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We consider the isospin-breaking corrections to charmless semileptonic decays of B mesons. Both the
recently measured branching ratios of exclusive decays by the CLEO Collaboration and the end-point region of
the inclusive lepton spectrum in form factor models can be affected by these corrections. Isospin corrections
can affect the determination of �Vub�from exclusive semileptonic B decays at a level comparable to present
statistical uncertainties. S0556-2821 97 06821-5

PACS number s : 13.20.He, 11.30.Hv, 12.15.Hh

The first measurements of the exclusive charmless semi-
leptonic decays of B mesons have been reported recently by
the CLEO Collaboration 1 . A comparison between CLEO’s
results for the branching ratios of B0! 2l1 and
B0! 2l1 and the theoretical expressions for their decay
rates allows a determination of the �Vub� entry of the
Cabibbo-Kobayashi-Maskawa mixing matrix. Actually, the
value �Vub�5(3.360.220.4

10.360.7)31023 has been estimated
by combining the yields of five different channels of B de-
cays measured by CLEO and using four different theoretical
models to describe the form factors of these exclusive de-
cays.
The small statistical uncertainty ( 6%) quoted in

CLEO’s estimate of �Vub�is obtained by assuming the isos-
pin symmetry relations

B0! 2l1 52 B1! 0l1 , 1

B0! 2l1 52 B1! 0l1 , 2

52 B1! l1 , 3

to combine the set of five channels in B1 and B0 decays into
two independent measurements of B(B0! 2l1 ) and
B(B0! 2l1 ).
There are two reasons to consider the effects of isospin

symmetry breaking in Eqs. 1 – 3 . First, as we have shown
in a previous paper 2 , the isospin breaking corrections due
to 0- mixing affect the relations 2 and 3 at the level of
the statistical uncertainties reported for the B0! 2l1
branching ratio 1 . Second, the precision for the branching
ratios of exclusive charmless semileptonic B decays would
certainly be improved in forthcoming measurements at pro-
jected B factories.
In order to further emphasize the importance of isospin

breaking effects let us mention that the correction to the
K1! 0e1 decay (Ke3

1 ) due to the 0- mixing affects its
decay rate by around 3.4% 3 . The inclusion of this correc-
tion in semileptonic K1 decays is important in order to
achieve a determination of �Vus�at the level of 61% 3 by
combining the semielectronic rates of K1 and KL

0 in a con-
sistent way. As it was discussed by Leutwyler and Roos 3 ,

these isospin breaking corrections enter at first order in the
charge of vector weak transitions without violating the
Ademollo-Gatto theorem.
Although the charmless semileptonic rates of B mesons

cannot be measured with a similar precision as Ke3 decays,
the several exclusive channels accessible to B!Xul1 de-
cays (Xu5

2, 2, 0, 0, ) partially compensate the lim-
ited accuracy for the individual rates. In addition, the end-
point region of the lepton spectrum in inclusive semileptonic
B decays is another source for the extraction of �Vub� 4 .
Those properties also suggest that is necessary to include
isospin breaking corrections in semileptonic B decays.
In this Brief Report we first discuss the isospin-breaking

corrections to the lepton spectrum in inclusive charmless
semileptonic B decays as described by form factor models
5 . We also address some comments on the size expected
for isospin-breaking effects in the recent measurements of
exclusive charmless B decays as reported by CLEO 1 .
As is well known 5 , the inclusive lepton spectrum of B

decays in form factor models can be seen as a sum over
exclusive channels. The end-point region of the lepton spec-
trum in semileptonic B decays 2.3 Ee 2.6 GeV, Ee is the
lepton energy is expected to be dominated by a few exclu-
sive modes B!( 1 1 )l1 . Most of the commonly
used form factor models 5 explicitly assume isospin sym-
metry in their calculations. Neglecting resonances heavier
than the and mesons, the lepton spectra in decays of
neutral and charged B mesons are thus given by

d 0 B0

dEe
5

X25 2, 2

d 0 B0!X2l1

dEe
, 4

d 0 B1

dEe
5

X05 0, 0,

d 0 B1!X0l1

dEe

5
d 0 B0

dEe
2
d 0 B1! 0l1

dEe
, 5

where d 0(B!Xl )/dEe denotes the lepton spectrum of
each channel in the limit of exact isospin symmetry.
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Effects of the magnetic dipole moment of charged vector mesons
in their radiative decay distribution
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We consider the effects of anomalous magnetic dipole moments of vector mesons in the decay distribution
of photons emitted in two-pseudoscalar decays of charged vector mesons. By choosing a kinematical configu-
ration appropriate to isolate these effects from model-dependent and dominant bremsstrahlung contributions,
we show that this method can provide a valid alternative for a measurement of the unknown magnetic dipole
moments of charged vector mesons. @S0556-2821~97!01119-3#

PACS number~s!: 13.40.Em, 13.40.Hq, 14.40.2n

Electromagnetic multipole moments are important static
properties that characterize particles and nuclei. While the
electromagnetic current conservation imposes that the total
electric charge must be conserved in a given reaction, its
higher multipoles are not fixed in general by theoretical re-
quirements and must be determined from experimental mea-
surements. For elementary particles, the magnetic dipole mo-
ments of e2, m2 are measured with high precision @1#
whereas better constraints on the magnetic dipole and elec-
tric quadrupole moments of W6 gauge bosons are becoming
available from the CERN e1e2 collider LEP 2 and Fermilab
Tevatron colliders. In the case of hadrons, only the magnetic
dipole moments of quasistable baryons have been measured,
while those of hadronic resonances remain unknown @1#.
The spin precession technique @2# used to measure the

magnetic moments of octet baryons and V2 is not applicable
in the case of hadronic resonances due to their very short
lifetimes (<10218 sec). An alternative method based on
photon emission off hadrons @3# can be used in the latter
case, because the photon carries information on higher mul-
tipoles of emitting particles.1 As an application of this
method, the angular distribution of soft photons emitted in
V2
!LK2 decays has been computed in order to study the

sensitivity to the anomalous magnetic moment of V2 @4#.
The results obtained with this method, however, are not com-
petitive with the precision attained @5# using the usual spin
precession technique @2#.
In a previous paper @6# we have analyzed the effects of

anomalous magnetic moments of charged vector mesons
~r1, K*1! in the decay rates of two-pseudoscalar radiative
decays. These decay rates are almost insensitive to the ef-
fects of magnetic dipole moments unless high values are
used for the infrared cutoff photon energies. However, this
reduction of photon phase space strongly suppresses the de-
cay rates and makes difficult their accurate measurement us-
ing this method.

Following a similar approach, in this work we analyze the
effects of r1 and K*1 anomalous magnetic moments in the
decay distributions of photons emitted in the two-
pseudoscalar decays of these vector mesons. In order to im-
prove the sensitivity on these effects, we consider the photon
energy spectrum for photons emitted at small angles with
respect to charged pseudoscalar mesons.
Besides the possible experimental difficulties for recon-

struction of these particular configurations, there are two
limitations of the present approach. First, one should bear in
mind that the decays of these unstable particles cannot be
separated from its production process as required in our cal-
culations. In fact, when considering the production and de-
cay mechanisms of a charged resonance in a radiative pro-
cess, some care must be taken @7# to maintain
electromagnetic gauge invariance of the amplitude in the
presence of the finite width of the resonance.2 On the other
hand, we neglect the vector meson decay widths appearing in
the propagators after photon emission off vector mesons.
While the first difficulty could be overcome by imposing
appropriate cuts to suppress photon radiation in the produc-
tion mechanism of the vector mesons, we expect that the
second approximation accounts for neglecting terms of
O(G/M ) as far as the photon energy is not taken as very
low. The importance of other reasonable approximations
made in our calculations are discussed at the end of the pa-
per.
As is known, the total magnetic moment for a positively

charged (e.0) vector meson of mass M is given by

mV5~11k!
e
2M , ~1!

where k is the anomalous piece of the magnetic moment. In
analogy with the W6 magnetic dipole moment in the stan-
dard electroweak theory, k51 can be considered as the natu-

1In fact, this method is used in the measurements of the W6 boson
multipoles at the Tevatron collider.

2A corresponding analysis for the r2 resonance in the process
t2
!ntp

2p0g is underway @8#.
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ral or canonical value for the vector mesons @9#. However,
substantial deviations from this canonical value can be ex-
pected and in fact, some available calculations of Dk[k21
in the context of phenomenological quark models indicate

values as large as Dk;2.6 @10# for the r meson.
Let us start with the structure of the gauge-invariant am-

plitude for the V1
!P1P0g decay @V1 is the charged vector

meson and P1 (P0) is a charged ~neutral! pseudoscalar#:

M5iegVPP8H S
p•e*
p•k 2

d•e*
d•k D ~p2p8!•h1S

p•e*
p•k 2

d•e*
d•k D k•h

1F21
Dk

2 S 11
D2

M 2D G S
d•e*
d•k k•h2e*•h D2~21Dk!S

p•e*
p•k k•h2e*•h D

p•k
d•k J 1O~k !5MLow1O~k !. ~2!

