathrm{GeV}$, CMS give us a limit for $\mathrm{BR}\left(\mathrm{t} \mathrm{H}^{+} \mathrm{b}\right) \sim 0.5-0.8 \%$ [A. M. Sirunyan et al. (CMS), JHEP 11, 115 (2018), arXiv:1808.06575 [hep-ex]].

Lastly, very recently ATLAS collaboration has reported limits for the product of branching fractions $\mathrm{BR}\left(\mathrm{t} \mathrm{H}^{+} \mathrm{b}\right) \times \mathrm{BR}\left(\mathrm{H}^{+} \rightarrow \mathrm{c}^{-} \mathrm{b}\right)=0.15 \%-0.42 \%$ in the mass range $60 \mathrm{GeV}<\mathrm{mH}^{ \pm}<$ 160 GeV , also reporting a slight excess in $\mathrm{mH}^{ \pm}=130 \mathrm{GeV}$ [Collaboration (ATLAS), ATLAS-CONF-2021-037 (2021)].

## Process: $e^{-} p \rightarrow \nu_{e} \phi q_{f} ; \phi \rightarrow b \bar{s}+$ h.c.

## These processes lead to 3 -jets+ $\mathbb{E}_{T}$

We demanded two jets in the central rapidity region: one tagged b-jet and one low flavor jet.
The remaining jet (qf) has been tagged in the forwards region and the central jet veto (no more than one low flavor jet): are criterions to enhance the signal to the SM backgrounds.

TABLE I. Parameters for few optimistic benchmark points in the $2 \mathrm{HDM}-\mathrm{III}$ as a $2 \mathrm{HDM}-\mathrm{I},-\mathrm{II}$ and -Y configuration. Here $b s$ stands for $\operatorname{BR}(\phi \rightarrow b \bar{s}+\bar{b} s)$, in units of $10^{-2}$, where $\phi=h, H$, while $\sigma . b s$ stands for the cross section multiplied by the above BR as obtained at the LHeC in units of fb . We have analyzed only the benchmarks where the $\sigma . b s$ is greater than 0.15 fb , so that at least 15 events are produced for $100 \mathrm{fb}^{-1}$.

| $m_{h}=125 \mathrm{GeV}$ |  |  |  |  |  | $m_{H}=130 \mathrm{GeV}$ |  | $m_{H}=150 \mathrm{GeV}$ |  | $m_{H}=170 \mathrm{GeV}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2HDM | X | $Y$ | Z | bs | o.bs | bs | o.bs | bs | o.bs | bs | o.bs |
| Ib35 | 28 | 10 | 28 | 15.66 | 6.392 | 51.8 | 1.209 | 51.6 | 0.30 | 1.58 | 0.117 |
| Ib47 | 30 | 5 | 30 | 16.14 | 3.086 | 48.2 | 10.983 | 48.0 | 0.127 | 1.80 | 0.839 |
| Ib57 | 44 | 5 | 44 | 17.58 | 11.861 | 38.6 | 5.14 | 38.4 | 2.303 | 3.68 | 0.137 |
| IIa11 | 20 | 2 | 20 | 1.42 | 1.055 | 25.2 | 0.097 | 25.0 | 0.091 | 24.8 | 0.085 |
| IIa14 | 26 | 2 | 26 | 1.44 | 1.651 | 26.0 | 0.059 | 25.8 | 0.054 | 25.6 | 0.049 |
| IIa26 | 36 | 1 | 36 | 1.46 | 1.621 | 26.4 | 0.045 | 26.2 | 0.042 | 26.0 | 0.038 |
| Ya11 | 20 | 2 | -2 | 1.42 | 1.084 | 25.2 | 0.062 | 25.0 | 0.059 | 24.8 | 0.054 |
| Ya12 | 22 | 2 | -2 | 1.44 | 1.078 | 25.6 | 0.057 | 25.4 | 0.053 | 25.2 | 0.048 |
| Ya14 | 26 | 2 | -2 | 1.46 | 1.441 | 26.0 | 0.057 | 25.8 | 0.053 | 25.6 | 0.049 |

We consider only $\sigma . \mathrm{bs}>0.15 \mathrm{fb}$; at least 15 events for 100 fb ^(-I)

## We applied the following basic preselections:

$$
p_{T}^{q}>15.0 \quad \mathrm{GeV}, \Delta R(q, q)>0.4
$$

$\Delta R=\Delta \eta^{2}+\Delta \phi^{2}$, where $\eta$ and $\phi$ are the pseudo-rapidity and azimuthal angle respectively.


FIG. 9. The missing energy ( $\mathbb{F}_{T}$ ) (left panel) and rapidity $\left(\eta_{j_{f}}\right)$ (right panel) profile of the forward jet for signals and SM backgrounds. The $\not_{T}$ distributions for all other signal benchmarks as well as the $t \bar{b}$ noise are not shown as they are very similar to the signal distributions of $m_{H}=150 \mathrm{GeV}$ for Scenario Ib with $X=Z=28$ and $Y=10$ (shown in thick solid), whereas the thin solid is for $m_{h}=125 \mathrm{GeV}$ for Scenario Ia with $X=Z=28$ with $Y=10$. The rapidity distributions profile for $m_{H}=130(170) \mathrm{GeV}$ is very close to the $m_{h}=125 \mathrm{GeV}\left(m_{H}=130 \mathrm{GeV}\right)$ case shown in thin solid, except that for massive Higgs the peaks shift towards the left. Also the corresponding rapidity distribution profile for e2bj is somewhat similar to the $m_{h}=125 \mathrm{GeV}$ signal case.


