Second-Class Currents @ Belle II Pasado, Presente & Futuro.

Más anécdotas que ecuaciones, con física de por medio.

Michel Hernández Villanueva DESY

El Sabor de la Física: celebración del 60 aniversario del Dr. Gabriel López Castro 07 de Abril del 2022

My first steps in HEP

Or how I ended doing Tau lepton physics

- I started the master program at Cinvestav in 2012.
 - Survived the first semesters, and joined the course of QFT with the Dr. Gabriel López.

"Oh my sweet summer child..."

My first steps in HEP

Or how I ended doing Tau lepton physics

- I started the master program at Cinvestav in 2012.
 - Survived the first semesters, and joined the course of QFT with the Dr. Gabriel López.
- He suggested me to join Belle II, a brand-new collaboration focused in Flavour Physics.
 - Split the work in two parts: a phenomenological approach and the experimental study.

My first steps in HEP

Or how I ended doing Tau lepton physics

- I started the master program at Cinvestav in 2012.
 - Survived the first semesters, and joined the course of QFT with the Dr. Gabriel López.
- He suggested me to join Belle II, a brand-new collaboration focused in Flavour Physics.
 - Split the work in two parts: a phenomenological approach and the experimental study.
- With Eduard as co-advisor, we developed a sensitivity study for Lepton Number Violation decays:

Exclusion regions for Majorana-neutrino N:

The Belle II Collaboration

A B-Factory of next generation

The Belle II Collaboration

1100 members, 123 institutions, 26 countries

The Belle II Experiment

DESY.

arXiv:1011.0352 [physics.ins-det]

Software:

Open-source sophisticated algorithms for simulation, reconstruction, visualization, and analysis.

Comput. Softw. Big Sci. 3 1 (2019)

EPJ Web Conf., 245 (2020) 11007

Luminosity

Projections

Luminosity

Projections

- Challenges at L= 6.5×10^{35} cm⁻² s⁻¹:
 - **Higher background** (Radiative Bhabha, Touschek, beam-gas scattering, etc.).
 - Higher trigger rates (High performance DAQ, computing).

Belle II Physics Program

- The physics program of Belle II covers measurements in B decays, charm, dark sectors, exotic particles, etc.
- Further details can be found in "The Belle II Physics Book": <u>PTEP 2019 (2019) 12, 123C01</u>
- The enormous number of e+ecollisions features a unique environment for the study of τ physics with high precision.

Belle II Physics Program

- The physics program of Belle II covers measurements in B decays, charm, dark sectors, exotic particles, etc.
- Further details can be found in "The Belle II Physics Book": <u>PTEP 2019 (2019) 12, 123C01</u>
- The enormous number of e+ecollisions features a unique environment for the study of τ physics with high precision.

Tau leptons at the B factories

Let's talk about the tau

- At Y(4S): $\sigma(e^+e^- --> BB) = 1.05 \text{ nb}$ $\sigma(e^+e^- --> \tau + \tau -) = 0.92 \text{ nb}$
- Approximately 10¹⁰ tau pairs during Belle II lifetime.
- B-Factories are also *t*-factories

- Features of a B-Factory:
 - Well-defined initial state.
 - High vertex resolution.
 - Excellent calorimetry.
 - Sophisticated particle ID.

Figure: <u>The particle zoo.</u>

Tau leptons at the B factories

Why the tau?

- The τ is the charged lepton of the third generation.
- It is the only lepton massive enough to decay into hadrons.
- Decay channels of the tau *τ* allow a clean theoretical analysis of the hadronization, determination of SM parameters and searches of new physics.
 - Standard Model parameters
 m_τ, α_s (m_τ), CKM parameter V_{us}.
 - CP violation.
 - Lepton Number and Lepton Flavor Violation.
 - etc...

Tau leptons at the B factories

Why the tau?