In the above expression, d , p , p8, and k denote, respectively, the four-momenta of V1, P1, P0, and the photon, h (e*) is the
polarization four-vector of V1 ~g!, D2[mP1

2 2mP0
2 , and gVPP8 denotes the strength of the V

1P1P0 interaction. The term in
curly brackets in Eq. ~2! corresponds to Low’s amplitude @11#, i.e., to the leading terms in the expansion of the amplitude for
soft photons. The terms of order k21 arise exclusively from photon emission off the charges of V1 and P1 and the terms of
order k0 include also the photon emission amplitudes from the magnetic moment of V1 and a contact term which is necessary
for gauge invariance.
The residual terms of order k in Eq. ~2! contain contributions from the electric quadrupole moment of V1 and other possible

model-dependent pieces. In the following we will neglect these contributions and discuss their relative importance at the end
of this paper.
A straightforward calculation gives the squared amplitude ~with the sum over vector meson polarizations!

(
V1 pols

uMLowu
25e2gVPP8

2 H U
p•e*
p•k 2

d•e*
d•k U

2

SM 222S21
D4

M 2D1
~Dk!2

M 2 ~p•k !2U
p•e*
p•k 2

d•e*
d•k U

2

2e•e*F21
Dk

2 S 11
D2

M 2D2~21Dk!
p•k
d•k G

2

J , ~3!

where we have defined S2[mP1
2 1mP0

2 . The previous result
is in agreement with the Burnett-Kroll’s theorem @12# ~see
also @3#!, which establishes the absence of terms of O(k21)
in the probability for polarized photons. The terms of order
k21 appear only if we consider the squared amplitude for
polarized photons and vector mesons.
In order to choose the decay distributions suitable to ob-

serve the effects of Dkfi0, we set in the rest frame of the
vector meson. In this case, the infrared factor in the previous
result becomes

(
g pols

U
p•e*
p•k 2

d•e*
d•k U

2

5
upW u

2 sin2u
v2~E2upW ucosu!2

, ~4!

where E and v are, respectively, the energies of the charged
pseudoscalar and the photon in the rest frame of V1

(upW u5AE22mP1
2 ). The angle u defines the direction of pho-

ton emission with respect to the charged pseudoscalar in the
same frame.
Since the Dk-dependent terms in Eq. ~3! start at order v0,

we can expect, according to Eq. ~4!, that the differential de-
cay distribution for photons of low energy would be more
sensitive to Dkfi0 if we cut the large values of u. Using this
property, in Figs. 1–3 we show the energy decay distribu-
tions of photons @normalized to the corresponding nonradia-
tive rates, i.e., (1/Gnr)dG/dxdcosu, where x52v/M # in the
r1
!p1p0g , K*1

!K0p1g , and K*1
!K1p0g decays.

The short-dashed lines in all these plots correspond to the

FIG. 1. Differential decay distribution of photons in the decay
r1
!p1p0g . The short-dashed plot corresponds to the term of

order v22 and the solid, long-dashed, and long-short-dashed plots
are the terms of order v0 when Dk521, 0, and 1, respectively.
The upper and lower parts are for u510° and 20°, respectively.
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Abstract
We study the effects of model-dependent contributions and the electric
quadrupole moment of vector mesons in the decays V − → P −P 0γ and
τ− → νV −γ . Their interference with the amplitude originating from the
radiation due to electric charges vanishes for photons emitted collinearly to the
charged particle in the final state. This brings further support to our claim in
previous works, that measurements of the photon energy spectrum for nearly
collinear photons in those decays are suitable for a first measurement of the
magnetic dipole moment of charged vector mesons.

In some recent papers [1–3], we have studied the possibility of obtaining information
concerning the experimental value of the magnetic dipole moment (MDM) of light charged
vector mesons. We have focused our interest on the angular and energy distribution of photons
emitted during the radiative decay [1] or production [2] processes of vector mesons. In [3] we
have extended our analysis to include the finite width effects of these unstable particles. Just to
illustrate the interest of the problem, let us emphasize that none of the magnetic dipole moments
of resonances, neither elementary (such as the W gauge boson) nor hadronic particles, have
been measured yet. The only exception is the $++ resonance, where the determinations of
the MDM spread over a wide range [4]: 3.5 < µ$++ < 7.5 in units of nuclear magnetons.
This particular case makes any comparison with theoretical predictions based on quark models
inconclusive [5]. Therefore, observables that could provide information about the MDM of
unstable particles, open up the possibility to test additional features of the dynamics of bound
states in strong interactions.

The energy spectrum of photons emitted at small angles with respect to final state charged
particles in the decays V − → P −P 0γ [1] and τ− → νV −γ [2] (V (P ) denotes a vector
(pseudoscalar) meson), was found to be particularly sensitive to the effects of the MDM of
the vector meson. We should recognize, however, the challenges that reconstructing these
channels from multi-photon final states may pose to experimentalists.

In our analysis of [1–3] we have neglected model-dependent contributions and the effects
coming from the electric quadrupole moment of the vector meson. We have argued, based on

0954-3899/01/112203+08$30.00 © 2001 IOP Publishing Ltd Printed in the UK 2203

Vector-meson magnetic dipole moment effects in radiative ! decays

G. López Castro and G. Toledo Sánchez
Departamento de Fı́sica, Centro de Investigación y de Estudios, Avanzados del IPN, Apartado, Postal 14-740,
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We study the possibility that the magnetic dipole moment of light charged vector mesons could be measured
from their effects in #!˜V!$#% decays. We conclude that the energy spectrum and angular distribution of
photons emitted at small angles with respect to vector mesons is sensitive to the effects of the magnetic dipole
moment. Model-dependent contributions and photon radiation off other electromagnetic multipoles are small in
this region. We also compute the effects of the magnetic dipole moment on the integrated rates and photon
energy spectrum of these # lepton decays. &S0556-2821!99"04315-5'

PACS number!s": 13.35.Dx, 13.40.Em, 14.40.Cs

I. INTRODUCTION

The magnetic dipole moment (() and electric quadrupole
moment (Q) of vector mesons (JP"1!), and more gener-
ally of spin-one elementary and hadronic particles, have not
been measured yet. In the case of vector mesons, even upper
bounds have not been reported by experiments up to now.
The very short lifetime of vector mesons do not allow one to
use vector-meson-electron scattering !as in the case of the
deuteron" or the spin-precession technique &1' !as is useful
for hyperons" to measure their electromagnetic static proper-
ties. Instead, only photoproduction experiments or radiative
decays may eventually be able to measure these multipoles
&2'. In this paper we study the sensitivity of #!˜V!$#%
decays to the magnetic dipole moment of the vector meson
V! and identify an observable associated with this decay that
could provide a measurement of this important property.
Measurements of the magnetic dipole and electric quad-

rupole moments of the W gauge bosons would provide a
significant test for the gauge structure of the standard model
of particle interactions, while the corresponding multipoles
of vector mesons contain information on the structure of
these hadrons and, ultimately, about the dynamics of strong
interactions. At present, more restrictive bounds on the mag-
netic dipole and electric quadrupole moments of the W#

gauge bosons are being provided from experiments at the
CERN e$e! collider LEPII &3' and Fermilab Tevatron col-
liders &4'. These bounds are consistent with the predictions
based on the standard model, while the corresponding ex-
perimental information for vector mesons is absent. The sim-
plest of the spin-one systems, whose multipoles have been
measured with good precision, is the deuteron (JP"1$):
(D"0.85741(N , QD"0.2859 fm2 &5'. This information
confirms the picture that the deuteron can be viewed as a
weakly bound state of a neutron and a proton whose electro-
magnetic properties can be understood, for instance, in terms
of a model for low-energy interactions of baryons and me-
sons &6'.
In a previous paper we have considered the possibility of

measuring the magnetic dipole moment of light vector me-
sons )# and K*# by looking at the energy and angular dis-
tribution of photons emitted in their two-body radiative de-
cays (V#˜P#P0% , where P denotes a pseudoscalar meson"