FIG. 6. The dijet invariant mass, made up by one $b$-tagged and one light-flavor jet, producing Higgs candidates, $M_{\phi}=M_{b j}$ (left panel) and the three-jet invariant mass, i.e., the previous two jets combined together with the forward jet, $M_{\phi j_{f}}$ (right panel). The mass peaks of the Higgs signals $\left(M_{\phi}\right)$ correspond to $m_{h}=125$ (thin black) for Scenario Ia, $m_{H}=150$ (thick black) and 170 (thin black) for Scenario Ib from left to right. All these are using the parameters $X=Z=28$ and $Y=10$. The distribution for $m_{H}=130$ is not shown but it lies in between $m_{h}=125$ and $m_{H}=150$. Among all SM backgrounds, only $2 b j$ shows a prominent peak from the $Z$-boson. Notice that $M_{\phi_{j}}$ represents the overall energy scale of the hard-scattering.

## $h_{S M}=125 \mathrm{GeV}: 3-\mathrm{jet}+\mathbb{E}_{T}$ with $100 \mathrm{fb}^{-1}$

(1) a: $N_{j} \gtrsim 3$
(1) b: $N_{b-\operatorname{tag}} \gtrsim 1$ (with $\epsilon_{b}=0.50, \epsilon_{c}=0.10$ and $\epsilon_{j}=0.01$, where $\mathrm{j}=\mathrm{u}, \mathrm{d}, \mathrm{s}, \mathrm{g}$ )

Details in arXiv: I 503.0|464

- cd : at least two central jets (within $\eta<2.5$ ) with $E_{T}>20 \mathrm{GeV} \rightarrow 3 \mathrm{j}$ not survive and photo production is reduced
(1. e: lepton ( $e$ or $\mu$ ) veto with $p_{T}>20 \mathrm{GeV}$ and $\eta<3.0$
(1) f: in the central region: $\left|M_{b j}-M_{h(H)}\right|$ is minimum and with 15 GeV mass windows.
© g : remaining leading jet with $p_{T}>25 \mathrm{GeV}$ and $-5.5<\eta<-0.5$
(1) h: $m_{\phi j_{f}}>190 \mathrm{GeV}$
i:We required only one low flavored jet in the central regions (this has severe impact on the processes)
- S.P. Das, J. Hernández-Sánchez, $\underline{\text { S. Moretti, A. Rosado, R. Xoxocotzi }}$

TABLE II. Expected number of events after different combinations of cuts for signal and backgrounds at the LHeC with an integrated luminosity of $100 \mathrm{fb}^{-1}$ for $m_{h}=125 \mathrm{GeV}$. SimEvt stands for the actual number of events analyzed in the Monte Carlo simulations. RawEvt stands for the number of events with only the generator-level cuts (14) imposed; for the signal as well as for background, these are calculated from the total cross section times branching ratio. In the final column we mention the significances $(\mathcal{S})$ defined as $\mathcal{S}=S / \sqrt{B}$, where $S$ stands for signal events, background events $B$ for $100 \mathrm{fb}^{-1}$ of data after all cuts mentioned in the " i " column. The number in the parenthesis in the final column represent the significances for $1000 \mathrm{fb}^{-1}$.

| Proc | SimEvt | RawEvt | a | b | c | d | e | f | g | h | 1 | $\mathcal{S}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ib35 | 100 K | 639.2 | 447.6 | 177.3 | 117.1 | 97.4 | 93.8 | 37.8 | 31.7 | 25.4 | 15.8 | 1.2(3.8) |
| Ib47 | 100 K | 308.6 | 216.8 | 85.1 | 56.2 | 47.1 | 45.5 | 18.4 | 15.6 | 13.0 | 8.1 | 0.62(2.0) |
| Ib57 | 100 K | 1186.1 | 833.7 | 325.7 | 215.5 | 180.6 | 173.9 | 70.3 | 59.1 | 49.3 | 31.1 | 2.4(7.5) |
| IIal1 | 100 K | 105.5 | 74.3 | 29.1 | 19.2 | 16.0 | 15.4 | 6.3 | 5.3 | 4.4 | 2.8 | 0.21(0.70) |
| IIa14 | 100 K | 165.1 | 116.1 | 45.2 | 30.0 | 25.4 | 24.4 | 9.7 | 8.3 | 6.9 | 4.4 | 0.33(1.05) |
| IIa26 | 100 K | 162.1 | 114.4 | 44.7 | 29.5 | 24.5 | 23.6 | 9.5 | 8.1 | 6.8 | 4.3 | 0.33(1.03) |
| Yal1 | 100 K | 108.4 | 76.3 | 29.8 | 19.6 | 16.4 | 15.8 | 6.4 | 5.4 | 4.6 | 2.9 | 0.22(0.70) |
| Ya12 | 100 K | 107.8 | 76.2 | 29.6 | 19.5 | 16.3 | 15.7 | 6.3 | 5.4 | 4.5 | 2.8 | $0.21(0.67)$ |
| Ya14 | 100 K | 144.1 | 101.7 | 39.8 | 26.0 | 21.7 | 20.8 | 8.2 | 7.0 | 5.9 | 3.8 | $0.29(0.92)$ |
| $\nu t \bar{b}$ | 100 K | 50712.1 | 28338.4 | 15293.7 | 9845.0 | 8144.2 | 7532.7 | 2982.1 | 2058.0 | 652.2 | 139.6 |  |
| $\nu b \bar{b} j$ | 560 K | 14104.6 | 6122.8 | 3656.7 | 1858.5 | 1787.1 | 1650.1 | 257.5 | 152.5 | 85.2 | 15.1 |  |
| $\nu b 2 j$ | 90 K | 18043.1 | 8389.2 | 3013.0 | 1691.5 | 1445.5 | 1373.7 | 389.5 | 206.1 | 77.2 | 11.3 | $B=170.8$ |
| $\nu 3 j$ | 300 K | 948064.2 | 410393.4 | 15560.9 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | $\sqrt{B}=13.1$ |
| $e b \bar{b} j$ | 115 K | 256730.1 | 55099.8 | 36353.6 | 12659.8 | 1432.0 | 200.7 | 54.1 | 24.8 | 18.0 | 4.5 |  |
| $e t \bar{t}$ | 130 K | 783.3 | 685.0 | 384.5 | 265.9 | 179.3 | 26.2 | 11.6 | 10.5 | 3.9 | 0.3 |  |