- The τ is the charged lepton of the third generation.
- It is the only lepton massive enough to decay into hadrons.
- Decay channels of the tau *τ* allow a clean theoretical analysis of the hadronization, determination of SM parameters and searches of new physics.
 - Standard Model parameters
 m_τ, α_s (m_τ), CKM parameter V_{us}.
 - CP violation.
 - Lepton Number and Lepton Flavor Violation.
 - etc...
- We decided to continue our journey in Belle II joining the Tau working group.

G. Lopez Castro

Second Class Currents

Classification of hadronic currents

 V-A currents can be classified by their transformation proprieties under G-parity ¹.

$$G = Ce^{i\pi I_2}$$

• First-class currents:

Standard Model

- $J^{PG} = 0^{++}, 0^{--}, 1^{-+}, 1^{+-}, \dots$
- Second-class currents (SCC):

New Physics

$$J^{PG}=0^{+-},0^{-+},1^{++},1^{--},\ldots$$

- Unsuccessful searches of SCC in nuclear Physics.
- Another possibility: Search in tau decays¹

¹Leroy, C., & **Pestieau, J.** (1978). Physics Letters B, 72(3), 398-399.

¹S. Weinberg. *Physical Review*, *112* (4), 1375 (1958).

A quest of 44 years¹ and counting

SM predictions: BR($\tau \rightarrow \eta \pi \nu$) ~ 10⁻⁵

¹Leroy, C., & Pestieau, J. (1978). Physics Letters B, 72(3), 398-399.

BR _v (x10 ⁵)	BR _S (x10 ⁵)	BR _{V+S} (x10 ⁵)	Model
0,36	1,0	1,36	MDM, 1 resonance
[0.2, 0.6]	[0.2, 2.3]	[0.4, 2.9]	MDM, 1 and 2 resonances
0,44	0,04	0,48	Nambu-Jona-Lasinio
0,13	0,20	0,33	Analiticity, Unitarity
0,26	1,41	1,67	3 coupled channels ²

A measurement of the BR provides capability of testing QCD models

²Escribano, R. et. al. (2016). Phys. Rev. D 94, 034008.

BSM searches

• $\tau^- \rightarrow \eta \pi^- \nu_{\tau}$ in the SM: isospin violation

• The corresponding suppression of the SM contribution can make new physics visible.

• Second paper during the PhD.

 Constraints on scalar and tensor couplings can be obtained from upper limits on BRs.²

$$\mathcal{M} = \mathcal{M}_V + \mathcal{M}_S + \mathcal{M}_T$$

= $\frac{G_F V_{ud} \sqrt{S_{EW}}}{\sqrt{2}} (1 + \epsilon_L + \epsilon_R) \left[L_\mu H^\mu + \tilde{\epsilon}_S L H + 2 \tilde{\epsilon}_T L_{\mu\nu} H^{\mu\nu} \right]$

² E. A. Garcés, MHV, G. López Castro, P. Roig; JHEP, 2017(12), 27.

Experimental Results

- SM predictions: $BR(\tau \rightarrow \eta \pi \nu) \sim 10^{-5}$
- B-Factories have produced 10⁸ tau pairs. Have we observed $\tau \rightarrow \eta \pi v$?

Experimental Results

- SM predictions: $BR(\tau \rightarrow \eta \pi \nu) \sim 10^{-5}$
- B-Factories have produced 10⁸ tau pairs. Have we observed $\tau \rightarrow \eta \pi v$?
 - Well... no.

 $BR_{exp}^{Belle} < 7.3 \cdot 10^{-5}$ 90% CL

670 fb⁻¹

470 fb⁻¹

Strong backgrounds: non-suppressed $\tau \rightarrow \eta + X$

Figure: Hayasaka, *PoS* EPS-HEP2009 (2009) 374

• What about Belle II?

Experimental Results

- $\angle(\eta,\pi)$
- ∠(p_{miss}, V_{thrust})
- M_{miss}
- $P_t(\pi)$
- $\eta(\eta)$
- $\angle(\gamma, \gamma)_{\eta}$

- $\cos(heta_{miss})$
- $\mathsf{PID}_{\mathsf{e}}(\pi)$
 - $\mathsf{PID}_{\mu}(\pi)$
 - $PID_{K}(\pi)$
- Ε(γ)

TMVA overtraining check for classifier: BDT

Optimization

proposed by

at arXiv preprint

physics/0308063

Punzi, G.