&7'. We have found that this observable is more sensitive to
the effects of the magnetic dipole moment than their corre-
sponding integrated rates &8'. Indeed, measurements of the
photon spectrum in the kinematical region where this observ-
able is dominated by the emission off the magnetic dipole
moment, would provide a determination of this property
within *("#0.5 !in units of e/2mV), if the photon spec-
trum is measured with a precision of around 25% &7'.
In the present paper we are concerned with the possibility

of measuring the magnetic dipole moment of the vector me-
sons )#, K*# in the radiative decays of the # lepton, namely
#!˜V!$#% !henceforth our discussion will be focused on
the )! vector meson, but everything applies to the K*!

meson with the appropriate changes in flavor indices".
Among the motivations for this study we find the following:
!a" charged vector mesons are produced in a clean way
through the decay #!˜V!$# and the )! accounts for al-
most 25% of all # decays &9', therefore the corresponding
decay with an accompanying photon can be expected at a
fraction of a percent level and, !b" there are several recent
studies of the electromagnetic vertex of light vector mesons
that provide a computation of their electromagnetic multi-
poles &10,11'.
An implicit shortcoming of dealing with vector mesons

!and unstable particles in general" is that the separation of the
production and decay processes of a resonance are in general
model dependent. Actually, only the full S-matrix amplitude
that involves the production and decay of an intermediate
resonance is physically meaningful. Therefore, the consider-
ation of truncated processes such as the radiative decays
V$˜P$P0% &7,8' or the radiative production of a resonance
as in the present study necessarily involves a factorization
approximation. The effects of the vector meson magnetic
dipole moment in the full production and decay processes
!for example, #!˜)!$#%˜+!+0$#% in the present case"
and the difficulties associated with a gauge-invariant formu-
lation of the electromagnetic vertex of an unstable vector
particle &12' goes beyond the purpose of the present paper
&13'.
This paper is organized as follows. In Sec. II we analyze

the effects of the magnetic dipole moment of the vector me-
sons )! or K*! in the energy and angular spectrum of pho-
tons in #!˜()!, K*!)$#% decays. These effects in the cor-
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Gauge invariance and finite width effects in radiative two-pion ! lepton decay
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The contribution of the #! vector meson to the $→%%&' decay is considered as a potential source for the
determination of the magnetic dipole moment of this light vector meson. In order to keep the gauge invariance
of the whole decay amplitude, a procedure similar to the fermion-loop scheme for charged gauge bosons is
implemented to incorporate the finite width effects of the #! vector meson. The absorptive pieces of the
one-loop corrections to the propagators and electromagnetic vertices of the #! meson and W! gauge boson
have identical forms in the limit of massless particles in the loops, suggesting this to be a universal feature of
spin-one unstable particles. Model-dependent contributions to the $→%%&' decay are suppressed by fixing
the two-pion invariant mass distribution at the rho meson mass value. The resulting photon energy and angular
distribution is relatively sensitive to the effects of the # magnetic dipole moment.

PACS number!s": 13.40.Em, 12.20.Ds, 13.35.Dx, 14.40.Cs

I. INTRODUCTION

The two-pion mode is by far the dominant hadronic chan-
nel of semileptonic $ decays. According to Ref. (1)the mea-
sured resonant and non-resonant pieces of the $→%%&$
branching ratios are given by (25.32!0.15)% and (0.30
!0.32)%, respectively. The two-pion invariant mass distri-
bution has also been measured in a wide region around the
#" mass (2), and it reveals a rich resonant structure domi-
nated by charged vector mesons #(770), #!.
The impressive accuracy attained in the measurement of

these properties has been used for several purposes. For in-
stance, it provides a precise test of the CVC !conserved vec-
tor current" hypothesis !which relates the two-pion tau de-
cays to the I#1 contribution in e"e$→%"%$), it reduces
the hadronic uncertainties in the evaluation of (g$2)* and
in the running of the QED fine structure constant at the mZ
scale (3), and it has been suggested even as a good place to
determine the $ lepton charged weak dipole moments (4). On
the other hand, since multi-pion !multi-kaon" semileptonic
channels have been found to be dominated by intermediate
light hadronic resonances, these $ decays can be used to
measure the intrinsic properties of these resonances (2).
Therefore, in this paper we explore the potential of the ra-
diative two-pion $ decays in order to determine the magnetic
dipole moment of the charged #(770) vector meson.
In recent papers (5,6), we have considered the possibility

to measure the magnetic dipole moment of light charged
vector resonances (# and K*) in their production (5) and
decay (6)processes. These works have the limitation of con-
sidering vector mesons as stable particles. Since vector me-
sons are highly unstable particles !the width-mass ratio are
0.2 and 0.06 for the # and K*, respectively", their properties
!mass, width, magnetic dipole moment" would depend on the
specific model used to describe its production and decay
mechanisms (7). A model independent measurement of its
mass and width can only be obtained by identifying the pole
position of the S-matrix amplitude (7,8).
In the present paper we consider the full S-matrix ampli-

tude for the production and decay of the #!(770) vector

meson in $→%%&' decay in order to explore the sensitivity
of this decay to the effects of the magnetic dipole moment of
the #! vector meson. Since the evaluation of the relevant
contributions to the $ lepton decay amplitude involve the
propagator and the electromagnetic vertex of the charged #
meson (9), some care must be taken in order to preserve the
electromagnetic gauge invariance of the S-matrix amplitude
in the presence of the finite width of the vector meson. To
maintain gauge-invariance, in this paper we introduce a pro-
cedure similar to the so-called fermion loop-scheme pro-
posed recently to keep gauge-invariance in processes involv-
ing the WW' vertex (10). As discussed in the first two
references of (10), violation of gauge invariance in the pro-
cesses qq̄→l& l' and e"e$→ud̄e$&̄e !that involve the
WW' vertex" can have catastrophic effects for certain kine-
matical configurations in those reactions.
We have organized this paper as follows. In Sec. II we

compute the absorptive parts of one loop corrections to the
propagator and electromagnetic vertex of the charged vector
meson. Since the leading contributions to the absorptive cor-
rections arise from loops with two pseudoscalar mesons, we
call it the boson loop-scheme. As discussed in Ref. (10) for
the W boson case, the addition of these corrections provides
a convenient and consistent way to preserve the electromag-
netic Ward identity in the presence of a finite width of the
unstable particle. Our results for the absorptive corrections
with massless mesons in the loops are identical to those ob-
tained in the fermion loop scheme for the W! gauge boson
in the limit of massless fermions. In Sec. III we compute the
full S-matrix gauge-invariant amplitude for the process $$

→%$%0&$' , using the gauge-invariant Green functions de-
rived in Sec. II. In Sec. IV we study the effects of the #$

magnetic dipole moment in the two-pion invariant mass and
double-differential photon distribution of the $→%%&' de-
cay. In Sec. V we summarize and discuss our results. Two
appendices are deserved to compute the corrections to the
electromagnetic vertex !Appendix A" and to provide !Appen-
dix B" the relevant scalar, vector and tensor integrals re-
quired to evaluate explicitly the absorptive parts of the
propagator and vertex corrections.
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Before we start our discussion, let us mention that our
results can be straightforwardly extended to the K*!(892)
resonance contribution in !→K"#!$ decays with proper in-
clusion of the two isospin channels (K""0 and K0"") in
the absorptive corrections.

II. GAUGE INVARIANCE AND BOSON LOOP-SCHEME
FOR VECTOR MESONS

The electromagnetic gauge-invariance of amplitudes in-
volving intermediate spin-one charged resonances in radia-
tive processes can be broken if one naively incorporates the
finite width of these resonances in their propagators %10&.
This problem can be cured by different, but rather arbitrary,
procedures 'see Argyres in Ref. %10&(. In the case of the
unstable W! gauge boson, one of the recently proposed
methods is the so-called fermion loop-scheme %10&. It con-
sists in the addition of the absorptive parts of the fermionic
one-loop corrections to the electromagnetic vertex and the
propagator of the W gauge boson. In this way, the electro-
magnetic Ward identity between these two- and three-point
functions is satisfied at the one-loop level and the gauge-
invariance of the amplitude with intermediate unstable
gauge-bosons is guaranteed.
Following this idea, in this section we compute the ab-

sorptive corrections to the propagator and electromagnetic
vertex of the )! vector meson that arise from the one-loop
diagrams with two-pseudoscalar mesons 'see Figs. 1 and 2(.
Despite the fact that the interaction Lagrangian of pions and
vector mesons is not renormalizable, we will not be con-
cerned with these technical points as far as we focus only on
the one-loop absorptive corrections which is free of infini-
ties. This procedure serves our purposes to cure gauge-
invariance in amplitudes of radiative processes involving in-
termediate unstable vector mesons.
The reader may wonder if a perturbative analysis of these