TABLE III. Same as Table II but for $m_{H}=130 \mathrm{GeV}$. The criterion for jets and $b$-tagging are the same, so that the number of events in column $A$ and $B$ are the same for all SM backgrounds.

| Proc | SimEvt | RawEvt | A | B | C | D | E | F | G | H | I | $\mathcal{S}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ib35 | 100 K | 120.9 | 87.1 | 34.1 | 26.9 | 22.5 | 21.6 | 7.5 | 6.1 | 5.3 | 3.4 | 0.28(0.88) |
| Ib47 | 100 K | 1098.3 | 790.3 | 307.1 | 243.9 | 204.6 | 195.7 | 68.5 | 56.1 | 48.6 | 31.3 | 2.6(8.1) |
| Ib57 | 100 K | 514.0 | 371.2 | 144.8 | 115.0 | 96.0 | 92.0 | 31.7 | 25.8 | 22.7 | 14.3 | 1.2(3.7) |
| ITa11 | 100 K | 9.7 | 6.8 | 2.7 | 2.1 | 1.8 | 1.7 | 0.6 | 0.4 | 0.3 | 0.2 | 0.02(0.05) |
| IIa14 | 100 K | 5.9 | 4.2 | 1.7 | 1.3 | 1.1 | 1.0 | 0.4 | 0.3 | 0.2 | 0.1 | 0.01(0.02) |
| IIa26 | 100 K | 4.5 | 3.1 | 1.3 | 1.0 | 0.8 | 0.8 | 0.3 | 0.2 | 0.1 | 0.1 | 0.01(0.02) |
| Ya11 | 100 K | 6.2 | 4.4 | 1.8 | 1.4 | 1.1 | 1.1 | 0.4 | 0.3 | 0.2 | 0.1 | 0.01(0.02) |
| Ya12 | 100 K | 5.7 | 4.0 | 1.6 | 1.3 | 1.0 | 1.0 | 0.3 | 0.2 | 0.2 | 0.1 | 0.01(0.02) |
| Ya14 | 100 K | 5.7 | 4.0 | 1.6 | 1.3 | 1.0 | 1.0 | 0.3 | 0.2 | 0.2 | 0.1 | 0.01(0.02) |
| $\nu t \bar{b}$ | 100 K | 50712.1 | 28338.4 | 15293.7 | 10976.4 | 9092.4 | 8393.6 | 2550.9 | 1565.5 | 617.9 | 113.7 |  |
| $\nu b \bar{b} j$ | 560 K | 14104.6 | 6122.8 | 3656.7 | 2145.5 | 2062.1 | 1902.9 | 266.6 | 141.0 | 87.5 | 14.4 |  |
| Lb2j | 90 K | 18043.1 | 8389.2 | 3013.0 | 2053.6 | 1734.0 | 1650.1 | 402.8 | 143.7 | 64.5 | 8.1 | $B=147.8$ |
| L3j | 300 K | 948064.2 | 410393.4 | 15560.9 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | $\sqrt{B}=12.2$ |
| $e b \bar{b} j$ | 115 K | 256730.1 | 55099.8 | 36353.6 | 16838.4 | 1826.6 | 284.1 | 56.4 | 31.6 | 22.6 | 11.3 |  |
| $e t \bar{t}$ | 130 K | 783.3 | 685.0 | 384.5 | 280.8 | 190.8 | 27.8 | 10.9 | 9.3 | 3.9 | 0.3 |  |

## FCC-eh Collider

a) We require $N(j)=3$ for the number of jets, one of which has to be $b$-tagged, and place a lepton veto $N(l)=0$.
b) We select a missing energy $\notin>20 \mathrm{GeV}$ and a hadronic tranverse energy $H_{T}>130 \mathrm{GeV}$.
c) We enforce the transverse momentum for the jets to be $p_{T}\left(j_{b}\right)>30 \mathrm{GeV}, p_{T}\left(j_{1}\right)>40 \mathrm{GeV}$ and $p_{T}\left(j_{2}\right)>30 \mathrm{GeV}$.
d) We restrict the jet pseudo-rapidities as $\left|\eta\left(j_{b}\right)\right|<2.5,\left|\eta\left(j_{1}\right)\right|<2.5$ (central) and $\left|\eta\left(j_{2}\right)\right|>1.5$ (forward).
e) We enable a cone separation amongst jets candidates to $h$ o $H \Delta R\left(j_{b}, j_{1}\right)<3$, it is a central di-jet. We enforce a isolation coditions for $j_{1}$ and $j_{2} \Delta R\left(j_{1}, j_{2}\right)>2.5$.
f) Finally, we sample on the di-jet invariant mass $\left(m_{\phi}-25 \mathrm{GeV}\right)<M_{j_{b} j_{1}}<m_{\phi}$.