Our PhD thesis result

• At least ~1 ab⁻¹ for testing SM predictions.

SM predictions: BR($\tau \rightarrow \eta \pi \nu$) ~ 10⁻⁵

BR _v (x10 ⁵)	BR _S (x10 ⁵)	BR _{V+S} (x10 ⁵)	Model
0,36	1,0	1,36	MDM, 1 resonance
[0.2, 0.6]	[0.2, 2.3]	[0.4, 2.9]	MDM, 1 and 2 resonances
0,44	0,04	0,48	Nambu-Jona-Lasinio
0,13	0,20	0,33	Analiticity, Unitarity
0,26	1,41	1,67	3 coupled channels

Our PhD thesis result

• At least ~1 ab^{-1} for testing SM predictions.

SM predictions: BR($\tau \rightarrow \eta \pi \nu$) ~ 10⁻⁵

BR _V (x10 ⁵)	BR _S (x10 ⁵)	BR _{V+S} (x10 ⁵)	Model
0,36	1,0	1,36	MDM, 1 resonance
[0.2, 0.6]	[0.2, 2.3]	[0.4, 2.9]	MDM, 1 and 2 resonances
0,44	0,04	0,48	Nambu-Jona-Lasinio
0,13	0,20	0,33	Analiticity, Unitarity
0,26	1,41	1,67	3 coupled channels

Our PhD thesis result

- At least \sim 1 ab⁻¹ for testing SM predictions.
- By summer 2022: 0.5 ab⁻¹

Our PhD thesis result

- At least ~ 1 ab⁻¹ for testing SM predictions.
- By summer 2022: 0.5 ab⁻¹

(At least for a while)

Integrated luminosity at the B factories

(... and tau Factories)

• We actually have 1 ab⁻¹ of data waiting to be analysed!

1998/1 2000/1 2002/1 2004/1 2006/1 2008/1 2010/1 2012/1

Conversion from Belle to Belle II

The B2BII package

- The B2BII package is being developed to convert recorded Belle events to the Belle II format.
- This allows to reproduce Belle results using BASF2, preserving the legacy of the Belle datasets.
 - Also, it allows new studies with Belle data using the advanced analysis tools provided at BASF2.

Conversion from Belle to Belle II

The B2BII package

 The conversion process has been validated for B decays, and several studies using B2BII are ongoing.

Combined analysis of Belle and Belle II data to determine the CKM angle ϕ_3 using $B^+ \to D(K^0_S h^+ h^-) h^+$ decays

The Belle and Belle II collaborations

• I started trying to answer a "simple" question: may we do the same for $\tau \rightarrow \eta \pi v$?

Boosted Decision Trees

Boosted Decision Trees

- To select $\tau \rightarrow \eta + X$ events, a BDT with 4 variables is trained using a FastBDT (part of Basf2 modules).
- As **signal**, samples of $\tau \rightarrow \eta$ from generic tau decays + signal MC are used.
- As **background**, non $\tau \rightarrow \eta$ decays from tau pair MC, qqbar and BBar.
- Splitting samples for training and testing in 50% each.
- A Random Forest is an ensemble method that combines different trees.
- Final output is determined by the majority vote of all the trees.

Variables in training:

- $A(\gamma s) = |E_{\gamma_1} E_{\gamma_2}|/(E_{\gamma_1} + E_{\gamma_2})$
- ∠(γ₁, γ₂)
- θ(γ)'s

Selected to avoid any dependency to the dynamics of the $\tau \rightarrow \eta$ + *X* decays.