Green functions makes sense given the strong interactions of
the ) vector meson. As it was shown long ago %11& in gen-
eral, the approach to strong interactions based on dispersion
theory and the one based on 'perturbative( field theory, give
equivalent and complementary results in the calculation of
transition amplitudes. As a particular example, let us con-
sider the "! electromagnetic form factor F"(s) in the time-
like region s#0 which is dominated by the )0 vector meson.
In this case, dispersion theory techniques used to relate
F"(s) to the l$1 phase shift of "" scattering %13& and a
perturbative analysis %based on the interaction Lagrangian
given below in Eq. '6(& of the ) meson propagator %9,12&
give identical results for the pion electromagnetic form fac-
tor. As is well known %14&, the Gounaris-Sakurai parametri-
zation %13& gives a very good description of the experimental
data for !F"(s)! extracted from e"e%→"""% in a wide
kinematical region of the center of mass energy !s . This
equivalence of dispersion relation and field theory ap-
proaches for the ) vector meson propagator gives us good
confidence to compute the ))$ vertex in a perturbative
framework.
Let us start our discussion with the lowest order propaga-

tor %D0
*#(q)& and electromagnetic vertex (+0

*#,) of the )!

vector meson. Using the conventions given in Fig. 1'a( we
have

D0
*#'q ($i" %g*#"

q*q#

m2

q2%m2
# $%

iT*#'q (

q2%m2 "
iL*#'q (

m2 ,

'1(

where T*#(q)-g*#%q*q#/q2 and L*#(q)-q*q#/q2 are
the transverse and longitudinal projectors, respectively. On
the other hand, Lorentz covariance and CP-invariance im-
pose the electromagnetic vertex to be given by %15& %vector
mesons are taken as virtual and the photon is real; the mo-
menta flow as shown in Fig. 2'a(&

e+0
*#,$e„'q1"q2(*g#,"'k#g*,%k,g*#(.'0 (%q1

#g*,

%q2
,g*#…. '2(

In the previous equation e denotes the positron charge, and
.(0) is the magnetic dipole moment of the vector meson in
units of e/2mV , with mV the mass of the vector meson.
The special value .(0)$2, which is considered as a cri-

terion of elementarity %16&, would correspond to the canoni-
cal value of the giromagnetic ratio. Also, it has been shown
%17& that this is the natural value of the magnetic dipole
moment of a composite spin-one system that consists of two
spin-1/2 elementary components moving collinearly, with
equal charge-mass ratios (e1 /m1$e2 /m2). Therefore, de-
viations from this canonical value would reflect the dynam-

FIG. 1. Propagator of the )" meson: 'a( tree level; 'b( one-loop
"""0 absorptive correction.

FIG. 2. Electromagnetic vertex of the )" meson: 'a( tree level;
'b(–'e( one-loop """0 absorptive correction.
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ics of the internal structure of the meson. For example, as
obtained from different phenomenological quark models, the
magnetic dipole moment of the !(770) and K*(892) vector
mesons are predicted to be "18#: $!(0)%2.2&3.0 and
$K*(0)%2.37 in the corresponding units of e/2mV .
We can easily check that Eqs. '1( and '2( satisfy the low-

est order electromagnetic Ward identity given by

k)*0
)+,!" iD0

+,'q1(#"1"" iD0
+!'q2(#"1. '3(

In order to satisfy the Ward identity in the presence of a
finite width of the vector meson, let us follow a method
similar to Refs. "10#. Following the usual procedure "10#, we
add the absorptive correction shown in Fig. 1'b( to the low-
est order propagator and we perform the Dyson summation
of these graphs to end with the next form of the dressed
propagator:

D)+'q (!"
iT)+'q (

q2"m2#i Im-T'q2(
#

iL)+'q (

m2"i Im-L'q2(
,

'4(

where Im-T(q2) and Im-L(q2) are the transverse and lon-
gitudinal pieces of the absorptive part of the self-energy cor-
rection:

Im-)+'q (!Im-T'q2(T)+'q (#Im-L'q2(L)+'q (.
'5(

The Feynman rules needed to evaluate the absorptive cor-
rections can be obtained from the gauged version of the
VPP interaction Lagrangian:

L!
ig
!2
Tr'V)PD)P"V)D)PP ( '6(

where V)!,aV)
a /!2 and P!,aPa/!2 (,a the Gell-Mann

matrices( stand for the SU'3( octet of vector and pseudo-
scalar mesons and, g%6.0 is the !.. coupling constant ob-
tained from !→.. . The matrix form of the photonic cova-
riant derivative is D)P!/)P#ie"Q ,P#A) where Q
!diag(2/3,"1/3,"1/3) is the quark-charge matrix and A) is
the electromagnetic four-potential.
Using cutting techniques and the Feynman rules obtained

from Eq. '6(, the absorptive part of the self-energy correction
becomes "see Fig. 1'b(#
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Using the results given in Appendix B for the one-point in-
tegrals and the decomposition given in Eq. '5( we get
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where ,(x ,y ,z)2x2#y2#z2"2xy"2xz"2yz , m. (m.!)
denotes the charged 'neutral( pion mass, and
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g2

48.q2
",'q2,m.

2 ,m.!
2 (

q2
#3/2 '10(

denotes the energy-dependent 'or off-shell( decay width of
the ! meson. Therefore, the denominator in Eq. '4( gets the
Breit-Wigner shape used to describe the energy distribution
typical of a resonance.
The absorptive corrections to the electromagnetic vertex

can be computed from the cut diagrams shown in Figs. 2'b(–
2'e(. The relevant Feynman rules describing the !.. and
!..3 vertices are obtained from the Lagrangian density
given above. A lengthy but straightforward evaluation of the
four Feynman graphs in Fig. 2 leads to the following form
for the full electromagnetic vertex 'see Appendices A and B
for details(:

e*)+,!e'*0
)+,#*1

)+,(, '11(

where the absorptive correction is given by

e*1
)+,!4

i!a

d

I)+,'i (, '12(

with the I)+,(i) terms as given in Appendix A. In the right
hand side of Eq. '12( we will drop terms proportional to k)

because we are considering the electromagnetic vertex with a
real photon and two virtual vector mesons, and k) terms do
not contribute to the Ward identity or the 5→..+3 decay
amplitude.
It is straightforward to check that the explicit results ob-

tained for the electromagnetic vertex "Eq. '11(# and the
propagator "Eq. '4(# of the !% vector meson satisfy the elec-
tromagnetic Ward identity:

k)*)+,!" iD+,'q1(#"1"" iD+,'q2(#"1 '13(

or, in terms of the absorptive one-loop corrections, it reads

k)*1
)+,!i Im-+,'q1("i Im-+,'q2(. '14(

After we have proved that electromagnetic gauge-
invariance is satisfied with the two- and three-point Green
functions given in Eqs. '4( and '11(, it is interesting to con-
sider two special cases. The first is to realize that in the limit
of isospin symmetry, namely m.!m.! , the longitudinal
piece of the absorptive self-energy correction "see Eq. '9(#
vanishes and we obtain the explicit expressions:

DI
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The result of Burnett and Kroll !BK" states that for radiative decays, the interference of O(#!1) in the
photon energy # vanishes after the sum over polarizations of the involved particles. Using radiative decays of
vector mesons, we show that if the vector meson is polarized, the O(#!1) terms are null only for the canonical
value of the magnetic dipole moment of the vector meson, namely, g"2 in Bohr magneton units. A subtle
cancellation of all O(#!1) terms happens when summing over all polarizations to recover the Burnett-Kroll
result. We also show the source of these terms and the corresponding cancellation for the unpolarized case and
exhibit a global structure that can make them individually vanish in a particular kinematical region.
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I. INTRODUCTION