## In this analysis we use Madgraph, with Pythia-PGS package. We consider - $80 \%$ longitudinally polarized electron beam.

| 2HDM-III | $X$ | $Y$ | $Z$ | $m_{h}=125 \mathrm{GeV}$ |  |  | $m_{H}=130 \mathrm{GeV}$ |  |  | $m_{H}=150 \mathrm{GeV}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | bs | $\sigma . b s$ |  |
| Ib 57 | 44 | 5 | 44 | 93.22 | 784 | 20.2 | 46.06 | 17.12 | 33.56 | 3.54 | 6.05 |  |
| IIa 14 | 26 | 2 | 26 | 1.52 | 15.2 | 28.3 | 10.64 | 28.4 | 7.51 | 28.4 | 5.72 |  |

TABLE I. FCC-eh rates for our 2HDM-III BPs, where bs stands for $\operatorname{BR}(\phi \rightarrow b \bar{s}+\bar{b} s)$ in units of $10^{-2}$ while $\sigma$.bs stands for the cross section $\sigma\left(e p \rightarrow \nu_{e} \phi q\right.$ ) ( $q=$ light flavor quark) times the above BR in units of fb .

## FCC-eh Collider

| $S$ | Higgs mass | RawEvt | a | b | c | d | e | f | $\Sigma$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ib57 | $m_{h}=125 \mathrm{GeV}$ | 784 k | 21598 | 11841 | 6487 | 2875 | 1618 | 1038 | 11.17(19.36) |
|  | $m_{H}=130 \mathrm{GeV}$ | 228k | 3732 | 2217 | 1237 | 548 | 299 | 221 | 2.38(4.12) |
|  | $m_{H}=150 \mathrm{GeV}$ | 196k | 2935 | 1789 | 1024 | 511 | 265 | 93 | 1.75(3.02) |
|  | $m_{H}=170 \mathrm{GeV}$ | 171k | 1026 | 538 | 260 | 146 | 69 | 15 | 0.29(0.51) |
| IIa14 | $m_{h}=125 \mathrm{GeV}$ | 1000 k | 56973 | 31397 | 17146 | 7346 | 3905 | 2600 | 28(48.5) |
|  | $m_{H}=130 \mathrm{GeV}$ | 37.6 k | 2078 | 1236 | 698 | 353 | 130 | 67 | 0.72(1.25) |
|  | $m_{H}=150 \mathrm{GeV}$ | 26.4 k | 1364 | 941 | 573 | 312 | 129 | 30 | 0.56(0.98) |
|  | $m_{H}=170 \mathrm{GeV}$ | 20.17k | 1043 | 778 | 499 | 285 | 124 | 25 | 0.49(0.85) |
| $\nu t \bar{b}$ |  | 13050k | 415871 | 217059 | 107189 | 53849 | 16461 | 3956 |  |
| $\nu b \bar{b} j$ |  | 370k | 19966 | 11621 | 5695 | 2231 | 814 | 488 |  |
| $\nu b 2 j$ |  | 170k | 3737 | 1348 | 603 | 284 | 114 | 23 | $B=8622$ |
| $\nu 3 j$ |  | 92100k | 837783 | 310678 | 111704 | 48871 | 23563 | 3927 | $\sqrt{B}=92.85$ |
| $e b \bar{b} j$ |  | 44800k | 222537 | 17329 | 6384 | 3420 | 1596 | 228 |  |
| $e t \bar{t}$ |  | 395k | 134 | 95 | 67 | 36 | 12 | 0 |  |

FCC-eh with $L=1(3) \mathrm{ab}^{-1}$.

## FCC-eh Collider



The $M_{j_{b} j_{1}}$ distribution for $S$ and $B$ after all cuts in Tab. II with $L=3 \mathrm{ab}^{-1}$ for both BP

## Production of H - in ep collider



FIG. 1. Feynman diagrams for the $e^{-} p \rightarrow \nu_{e} H^{-} q$ process. Here, $\phi_{i}^{0}=h, H$, $A$, i.e., any of the neutral Higgs bosons of the BSM scenario considered here (see below).

## J. Hernandez-Sanchez, C.G. Honorato, S. Rosado, S. Moretti, Phys.Rev.D 99 (2019) 9, 095009



FIG. 2. Feynman diagrams for the $\nu_{e} j j j, \nu_{e} b j j$ and $\nu_{e} b b j$ backgrounds (the change $q_{l} \leftrightarrow l$ and $q_{k} \leftrightarrow \nu_{l}$ represents the $\nu_{e} \nu_{l} l j$ and $\nu_{e} \nu_{l} l b$ backgrounds). Dash-dot lines represent boson fields: (pseudo)scalars and EW gauge bosons.


FIG. 3. Feynman diagrams for the $\nu_{e} b t$ background.

## Benchmarks points of 2HDM-III for analysis of $\mathrm{H}+$

| 2HDM-III <br> like- | Parameters |  |  |  | $\sigma\left(e p \rightarrow \nu_{e} H^{-} q\right)(\mathrm{pb})$ |  |  |  | $\mathrm{BR}\left(H^{-} \rightarrow b \bar{c}\right)$ |  | $\mathrm{BR}\left(H^{-} \rightarrow \tau \bar{\nu}_{\tau}\right)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $X$ | $Y$ | $Z$ | $m_{H^{ \pm}}=110 \mathrm{GeV}$ | 130 GeV | 150 GeV | 170 GeV | $m_{H^{ \pm}}=110 \mathrm{GeV}$ | $m_{H^{ \pm}}=110 \mathrm{GeV}$ |  |  |
| I | 0.5 | 17.5 | 0.5 | $2.56 \times 10^{-2}$ | $1.30 \times 10^{-2}$ | $3.47 \times 10^{-3}$ | $1.35 \times 10^{-4}$ | $9.57 \times 10^{-1}$ | $2.5 \times 10^{-4}$ |  |  |
| II | 20 | 1.5 | 20 | $2.18 \times 10^{-2}$ | $1.13 \times 10^{-2}$ | $2.95 \times 10^{-3}$ | $5.89 \times 10^{-5}$ | $9.9 \times 10^{-1}$ | $2.22 \times 10^{-4}$ |  |  |
| X | 0.03 | 1.5 | -33.33 | $6.49 \times 10^{-2}$ | $3.39 \times 10^{-2}$ | $8.83 \times 10^{-3}$ | $2.34 \times 10^{-4}$ | $9.28 \times 10^{-2}$ | $9.04 \times 10^{-1}$ |  |  |
| Y | 13 | 1.5 | $-1 / 13$ | $6.41 \times 10^{-2}$ | $3.27 \times 10^{-2}$ | $8.47 \times 10^{-3}$ | $2.2 \times 10^{-4}$ | $9.91 \times 10^{-1}$ | $6.12 \times 10^{-3}$ |  |  |