SM decays after BDT cut

Work under review

- This is the distribution of $\tau \rightarrow \eta$ SM decays + non $\tau \rightarrow \eta$ SM decays, scaled to the luminosity on data.
- Modelled using crystal ball + polynomial PDFs.
- Before the BDT cut, the η peak was not distinguishable for the fit. After the cut, there is a peak around the η mass.
- This does NOT include the signal $\tau \rightarrow \eta \pi v$ MC sample.
- Removing the background coming from other $\tau \rightarrow \eta$ decays will be challenging

WORK

IN

PROGRESS

ה

- $\tau \rightarrow \pi \pi^0 \eta \nu, \tau \rightarrow \pi \pi^0 \pi^0 \eta \nu,$
- $\tau \rightarrow K \eta \nu$, etc

SM decays after BDT cut

Work under review

- This is the distribution of $\tau \rightarrow \eta$ SM decays + non $\tau \rightarrow \eta$ SM decays, scaled to the luminosity on data.
- Modelled using crystal ball + polynomial PDFs.
- Before the BDT cut, the η peak was not distinguishable for the fit. After the cut, there is a peak around the η mass.
- This does NOT include the signal $\tau \rightarrow \eta \pi v$ MC sample.
- Removing the background coming from other $\tau \rightarrow \eta$ decays will be challenging
 - $\tau \rightarrow \pi \pi^0 \eta \nu, \ \tau \rightarrow \pi \pi^0 \pi^0 \eta \nu,$
 - $\tau \rightarrow K \eta \nu$, etc

Belle II: Towards the high-luminosity scenario

The glass is half-empty

- Latest estimations with high-luminosity conditions @ Belle II.
- A large degradation of performance observed w.r.t. previous results, mainly coming from large number of photons from the beam.

Discovery of $\tau \rightarrow \eta \pi v$ **@ Belle II**

Not "if", but "when"

- We need a significant amount of data, but it is reachable within the lifetime of Belle II.
- I hope to the be there, but you never know...

The glass is half-full

• Despite the not positive results related to the discovery of $\tau \rightarrow \eta \pi v$, there is a lot that we have learned on the way.

Search of second class currents at Belle II using the $\tau \rightarrow \eta \pi \nu$ decay.

Michel H. Villanueva (Cinvestav, Mexico)

22st January 2016

The glass is half-full

• Despite the not positive results related to the discovery of $\tau \rightarrow \eta \pi v$, there is a lot that we have learned on the way.

BaBar (2009)

ARGUS (1992)

Belle II (2018)

1775

1770

• We developed many of the tools used for tau physics at Belle II.

• We got the first measurement of the tau mass with (very) early data.

Tau decay event in early Belle II data

DESY.

The glass is half-full

• Currently, I contribute as one of the conveners of the τ working group, with several results on the pipe:

Purity [%]

A bit of extra-tau duties

 Deputy coordinator of the of Belle II computing <u>https://belle2.jp/computing/</u>

Convener of the Training group in the HEP Software Foundation https://hepsoftwarefoundation.org/

The HEP Software Foundation facilitates cooperation and common efforts in High Energy Physics software and computing internationally.

Michel Hernandez Villanueva ♥ ♥ ♥ ₪ ■

Sudhir Malik

y 🗘 🖸 🖬 🔗

Wouter Deconinck ♀ ♥ ● ■ ■

The glass is half-full

- But always with $\tau \rightarrow \eta \pi v$ in mind.
 - TO-DO: η efficiency reconstruction and $\tau \rightarrow \eta \pi \pi^0 \nu$, $\tau \rightarrow \eta K \pi^0 \nu$, etc.
 - Close communication with Tauola/KKMC developers and experts.
 - Keeping close communication with Gabriel on the potential in tau lepton measurements.

- The knowledge that I got during my time at Cinvestav has been an unique and fundamental tool during my time at Belle II.
 - And I am deeply grateful for that.

TAU 2018

Thank you, Gabriel

Contact

DESY. Deutsches Elektronen-Synchrotron Michel Hernandez Villanueva michel.hernandez.villanueva@desy.de Orcid: 0000-0002-6322-5587

www.desy.de