The early work by Low $1%that relates the radiative pro-
cess with the corresponding nonradiative and the electro-
static properties of the involved particles provided the
grounds to develop bremsstrahlung studies in a model-
independent basis. These processes have been used as a way
to obtain information on the electromagnetic structure of par-
ticles $2%and the importance of off-shell effects $3%. Subse-
quent works $2,4,5%exploited Low’s result to show explicit
properties of the so-called Low amplitude. One of these is
the work of Burnett and Kroll !BK" $5%, which stated that the
interference of the first and second terms of the amplitude
expansion, in powers of the photon energy (#), after the
sum over polarizations, is null, namely, the O(#!1) in the
squared amplitude. This was simultaneously found by Za-
kharov et al. $2%. In general, those terms in the amplitude can
be identified with the electric charge and magnetic dipole
emissions, respectively, and thus the result can be seen to
resemble the classical observation of the noninterference of
these multipoles. These and other features are embodied in
the so-called soft-photon approximation.
The subtle cancellation of the interferences in practice is

not traced back and thus many interesting features are shad-
owed by just checking that the results satisfy the Burnett-
Kroll theorem. One of these is the existence of additional
structures that can help us to obtain more information about
the decay and the properties of the involved particles. One
may also wonder if the polarized case satisfies the Burnett-
Kroll result, and if so, under which conditions. At the same
time, it is interesting to know, in practice, how the sum over
polarizations leads to the vanishing of O(#!1) contribu-
tions.
Given the fact that the electric charge is completely deter-

mined by charge conservation, the magnetic dipole moment
!MDM" value naturally plays a key role in radiative decays.
For example, the W gauge boson MDM is predicted by the
standard model to be g"2 in Bohr magneton units !we will
refer to the MDM by the giromagnetic ratio g" and is a test of
the gauge structure of the theory. Indeed, many authors $6%
have shown that this value has many interesting features in
the description of electromagnetic phenomena for particles

of half and integer spin. Moreover, in theories in which the
vector mesons are considered as gauge bosons of a hidden
symmetry $7%, the coupling to an electromagnetic field has
g"2 in a similar way to the W gauge boson. Thus this par-
ticular value is frequently assumed to be the canonical one.
In this work, we offer an additional feature to favor it by
observing the radiative decay interferences for polarized vec-
tor mesons, where the O(#!1) terms are null only if
g"2.
In other works, in the soft-photon approximation it was

observed $2,8,9% that for radiative decays involving vector
mesons it is possible to suppress the electric charge contri-
bution to the photon-energy spectrum by an appropriate
choice of a kinematical configuration. In a more recent work
$10%, an exploration beyond that approximation showed that
the interference of the electric charge radiation with any
gauge-invariant term of the transition amplitude exhibits a
typical structure that in particular is null by the same kine-
matical configuration, i.e., where the photon is collinearly
emitted off the charged particle of the final state when in the
initial particle rest frame. Although not explicitly mentioned,
this is also true for each of the O(#!1) terms whose total
sum is null as stated by Burnett and Kroll. Here we apply
that result to unpolarized vector meson radiative decays to
explicitly exhibit this behavior and to show how the BK
result is obtained, thus gaining insight into the destructive
interferences. All over the interference contributions, the
MDM value is involved and therefore its role can be in-
ferred. These are the questions that we plan to address in this
paper.
In the present work, we explore all this for radiative de-

cays of vector mesons typically of the form V#→P#P!0& ,
where V (P ,P!) is a vector !pseudoscalar" meson. We start
by considering the vector meson polarization to study the
effect of the MDM in the radiation probability structure.
Then we state the features of the interferences in the unpo-
larized case, and we exhibit how the BK result is obtained.
At the end, we discuss our results and their implications.

II. POLARIZED RADIATION DISTRIBUTION

To make clear the structure of the Burnet-Kroll terms, in
the following we write the explicit gauge-invariant Low am-
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plitude for the decay of a vector meson that we choose to be
!!→"!"0# , although the results are not restricted to this
particular case. We will use the 4-momentum notation q
→p p! k in the respective order, and $ (%) corresponds to
the polarization 4-vector of the photon &vector meson'. Thus,
the Low amplitude can be written as (8)

ML"ieg!""!&p#p!'•%L•$*!L•$*k•%

#
gp•k
q•k " p•$*

p•k k•%#$*•% #
!! 2#" 1#

g
2 # " 1!

*2

m!
2# $ " q•$*

q•k k•%#$*•% # $ ,
&1'

where g!"" denotes the !"" coupling, e is the electric
charge of the positron, m! is the ! meson mass, and m"
(m"0) is the mass of the charged &neutral'pion. The mag-
netic dipole moment is given by g in Bohr magneton units,
*2+m"

2#m"0
2 and L,+-(p,/p•k)#(q,/q•k)..

Let us now study the interferences behavior by consider-
ing the polarization of the vector meson. The magnetic-
dipole moment g is not restricted to a particular value and the
masses of the charged (m") and neutral (m"0) pions are
different. We consider, for simplicity, the rest frame of the
decaying particle and the radiation gauge ($0"0). The first
condition implies that the vector meson polarization tensor %
has the form %,

( j)"(0,%! ( j)) with j"1,2,3. For definiteness
we choose the following base:

%! (1)"
1
!2

&1,i ,0',%! (2)"
1
!2

&1,#i ,0',%! (3)"&0,0,1'. &2'

The coordinate system is taken in such a way that the photon
vector momentum is along the ẑ direction; this means k
"(/ ,0,0,/), which, in the gauge radiation, implies that
k!•$!"/$3"0 and therefore the photon polarization tensor
$, can be written as

$,"&0,$1 ,$2,0'.

Once we have established our conventions, we proceed to
compute the polarized amplitudes from Eq. &1'. The explicit
expressions after simplifications, for each of the vector me-
son polarizations &2', are the following, respectively:

M (1)"ie
g!""

!2 ! gp•k
q•k #2!" 1!

*2

m!
2# " 1#

g
2 # $&$1*!i$2*'

!!2ieg!""

p•$*
p•k &p1!ip2', &3'

M (2)"ie
g!""

!2 ! gp•k
q•k #2!" 1!

*2

m!
2# " 1#

g
2 # $&$1*#i$2*'

!!2ieg!""

p•$*
p•k &p1#ip2', &4'

M (3)"2ieg!""

p•$*
p•k !p3!/" 1#

gp•k
2q•k # $ . &5'

In a three-body decay, besides the masses, only two Lorentz
invariants are independent. We choose them to be p•k and
q•k to exhibit the dependence on the photon energy. The
total probability transition for each of the three directions of
the polarization can then be computed and expressed in
terms of those kinematical variables as follows:

%M (1)%2"" eg!""

p•$*
p•k # 2! 2m!

2 p•k
q•k " 1!

*2

m!
2 #

p•k
q•k #

#2m"
2#2p•k" 1#

g
2 # " 1!

*2

m!
2 #2

p•k
q•k # $ ,

#
&eg!""'2

2 $*•$! gp•k
q•k#2!" 1!

*2

m!
2# " 1#

g
2 # $ 2,

%M (2)%2"%M (1)%2,

%M (3)%2"" eg!""

p•$*
p•k # 2!m!

2" 1!
*2

m!
2#2

p•k
q•k # 2

!4" p•k
m!

# 2" 1#
g
2 # 2!4p•k" 1#

g
2 #

$" 1!
*2

m!
2 #2

p•k
q•k # $ . &6'

These equations exhibit clearly the structure %M (i)%2
"A (i)//2!B (i)//!C (i)/0, and it can be observed that the
O(/#1) terms are not null unless the magnetic-dipole mo-
ment takes the canonical value g"2. This result is very in-
teresting because this simplifying feature was also found in
Ref. (11)when describing the equation of motion of the po-
larization tensor for a particle in a homogeneous external
electromagnetic field and reinforces the observation by many
authors (6) that the choice g"2 for charged vector mesons
leads to richer properties of the radiative process description.
We can also notice that the O(/#1) terms are proportional to
the kinematical factor ((p•$*)/(p•k))2, whose importance
will be clarified in the next section.
Adding the three polarized equations &6', we render to the

unpolarized case

BRIEF REPORTS PHYSICAL REVIEW D 66, 097301 &2002'
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Abstract

The first evidence for off-shell Higgs boson production is reported in the final state
with two Z bosons decaying into either four charged leptons (muons or electrons),
or two charged leptons and two neutrinos, and a measurement of the Higgs boson
width is performed. Results are based on data from the CMS experiment at the LHC
at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of up
to 140 fb�1. The total rate of off-shell Higgs boson production beyond the Z boson
pair production threshold, relative to its standard model expectation, is constrained
to the interval [0.0061, 2.0] at 95% confidence level. The scenario with no off-shell pro-
duction is excluded at 99.97% confidence level (3.6 standard deviations). The width
of the Higgs boson is extracted as GH = 3.2+2.4

�1.7 MeV, in agreement with the stan-
dard model expectation of 4.1 MeV. The data are also used to set new constraints on
anomalous Higgs boson couplings to W and Z boson pairs.
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Abstract

Production cross sections for tt̄ and tt̄j events at hadron colliders are cal-

culated, including finite width effects and off resonance contributions for the

entire decay chain, t → bW → bℓν, for both top quarks. Resulting background

rates to Higgs search at the CERN LHC are updated for inclusive H → WW

studies and for H → ττ and H → WW decays in weak boson fusion events.

Finite width effects are large, increasing tt̄(j) rates by 20% or more, after

typical cuts which are employed for top-background rejection.

I. INTRODUCTION

tt̄ production [1] is a copious source ofW -pairs and, hence, of isolated leptons at the Tevatron and

the LHC. Top quark production will be intensely studied as a signal at these colliders. In addition, it

constitutes an important background for many new particle searches. Examples include the leptonic

signals for cascade decays of supersymmetric particles [2] or searches for H → W+W− [3–8] and

H → ττ [5,9,10] decays.