TABLE II. The BPs that we studied for the 2HDM-III in the incarnations like-I, -II, -X and -Y. We present cross sections and $B R s$ at Parton level, for some $H^{ \pm}$mass choices.

- Scenario 2HDM-III like-I: $\cos (\beta-\alpha)=0.5, \chi_{22}^{u}=1, \chi_{23}^{u}=0.1, \chi_{33}^{u}=1.4, \chi_{22}^{d}=1.8, \chi_{23}^{d}=0.1, \chi_{33}^{d}=1.2$, $\chi_{22}^{\ell}=-0.4, \chi_{23}^{\ell}=0.1, \chi_{33}^{\ell}=1$ with $Y \gg X, Z$.
- Scenario 2HDM-III like-II: $\cos (\beta-\alpha)=0.1, \chi_{22}^{u}=1, \chi_{23}^{u}=-0.53, \chi_{33}^{u}=1.4, \chi_{22}^{d}=1.8, \chi_{23}^{d}=0.2, \chi_{33}^{d}=1.3$, $\chi_{22}^{\ell}=-0.4, \chi_{23}^{\ell}=0.1, \chi_{33}^{\ell}=1$ with $X, Z \gg Y$.
- Scenario 2HDM-III like-X: the same parameters of scenario 2 HDM-III like-II but $Z \gg X, Y$.
- Scenario 2HDM-III like-Y: the same parameters of scenario $2 \mathrm{HDM}-\mathrm{III}$ like-II but $X \gg Y, Z$.


## For light charged Higgs

$$
\Gamma\left(H^{ \pm} \rightarrow u_{i} d_{j}\right)=\frac{3 G_{F} m_{H^{ \pm}}\left(m_{d_{j}}^{2}\left|X_{i j}\right|^{2}+m_{u_{i}}^{2}\left|Y_{i j}\right|^{2}\right)}{4 \pi \sqrt{2}}
$$

the case $Y \gg, X, Z \quad$ the channel decay $H^{+} \rightarrow c \bar{b}$

$$
m_{c} Y_{c b}=m_{c} Y_{23}=V_{c b} m_{c}\left(Y-\frac{f(Y)}{\sqrt{2}} \chi_{22}^{u}\right)-V_{t b} \frac{f(Y)}{\sqrt{2}} \sqrt{m_{t} m_{c}} \chi_{23}^{u}
$$

$$
\left(H^{ \pm} \rightarrow c s\right)
$$

$m_{c} Y_{c s}=m_{c} Y_{22}=V_{c s} m_{c}\left(Y-\frac{f(Y)}{\sqrt{2}} \chi_{22}^{u}\right)-V_{t s} \frac{f(Y)}{\sqrt{2}} \sqrt{m_{t} m_{c}} \chi_{23}^{u}$

$$
\frac{\operatorname{BR}\left(H^{ \pm} \rightarrow c b\right)}{\operatorname{BR}\left(H^{ \pm} \rightarrow c s\right)}=R_{s b} \sim \frac{\left|V_{t b}\right|^{2}}{\left|V_{t s}\right|^{2}}
$$

## For light charged Higgs

Other case is when $X \gg, Y, Z$, we get the dominants terms $m_{b} X_{23}, m_{s} X_{222}$ :

$$
\begin{aligned}
m_{b} X_{c b} & =m_{b} X_{23}=V_{c b} m_{b}\left(X-\frac{f(X)}{\sqrt{2}} \chi_{33}^{d}\right)-V_{c s} \frac{f(X)}{\sqrt{2}} \sqrt{m_{b} m_{s}} \chi_{23}^{d} \\
m_{s} X_{c s} & =m_{s} X_{22}=V_{c s} m_{s}\left(X-\frac{f(X)}{\sqrt{2}} \chi_{22}^{d}\right)-V_{t s} \frac{f(X)}{\sqrt{2}} \sqrt{m_{b} m_{s}} \chi_{23}^{d} \\
\text { If } \chi & =O(1) \text { and positive then }\left(X-\frac{f(X)}{\sqrt{2}} \chi_{33}^{d}\right) \text { is small and } R_{s b} \sim \frac{\left|V_{c s}\right|^{2}}{\left|V_{c b}\right|^{2}},
\end{aligned}
$$

Other situation is when, $\chi=O(1)$ and negative, then $R_{s b} \sim \frac{m_{b}^{2}\left|V_{c b}\right|^{2}}{m_{s}^{2}\left|V_{c b}\right|^{2}}$.
A.G. Akeroyd, S. Moretti and J. Hernández-Sánchez, PRD85:115002 (2012) J. Hernandez-Sanchez, S. Moretti, R. Noriega-Papaqui, A. Rosado, JHEP07 (2013) 044


FIG. 6. Distributions for the process $e^{-} q \rightarrow \nu_{e} H^{-} b$ followed by $H^{-} \rightarrow b \bar{c}$ : in the left panel we present the multiplicity of all jets while in the right panel we present the multiplicity of the $b$-tagged ones. The like-Y case is illustrated. The normalisation is to unity.