Usually, tt̄ production is considered in the narrow-width approximation (NWA), which effec-

tively decouples top production and decay (see Fig. 1(a)). Whenever resonant top production
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Determination of the magnetic dipole moment of

the rho meson using four-pion electroproduction data
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AP 20-364, México D.F. 01000, México
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We determine the magnetic dipole moment of the rho meson using preliminary data
from the BaBar Collaboration for the e+e− → π+π−2π0 process, in the center of mass
energy range from 0.9 to 2.2 GeV. We describe the γ∗ → 4π vertex using a vector meson
dominance model, including the intermediate resonance contributions relevant at these
energies. We find that µρ = 2.1± 0.5 in e/2mρ units.

Keywords: Rho meson; magnetic dipole moment; electroproduction.

PACS numbers: 13.40.Gp, 12.40.Vv, 11.10.St, 13.66.Bc

1. Introduction

To date, there is no measurement of the magnetic dipole moment (MDM) of any
vector meson.1 Their extremely short lifetimes (≈ 10−23 s) prevents experimental-
ists from applying standard MDM measurement techniques. For example, the spin
precession technique2 requires the determination of the spin polarization of the
particle before and after crossing a constant magnetic field region, a difficult task
to accomplish for vector mesons. Alternatives to determine the MDM, by indirect
means, invoke the fact that the radiation emitted from the vector meson carries
out information of its electromagnetic structure3 and thus, provided the dominant
electric radiation is known, the subleading MDM effect can be identified. A deter-
mination of the spin 3/2 resonance∆++, where experimental data on radiative π+p
scattering was available, has already made use of these ideas.4

For the ρ vector meson, studies of radiative decays of the form ρ → ππγ, τ →
νργ and τ → νππγ,5–7 which involve the radiative ρργ vertex, have shown that

∗Corresponding author.
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FIG. 3: Total cross section e+e− → π+π−2π0 in the energy
region from threshold to 1.4 GeV, compared to several exper-
imental data: SND [15], BaBar [7], OLYA, CMD2 and ND
[14]

variant by themselves.
Channel 1E) involves the a1 axial vector meson, and the
coupling ga1ρπ = 3.25± 0.3 GeV is determined from the
a1 → ρπ decay. Channel F) involves gρρσ, which is re-
lated by vector meson dominance to gρσγ = 0.63 ± 0.15
GeV, which is determined from the ρ → σγ decay. The
coupling gσππ = 3.7 ± 1.6 GeV is determined from the
σ → ππ decay. A non-resonant channel 1G) is included
but, since the information on the couplings and param-
eters of the σ are not well determined, this is a strong
source of uncertainties in the low energy regime. We also
included the f(980) state on the same basis. As we will
show, these do not affect the region of our interest to de-
termine the MDM of the ρ meson.
The electromagnetic structure of the ρ meson as a func-
tion of the momentum is accomplished by the inclusion
of the ρ and ρ′ resonances couplings to the photon, such
that the electric charge form factor is written as

Fρ

(

q2
)

=
gρππm2

ρ

gρ

∑

j=ρ,ρ′

1

q2 −m2
j + imjΓj

(4)

with a relative phase of 1800, such that the couplings ful-
fill that Fρ(q2 → 0) → −1.
In Figure 3 we compare our model to several experimen-
tal results in the low energy region (below 1.1 GeV),
which are properly described. Our result is dominated
by the ω channel, consistent with what has been found
in previous analysis [19]. The displayed error bar is in-
tended to be a representative one and it is mainly driven
by the σ(600) parameters. In this region there is no effect
due to variations of the parameters of channel 1B).
In Figure 4 we have plotted all the individual channels
contributing to the cross section and the experimental
data from BaBar. The energy region below 1GeV is dom-
inated by the ω channel (1D) and the σ channel (1G),
above this energy they decrease and the A, B and C
channels, which are linked by gauge invariance, become

0.8 1 1.2 1.4 1.6 1.8 2 2.2
E (GeV)

1e-05

0.0001

0.001

0.01

0.1

1

10

100

 σ
(E

)  
[n

b]

BaBar total
Channel A
Channel B
Channel C
Channel D
Channel E
Channel F
Channel G
Channel G’

FIG. 4: Individual channel contributions to the total cross
section for e+e− → π+π−2π0 and the BaBar[7] experimental
data.

the relevant ones. The a1 channel (E) also increases be-
coming the subleading contribution. Channel (F) is very
suppressed in all the energy region considered. The effect
from the f(980) is shown on the same basis as the σ (G’).
For the sake of clarity, interferences are not shown.
In Figure 5 we show the total cross section data with a

10% systematic error bars [7], and the fit corresponding
to β as a free parameter and γ = 0. The fit consider-
ing β and γ as free parameters favors the same β and
restricts γ to be in the range (−1.1, 0.1). That is, the β
parameter accounts for the global description, while the
γ contribution enters at the end region. To determine the
cross section error bars, we have taken into account the
combined uncertainties coming from the couplings of the
different channels, assumed as no correlated. We also ex-
plored the role of the model assumption regarding the ρ′

triple boson vertex, the global combination of couplings
and mass (see Eqn. 4), was found to be consistent with
data for upto a 10% deviation from the combination for
the ρ. We determine the β parameter error bar consid-
ering it as the responsible of the total uncertainties. In
addition, to account for the model dependence, we have
added a 20% error (added in quadrature). Thus, corre-
sponding to a MDM

µρ = 2.1± 0.5 [
e

2mρ
]. (5)

In addition, the branching ratio for the ρ → π+π−2π0

decay can be computed from the result of the cross sec-
tion at the pole of the ρ meson as follows:

BR(ρ0 → f) =
m2

ρσ (e+e− → f) |E=mρ

12πBR (ρ0 → e+e−)
, (6)

where BR
(

ρ0 → e+e−
)

is known [1]. Then, the cross
section we obtain corresponds to a branching ratio of

BR(ρ0 → π+π−2π0) = 1.7± 0.6× 10−5, (7)

Vs. Theoretical Predictions 
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C59 1743 (1999). !
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(A) (B)

(C) (D)

(E) (F)

(G)

Fig. 1. Generic channels relevant for the description of the e+e− → π+π−2π0 process. The total
diagrams are obtained by applying Bose symmetry and Charge conjugation.

where gV PP and gV are effective coupling constants. The reduced amplitude for

such contribution considering the ρ intermediate state is then given by:

MAµ = e

(

m2
ρg

3
ρππ

gρ

)

Dµλ[q, ρ](q − 2p1)
λD[q − p1,π](q − r12)

νDνδ[s34, ρ]r
δ
34 , (10)

where q ≡ k1 + k2 = p1 + p2 + p3 + p4, sij ≡ pi + pj , rij ≡ pi − pj . Dµν [q, V ]

is the vector meson propagator as given in Eq. (3) and D[q, P ] = i/(q2 − m2
P )
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Width difference of ! vector mesons
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We compute the difference in decay widths between charged and neutral !!770" vector mesons. The
isospin breaking arising from mass differences of neutral and charged " and ! mesons, radiative
corrections to !! "", and the !! ""# decays are taken into account. It is found that the width
difference !"! is very sensitive to the isospin breaking in the ! meson mass, !m!. This result can be
useful to test the correlations observed between the values of these parameters extracted from experi-
mental data.

DOI: 10.1103/PhysRevD.76.096010 PACS numbers: 11.30.Hv, 13.20.Jf, 13.40.Ks, 14.40.Cs

I. INTRODUCTION

Lowest-lying vector mesons undergo predominantly
strong interaction decays. The masses and decay widths
of members of the same isomultiplet will therefore look
very similar [1], with small differences induced by the
breaking of isospin symmetry. The isospin breaking effects
in the ! meson parameters have raised an interest recently,
due to both experimental and theoretical reasons [2– 6].
According to the PDG [1], the weighted averages of avail-
able measurements are

 !m! # m!0 $m!% & !$0:7% 0:8" MeV; (1)

 !"! # "!0 $ "!% & !0:3% 1:3" MeV: (2)

These results are consistent with the absence of isospin
breaking in the !0 $ !% system. Note however that the
scale factors associated with the above averages are, re-
spectively, 1.5 and 1.4 [1] which reflects an important
spread in the yields from different experiments.