## Cut I: Select 3 jets

## Cut 2: Select 2 jet b-tagged for H->cb <br> I jet b-tagged for H - —>tau nu



FIG. 7. Distributions for the process $e^{-} q \rightarrow \nu_{e} H^{-} b$ followed by $H^{-} \rightarrow b \bar{c}$ : in the top-left panel we present the transverse momentum of the central $b$-tagged jet, in the top-right panel we present the transverse momentum of the central light jet, in the bottom-left panel we present the pseudorapidity of the central light jet while in the bottom-right panel we present the separation between the two central jets. The like-Y case is illustrated. The normalisation is to unity.

Cut 3: PT > 30 GeV. Cut 4 : eta $<|2.5|$


FIG. 8. Distributions for the process $e^{-} q \rightarrow \nu_{e} H^{-} b$ followed by $H^{-} \rightarrow b \bar{c}$ in the invariant mass of the two central jets for $m_{H^{ \pm}}=110 \mathrm{GeV}$ (left) and $m_{H^{ \pm}}=130 \mathrm{GeV}$ (right). The like-Y case is illustrated. The normalisation is to the total event rate for $L=100 \mathrm{fb}^{-1}$.

| Signal | Scenario | Events (raw) | Cut I | Cut II | Cut III | Cut IV | $(\mathcal{S} / \sqrt{\mathcal{B}})_{100 \mathrm{fb}^{-1}(1000 \mathrm{fb}-1)[3000 \mathrm{fb}-1]}$ |
| :---: | :---: | :---: | ---: | ---: | ---: | ---: | :---: |
| $\nu_{e} H^{ \pm} b$ | $\mathrm{I}-110$ | 2562 | 298 | 182 | 134 | 54 | $1.43(4.52)[7.82]$ |
|  | $\mathrm{I}-130$ | 1300 | 139 | 82 | 64 | 19 | $0.58(1.82)[3.16]$ |
|  | $\mathrm{I}-150$ | 347 | 29 | 13 | 11 | 3 | $0.16(0.5)[0.86]$ |
|  | $\mathrm{I}-170$ | 13 | 1.29 | 0.62 | 0.51 | 0.14 | $0.01(0.03)[0.05]$ |
| $\nu_{e} H^{ \pm} b$ | $\mathrm{II}-110$ | 2183 | 245 | 151 | 122 | 53 | $1.4(4.43)[7.68]$ |
|  | $\mathrm{II}-130$ | 1128 | 128 | 84 | 71 | 22 | $0.7(2.21)[3.82]$ |
|  | $\mathrm{II}-150$ | 294 | 28 | 14 | 13 | 4 | $0.2(0.65)[1.13]$ |
|  | $\mathrm{II}-170$ | 6 | 0.6 | 0.33 | 0.3 | 0.08 | $0.005(0.017)[0.029]$ |
| $\nu_{e} H^{ \pm} b$ | $\mathrm{Y}-110$ | 6417 | 468 | 567 | 347 | 156 | $4.18(12.99)[22.5]$ |
|  | $\mathrm{Y}-130$ | 3268 | 366 | 204 | 156 | 46 | $1.43(4.53)[7.84]$ |
|  | $\mathrm{Y}-150$ | 847 | 68 | 29 | 23 | 6 | $0.33(1.06)[1.83]$ |
|  | $\mathrm{Y}-170$ | 22 | 2.3 | 1.12 | 0.89 | 0.25 | $0.017(0.05)[0.09]$ |
| $\nu_{e} b b j$ |  | 20169 | 2011 | 748 | 569 | 125 |  |
| $\nu_{e} b j j$ |  | 117560 | 10278 | 7211 | 5011 | 718 | $\mathcal{B}=1441$ |
| $\nu_{e} b t$ |  | 41885 | 2278 | 1418 | 1130 | 188 | $\sqrt{\mathcal{B}}=37.9$ |
| $\nu_{e} j j j$ |  | 867000 | 9238 | 3221 | 2593 | 409 |  |

TABLE III. Significances obtained after the sequential cuts described in the text for the signal process $e^{-} q \rightarrow \nu_{e} H^{-} b$ followed by $H^{-} \rightarrow b \bar{c}$ for four BPs in the 2HDM-III like-I, -II and -Y. The simulation is done at detector level. In the column Scenario, the label A-110(130)[150]\{170\} means $m_{H^{ \pm}}=110(130)[150]\{170\} \mathrm{GeV}$ in the $2 \mathrm{HDM}-\mathrm{III}$ like-A, where A can be I, II and Y.

The process $e^{-} q \rightarrow \nu_{e} H^{-} b$ with $H^{-} \rightarrow \tau \bar{\nu}_{\tau}$ in the 2HDM-III like-X


FIG. 9. Distributions for the process $e^{-} q \rightarrow \nu_{e} H^{-} b$ followed by $H^{-} \rightarrow \tau \overline{\nu_{\tau}}$ : in the left(right) panel we present the number of leptons( $b$-jets) per event. The like-X case is illustrated. The normalisation is to unity.


FIG. 10. Distributions for the process $e^{-} q \rightarrow \nu_{e} H^{-} b$ followed by $H^{-} \rightarrow \tau \bar{\nu}_{\tau}$ : in the left panel we present the transverse momentum of the lepton while in the right panel we present the total missing transverse energy. The like- X case is illustrated. The normalisation is to unity.


FIG. 11. Distributions for the process $e^{-} q \rightarrow \nu_{e} H^{-} b$ followed by $H^{-} \rightarrow \tau \bar{\nu}_{\tau}$ : in the left panel we present the pseudorapidity of the $b$ jet while in the right panel we present the total hadronic transverse energy. The like-X case is illustrated. The normalisation is to unity.