Some recent theoretical calculations of !m! seem to
confirm the above result. Using a vector-meson dominance
model to parametrize the #!! vertex, the authors of
Ref. [4] have obtained !m! & !$0:02% 0:02" MeV.
Also, using 1=Nc expansion techniques, the authors of
Ref. [3] have obtained $0:4 MeV ' !m! ' 0:7 MeV.
On another hand, it has been found that the width differ-
ence of ! mesons is of great importance to understand the
current discrepancy between the hadronic vacuum polar-
ization contributions to the muon anomalous magnetic
moment obtained from $ decay and e(e$ annihilation
data [2,5,6].

In this paper we provide an estimate of !"! by consid-
ering the isospin breaking corrections in the exclusive
modes that contribute to the decay widths of !0;% vector
mesons. A previous estimate of this effect was done in
Ref. [2] taking into account several sources of isospin

breaking, as mass differences and other subleading ! me-
son decays. Their result !"! ) !$0:42% 0:59" MeV [2]
is consistent with the world average given in Eq. (2).
Additional contributions to isospin breaking in !"!, in-
cluding the radiative corrections to the dominant !! ""
decays, are considered in this paper.

II. SOURCES OF ISOSPIN BREAKING

At a fundamental level, isospin symmetry is broken by
the different masses of u and d quarks and by the effects of
electromagnetic interactions. At the hadronic level all
manifestations of isospin breaking can be traced back to
such fundamental sources. In the absence of isospin break-
ing, the !0;% mesons must have equal masses and decay
widths, thus !m! & !"! & 0.

The dominant decay modes of ! mesons that are com-
mon to charged and neutral !’s are the "" decay and its
radiative mode. The branching fraction of other modes
contributing only to the !0 meson adds up to [1]

 

B0
rest & B!"0"0#" ( B!%#" ( B!&(&$" ( B!e(e$"

( B!"("$"0" ) 5:3* 10$4: (3)

There is also a dipole transition !! "# which is common
to !%;0 vector mesons with branching fractions of a few
times 10$4 [1]. Since the ! meson widths are of order
150 MeV, all these subleading decay modes will contribute
to the width difference at the tiny level of

 !"sub
! ) 0:08 MeV: (4)

Thus, any sizable difference in the decay widths can only
originate from the dominant decay modes. To be more
precise, we will define explicitly the contributions to the
width difference as follows:
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I. INTRODUCTION

The decay "$ ! #$ #0$" ("2#) is the dominant mode of
" lepton decays. Observables associated with this decay
channel have been measured with great precision. The
world average value of the "2# branching fraction has
attained an accuracy of 0.5% [1]. Similarly, the weak
pion form factor has been measured with high precision,
providing a valuable input to compute the dominant had-
ronic contribution to the muon anomalous magnetic mo-
ment [2]. Further improvements in measurements of such
observables are expected at B factories, where the BABAR
and Belle collaborations have recorded already about 109

tau lepton decays [3]. Therefore, present and future preci-
sion measurements of these observables demand the
knowledge of radiative corrections for a correct compari-
son of theory and experiment.

On the other hand, measurements of "2# decays provide
a clean environment to test the conserved vector current
(CVC) hypothesis. As is well known, the two-pion produc-
tion in tau decays and e% e! annihilations is driven by the
isovector piece of the vector current: !q%&"iq=2, where
!q & " !u; !d#. Thus, measurements of the pion form factor
in these two reactions and of the "2# branching ratio can be
used to provide one of the most precise tests of the CVC
hypothesis. In order to perform a test of the CVC hypothe-
sis at the level of a few parts per one-thousand, the isospin
breaking effects must be included appropriately [4]. The
two identifiable sources of isospin breaking corrections in
relating the "2# and e% e! ! #% #! reactions are the mass
difference of charged and neutral pions and, again, the
radiative corrections.

The dominant piece of short-distance electroweak radia-
tive corrections was computed long ago [5], and improve-
ments that include resummation of dominant logs,

subleading electroweak corrections [6], and resummation
of strong interaction corrections were subsequently incor-
porated [7]. The effects of long-distance corrections to the
hadronic spectrum of "2# decays were computed only
recently in Refs. [8,9] in the framework of chiral perturba-
tion theory supplemented with anomalous terms for the
axial couplings [10]. Since " decays involve momentum
transfers far from the chiral limit, an independent calcu-
lation of radiative corrections based on different model
considerations is important. In this paper we evaluate the
model-dependent contributions to long-distance radiative
corrections in "2# decays based on a meson dominance
model that was used in Ref. [11] to study the corresponding
radiative tau decays ("! ##$%). We focus here on the
long-distance radiative corrections of O"!# to the di-pion
spectrum and to the decay rate of "2# decays.

II. LONG-DISTANCE CORRECTIONS TO THE DI-
PION SPECTRUM

The hadronic spectrum of two pions in tau decays,
corrected by O"!# radiative corrections, is built out of
three contributions:

 

d"""2#"%##
dt

& d"0

dt
% d"1

v

dt
% d"1

r

dt
: (1)

The superindexes in the right-hand-side terms denote the
order in ! and the subindex v"r# refers to the virtual (real)
corrections, while t is the square of the two-pion invariant
mass. When we deal with the photon inclusive spectrum,
integration over all energies of real photons should be done
in the last term.

After regrouping the effects of all radiative corrections,
the corrected spectrum can be rewritten as [8,9]
 

d"""2#"%##
dt

& G2
Fm

3
"SEWjVudj2
384#3 '3

#%

!
1! t

m2
"

"
2
!

1 % 2t
m2
"

"

' jf% "t#j2GEM"t#; (2)

where GF denotes the Fermi constant, jVudj & 0:9740is
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results obtained in the framework of chiral perturbation theory.
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I. INTRODUCTION

Semileptonic tau lepton decays are a rich source of
information about the properties of hadronic resonances
below the tau lepton mass scale. They provide a clean
environment to study the properties of charged %"770#
and a1"1260# resonances which otherwise would be pro-
duced only through purely hadronic processes. The inter-
play of strong, weak, and electromagnetic interactions in
such processes offers an interesting place to test models for
these interactions at low energies and to extract informa-
tion about fundamental parameters of the standard model
[1].

In this paper we are interested in the study of the
radiative !! ! "!"0#!$ decay, a process that involves
simultaneously the three fundamental interactions at the
lowest order. This decay channel has been studied previ-
ously in Refs. [2,3] within different models and with differ-
ent purposes. As is well known, the corresponding
nonradiative !! ! "!"0#! decay is dominated by the
production of the %!"770# vector meson; thus, the emis-
sion of a single photon from this process is expected to
carry information about the %!-meson magnetic dipole
moment [2]. A meaningful extraction of this property
from data is possible only with a full account of the
model-dependent contributions to the radiative decay,
which was not included in Ref. [2]. In this paper we pursue
this study and consider the complete calculation of the
radiative amplitude using a phenomenological model that
includes all possible intermediate hadronic states.

A different approach is followed in Ref. [3], where the
radiative amplitudes were calculated in the framework of
chiral perturbation theory and including resonances in the
relevant kinematical regions. The interest of Ref. [3] was
focused on the relationship between the di-pion tau decay

data and its leading hadronic contribution to the anomalous
magnetic moment of the muon a& [4]. As is known, present
experimental information on !! ""# decays are photon
inclusive measurements [1]. Thus, removing radiative ef-
fects from the measured di-pion mass distribution in such
decays is important to predict the leading order hadronic
vacuum polarization contribution to a&. A comparison of
the two-pion mode in tau decays and e$ e! annihilations
provides a sensitive test of the conserved vector-current
constraint hypothesis. At present, the prediction of ahad

&

based on !! ""# data seems to exceed by more than 2
standard deviations the corresponding prediction based on
e$ e! data [1], even after the known sources of isospin
breaking corrections are removed [3,5,6]. Since the pro-
duction of high energy photons in !! ! "!"0#$ decays
is driven by the model-dependent contributions, a good
account of the model-dependent effects is again
mandatory.

This paper is organized as follows: In Sec. II we describe
the necessary one-loop modifications of the propagator and
electromagnetic vertex of the unstable %! vector meson to
achieve a gauge-invariant amplitude for the model-
independent contributions; in Sec. III we describe the
form of the amplitude for the nonradiative ! lepton decay
and fix the parameters involved in our approximation; in
Sec. IV we focus on the different contributions to the
radiative decay amplitude and check their gauge invariance
requirements; in Sec. V we fix the coupling constants
involved in the model-independent contributions and com-
pute the different observables associated to the radiative
two-pion ! lepton decays; our conclusions are summarized
in Sec. VI; and the Appendix is devoted to discuss the
kinematics associated with the four-body decay.