FIG. 12. Distributions for the process $e^{-} q \rightarrow \nu_{e} H^{-} b$ followed by $H^{-} \rightarrow \tau \bar{\nu}_{\tau}$ in the transverse mass of the final state for $m_{H \pm}=110 \mathrm{GeV}$ (left) and $m_{H \pm}=130 \mathrm{GeV}$ (right). The like-X case is illustrated. The normalisation is to the total event rate for $L=100 \mathrm{fb}^{-1}$.

| Signal | Scenario | Events (raw) | Cut I | Cut II | Cut III | Cut IV | $(\mathcal{S} / \sqrt{\mathcal{B}})_{100 \mathrm{fb}^{-1}\left(1000 \mathrm{fb}^{-1}\right)[3000 \mathrm{fb}-1]}$ |
| ---: | :---: | :---: | ---: | ---: | ---: | ---: | :---: |
| $\nu_{e} H^{-} q$ | X-110 | 6480 | 178 | 124 | 94 | 67 | $2.41(7.61)[13.19]$ |
|  | X-130 | 3390 | 75 | 54 | 52 | 35 | $1.13(3.58)[6.2]$ |
|  | X-150 | 880 | 6 | 3 | 2 | 2 | $0.09(0.29)[0.5]$ |
|  | X-170 | 20 | 0.4 | 0.3 | 0.2 | 0.09 | $0.01(0.02)[0.04]$ |
| $\nu_{e} b b j$ |  | 20170 | 85 | 56 | 23 | 13 |  |
| $\nu_{e} b j j$ |  | 117559 | 623 | 340 | 122 | 84 | $\mathcal{B}=763$ |
| $\nu_{e} t b$ |  | 48845 | 460 | 374 | 149 | 105 |  |
| $\nu_{e} j j j$ |  | 867000 | 981 | 596 | 267 | 162 |  |
| $\nu_{e} l \nu_{l} j$ |  | 23700 | 29 | 26 | 8 | 5 |  |
| $\nu_{e} l \nu_{l} b$ |  | 40400 | 1500 | 1203 | 569 | 392 |  |

TABLE IV. Significances obtained after the sequential cuts described in the text for the signal process $e^{-} q \rightarrow \nu_{e} H^{-} b$ followed by $H^{-} \rightarrow \tau \bar{\nu}_{\tau}$ for four BPs in the 2HDM-III like-X. The simulation is done at detector level. In the column Scenario, the label X-110(130)[150] \{170\} means $m_{H^{ \pm}}=110(130)[150]\{170\} \mathrm{GeV}$ in the 2HDM-III like -X.

## Probing the $h c \bar{c}$ coupling at a Future Circular Collider in the electron-hadron mode

| Point | $X(Z)$ | $Y$ | $\operatorname{BR}\left(\phi^{0} \rightarrow a b\right)$ | $\sigma\left(e^{-} p \rightarrow e^{-} \phi^{0} q\right)$ | Events (1 $\mathrm{ab}^{-1}$ ) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Ia | $\begin{array}{\|l\|} \hline 0.5(0.5) \\ \mu=0.88 \\ \kappa_{c}=1.5 \\ \hline \end{array}$ | 6.5 | $\begin{aligned} & \operatorname{BR}(h \rightarrow b \bar{b})=0.513 \\ & \operatorname{BR}(h \rightarrow c \bar{c})=0.484 \\ & \operatorname{BR}(h \rightarrow s b)=1.99 \times 10^{-3} \\ & \operatorname{BR}(h \rightarrow s \bar{s})=8.18 \times 10^{-9} \end{aligned}$ | 0.875 pb | $\begin{gathered} \hline 2 \times 10^{5} \\ 2 \times 10^{4} \\ 52 \\ 0 \end{gathered}$ |
| IIa | $\begin{gathered} 1(1) \\ \mu=1.16 \\ \kappa_{c}=2 \end{gathered}$ | 4 | $\begin{aligned} & \mathrm{BR}(h \rightarrow b \bar{b})=0.67 \\ & \mathrm{BR}(h \rightarrow c \bar{c})=0.23 \\ & \mathrm{BR}(h \rightarrow s b)=0.093 \\ & \mathrm{BR}(h \rightarrow s \bar{s})=2.87 \times 10^{-3} \end{aligned}$ | 0.958 pb | $\begin{gathered} \hline 2 \times 10^{5} \\ 2 \times 10^{4} \\ 1 \times 10^{3} \\ 7 \end{gathered}$ |
| Y-min | $\begin{array}{\|c\|} \hline 5(-1 / 5) \\ \mu=0.86 \\ \kappa_{c}=1.7 \\ \hline \end{array}$ | 5 | $\begin{aligned} & \mathrm{BR}(h \rightarrow b \bar{b})=0.498 \\ & \operatorname{BR}(h \rightarrow c \bar{c})=0.289 \\ & \operatorname{BR}(h \rightarrow s b)=0.21 \\ & \operatorname{BR}(h \rightarrow s \bar{s})=1.96 \times 10^{-3} \end{aligned}$ | 1.08 pb | $\begin{gathered} \hline \hline 2 \times 10^{5} \\ 2 \times 10^{4} \\ 7 \times 10^{3} \\ 5 \\ \hline \end{gathered}$ |

TABLE III. Relevant cross sections, BRs and event rates (for the machine configuration given in the previous figure caption) for our scenarios Ia, IIa and Y, each mapped in terms of $X, Y$ and $Z$ values. We have included the allowed values for $\mu$ and $\kappa_{c}$ for each BPs. Here, we have included the following tagging efficiencies in the last column: $\epsilon_{b}=0.6, \epsilon_{c}=0.24$ and $\epsilon_{s}=0.05$ [78].

## J. Hernandez-Sanchez, C.G. Honorato, Stefano Moretti Arxiv: 2108.05448 , submitted to EJPC.

| Background | Cross section [pb] | Number of events |
| :---: | :---: | :---: |
| $\nu_{e} j j j$ | 172 | $1.75 \times 10^{8}$ |
| $\nu_{e} b j j$ | 16.1 | $1.61 \times 10^{7}$ |
| $\nu_{e} b b j$ | 1.8 | $1.8 \times 10^{6}$ |
| $\sum \nu 3 j$ | 189.9 | $10^{8}$ |
| $\nu_{e} l l j$ | 3.09 | $3.09 \times 10^{6}$ |
| $\nu_{e} t b$ | 12.47 | $1.24 \times 10^{7}$ |
| $e j j j$ | 948 | $9.48 \times 10^{8}$ |
| $e b j j$ | 17.8 | $1.78 \times 10^{7}$ |
| $e b b j$ | 75.4 | $75.4 \times 10^{7}$ |
| $\sum e j j j$ | 1040 | $10^{9}$ |
| $e t t$ | 0.35 | $3.5 \times 10^{5}$ |

TABLE V. Background cross sections and event rates at parton level after the following cuts: $p_{T}(q)>10$ $\mathrm{GeV}, \Delta R(q, q)>0.3$ and $|\eta(q)|<7$ (assuming the usual FCC-eh parameters).
the effective di-jet final state defined above as $N_{j}+N_{b \rightarrow j}+N_{c \rightarrow j}$

| Signal | Raw events | Sim Events | Set A) | Set B) | Set C) | Set D) | Set E) | Significance |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :---: |
| Ia | 875000 | 890530 | 633866 | 190986 | 91117 | 77079 | 36054 | 36.3 |
|  |  |  | 36075 | 10869 | 5186 | 4387 | 2052 | 8.31 |
| IIa | 958000 | 970336 | 609152 | 178088 | 87714 | 72312 | 30898 | 31.19 |
|  |  |  | 32350 | 9457 | 4658 | 3840 | 1641 | 6.67 |
| Y | 1070000 | 1085244 | 736138 | 208665 | 101427 | 83083 | 35824 | 36.08 |
|  |  |  | 41941 | 11884 | 5776 | 4732 | 2040 | 8.27 |
| $\Sigma \nu 3 j$ | $1.89 \times 10^{8}$ | 19956113 | 176368197 | 40956844 | 9327890 | 4960087 | 820718 |  |
|  |  |  | 10334771 | 2399977 | 546593 | 290650 | 48092 |  |
| $\nu t b$ | $1.24 \times 10^{7}$ | 1254485 | 7880059 | 1505048 | 759201 | 548492 | 123961 |  |
|  |  |  | 501285 | 95743 | 48296 | 34892 | 7886 | $\Sigma B=$ |
| $\Sigma e 3 j$ | $10^{9}$ | 104495242 | 73393857 | 3093729 | 29137 | 24770 | 2750 | 950207 |
|  |  | 52792574 | 2225334 | 20958 | 17817 | 1978 | 58865 |  |
| ett | 350000 | 353583 | 26046 | 380 | 109 | 77 | 21 |  |
| $\Sigma \nu l l j$ | 3090000 | 1434318 | 411923 | 117562 | 29915 | 19052 | 2757 |  |

TABLE VI. Cutflow for all signals and backgrounds. Here, in each cell, the top line represents the number of light di-jet events while the bottom one refers to those enriched by $c \bar{c}$ states, as described in the text.

$$
N_{b \rightarrow j} . \text { (In fact, the latter also includes a } \propto\left(1-\epsilon_{b}\right)
$$



FIG. 5. Di-jet invariant mass distribution. These histograms are made for the Ia (top-left), IIa (topright) and Y (bottom) incarnations of the 2HDM-III signal (red histogram) as well as the five categories of background discussed in the text (here stacked beneath the signal). Here, we present the rates for the case of $c \bar{c}$-tagged sample.

## Summary

We show the outlook of ep colliders and how can identify new physics
We study the 2HDM-III as effective Lagrangian that induce flavor violating signatures and interesting signals like $\mathrm{h}, \mathrm{H} \longrightarrow \mathrm{sb}$.

We study the signal h,H —> sb in the future ep collider LHeC: ep —> qu h.We have a significance up to 5 for h SM-like and for H with mass $130-\mathrm{I} 50 \mathrm{GeV}$ : a significance around to 4 for both colliders LHeC and FCC-eh.

Our study is consistent with flavor physics, Higgs physics and EWPO.
Following the some strategies for the neutral Higgs boson, we study the production of $\mathrm{H}+$ in the channel cb for the future ep collider LHeC and extrapolate our results for FCC-eh.

We show some results for $\mathrm{H}-\longrightarrow \mathrm{cb}$. We have sufficient event rates in order to get a significance 4.18 at $100 \mathrm{fb}^{\wedge}-\mathrm{I}\left(6.89 \mathrm{at} \mathrm{I} 000 \mathrm{fb} \mathrm{fb}^{\wedge} \mathrm{I}\right)$ for LHeC . For FCC-eh, the significance could reach 11.2 at $1000 \mathrm{fb}^{\wedge}$ - 1

We study the signal $\mathrm{h} \longrightarrow \mathrm{cc}$ in the future ep collider FCCeh.


[^0]:    * See page 11 for ep Pythia checks
    https://indico.cern.ch/event/278903/contributions/631181/attachments/510303/704309/Chavannes U KLein_20.01.2014.pdf

[^1]:    Philosophy could be traced back to
    Phys. Rev. D82 (2010) 016009 by T. Han and B. Mellado.

[^2]:    A. Cordero-Cid, J. Hernandez-Sanchez, C. Honorato, S. Moretti, A. Rosado, JHEP07 (2014) 057