II. GAUGE INVARIANCE AND UNSTABLE
PARTICLES IN RADIATIVE PROCESSES

The physical amplitudes of radiative processes (M %
'&M&, ' being the photon polarization four-vector) have
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Abstract We revisit the procedure for comparing the ππ

spectral function measured in τ decays to that obtained
in e+e− annihilation. We re-examine the isospin-breaking
corrections using new experimental and theoretical input
and find improved agreement between the τ− → π−π0ντ

branching fraction measurement and its prediction using the
isospin-breaking-corrected e+e− → π+π− spectral func-
tion, though not resolving all discrepancies. We recompute
the lowest order hadronic contributions to the muon g − 2
using e+e− and τ data with the new corrections and find
a reduced difference between the two evaluations. The new
tau-based estimate of the muon magnetic anomaly is found
to be 1.9 standard deviations lower than the direct measure-
ment.

1 Introduction

Spectral functions determined from the cross sections of
e+e− annihilation to hadrons are fundamental quantities de-
scribing the production of hadrons from the strong interac-
tion vacuum. They are especially useful at low energy, where
perturbative QCD fails to describe the data. Spectral func-
tions play a crucial role in calculations of hadronic vacuum
polarisation (VP) contributions to observables such as the
effective electromagnetic coupling at the Z0 mass, and the
muon anomalous magnetic moment. The latter quantity re-
quires good knowledge of the low energy spectral function
dominated by the π+π− channel.

During the last decade, measurements of the π+π− spec-
tral function with percent accuracy became available [1– 6],

a e-mail: zhangzq@lal.in2p3.fr

superseding older and less precise data. The former lack
of precision data inspired the search for an alternative. It
was found [7] in form of accurate τ− → π−π0ντ spec-
tral functions [8– 11], transferred from the charged to the
neutral state using isospin symmetry. With the increasing
e+e− → π+π− experimental precision, which today is on
a level with the τ data, systematic discrepancies in shape
and normalisation of the spectral functions were observed
between the two systems [12, 13]. It was found that, when
computing the hadronic VP contribution to the muon mag-
netic anomaly using the τ instead of the e+e− data for the
2π and 4π channels, the observed deviation with the exper-
imental value [14] would reduce from 3.3 times the com-
bined experimental and estimated theoretical error to less
than 1 [15].

In this paper, we include recent τ− → π−π0ντ data from
the Belle experiment [16], and revisit all isospin-breaking
corrections in this channel taking advantage of more accu-
rate data and new theoretical investigations.

2 Tau data

The τ -based aµ evaluation in [12, 13] used the τ spec-
tral functions measured by the ALEPH [9], CLEO [10]
and OPAL [11] experiments for the dominant hadronic
decay mode τ− → π−π0ντ . We include here a high-
statistics measurement of the same decay mode performed
by Belle [16]. Rather different experimental conditions are
met at the Z centre-of-mass energy (ALEPH, OPAL) and
at the Υ (4S) resonance (CLEO, Belle). At LEP the τ+τ−

events can be selected with high efficiency (>90%) and
small non-τ background (<1%), thus ensuring little bias
in the efficiency determination. The situation is not as
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Fig. 3 Relative comparison between e+e− and τ spectral functions, expressed in terms of the difference between neutral and charged pion form
factors. Isospin-breaking (IB) corrections are applied to τ data with their uncertainties, although hardly visible, included in the error band

4 Update of ahad,LO
µ [ππ,τ ]

The IB corrections applied to the lowest order hadronic con-
tribution to the muon g −2 using τ data in the dominant ππ

channel can be evaluated with

#IBaLO,had
µ [ππ, τ]

= α2m2
τ

6|Vud |2π2

Bππ0

Be

∫ m2
τ

4m2
π

ds
K(s)

s

× dNππ0

Nππ0ds

(
1 − s

m2
τ

)−2(
1 + 2s

m2
τ

)−1[RIB(s)

SEW
− 1

]
,

where K(s) is a QED kernel function [47].
The numerical values for the various corrections are

given in Table 1 for the energy range between the 2π mass
threshold and 1.8 GeV. The present estimate of the IB effect
from long-distance corrections is smaller than the previous
one [15, 36, 37], because we now use a GEM(s) correction
in which the contributions involving the ρωπ vertex are ex-
plicitly excluded (except for its interference with the QED
amplitude). Its uncertainty corresponds to the difference be-
tween the correction used in this analysis and that from
[31, 32]. The quoted 10% uncertainty on the FSR and ππγ

electromagnetic corrections is an estimate of the structure-
dependent effects (pion form factor) in virtual corrections
and of intermediate resonance contributions to real photon
emission [44, 48, 49]. The systematic uncertainty assigned
to the ρ–ω interference contribution accounts for the differ-
ence in ahad,LO

µ between two phenomenological fits, where
the mass and width of the ω resonance are either left free to
vary or fixed to their world average values.

Some of the corrections in Table 1 are parametrisation
dependent. We choose to take the final corrections from the
Gounaris–Sakurai parametrisation and assign the full differ-

Table 1 Contributions to ahad,LO
µ [ππ, τ](×10−10) from the isospin-

breaking corrections discussed in Sect. 3. Corrections shown in two
separate columns correspond to the Gounaris–Sakurai (GS) and Kühn–
Santamaria (KS) parametrisations, respectively

Source #ahad,LO
µ [ππ, τ](10−10)

GS model KS model

SEW −12.21 ± 0.15

GEM −1.92 ± 0.90

FSR +4.67 ± 0.47

ρ–ω interference +2.80 ± 0.19 +2.80 ± 0.15

mπ± − mπ0 effect on σ −7.88

mπ± − mπ0 effect on Γρ +4.09 +4.02

mρ± − mρ0
bare

+0.20+0.27
−0.19 +0.11+0.19

−0.11

ππγ , electrom. decays −5.91 ± 0.59 −6.39 ± 0.64

Total −16.07 ± 1.22 −16.70 ± 1.23

−16.07 ± 1.85

ence with respect to the KS results5 as systematic error. The
total correction for isospin breaking amounts to (−16.07 ±
1.85) × 10−10 for ahad,LO

µ [ππ, τ], where all systematic er-
rors have been added in quadrature except for the GS and KS
difference which has been added linearly. This correction is
to be compared to the value (−13.8±2.4)×10−10 obtained
previously [12]. Since the FSR correction was previously in-
cluded, but not counted in the IB corrections, the net change
amounts to −6.9×10−10, dominated by the electromagnetic
decay correction.

The corresponding IB-corrected ahad,LO
µ [ππ, τ]in the

dominant π+π− channel below 1.8 GeV is given in Table 2
for ALEPH, CLEO, OPAL, Belle, and for the combined
mass spectrum from these experiments. The evaluation at

5We do not confirm the significant IB correction difference of the KS
parametrisation on the ρ–ω interference with respect to the GS para-
metrisation observed in [41].
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channel can be evaluated with

#IBaLO,had
µ [ππ, τ]

= α2m2
τ

6|Vud |2π2

Bππ0

Be

∫ m2
τ

4m2
π

ds
K(s)

s

× dNππ0

Nππ0ds

(
1 − s

m2
τ

)−2(
1 + 2s

m2
τ

)−1[RIB(s)

SEW
− 1

]
,

where K(s) is a QED kernel function [47].
The numerical values for the various corrections are

given in Table 1 for the energy range between the 2π mass
threshold and 1.8 GeV. The present estimate of the IB effect
from long-distance corrections is smaller than the previous
one [15, 36, 37], because we now use a GEM(s) correction
in which the contributions involving the ρωπ vertex are ex-
plicitly excluded (except for its interference with the QED
amplitude). Its uncertainty corresponds to the difference be-
tween the correction used in this analysis and that from
[31, 32]. The quoted 10% uncertainty on the FSR and ππγ

electromagnetic corrections is an estimate of the structure-
dependent effects (pion form factor) in virtual corrections
and of intermediate resonance contributions to real photon
emission [44, 48, 49]. The systematic uncertainty assigned
to the ρ–ω interference contribution accounts for the differ-
ence in ahad,LO

µ between two phenomenological fits, where
the mass and width of the ω resonance are either left free to
vary or fixed to their world average values.

Some of the corrections in Table 1 are parametrisation
dependent. We choose to take the final corrections from the
Gounaris–Sakurai parametrisation and assign the full differ-

Table 1 Contributions to ahad,LO
µ [ππ, τ](×10−10) from the isospin-

breaking corrections discussed in Sect. 3. Corrections shown in two
separate columns correspond to the Gounaris–Sakurai (GS) and Kühn–
Santamaria (KS) parametrisations, respectively

Source #ahad,LO
µ [ππ, τ](10−10)

GS model KS model

SEW −12.21 ± 0.15

GEM −1.92 ± 0.90

FSR +4.67 ± 0.47

ρ–ω interference +2.80 ± 0.19 +2.80 ± 0.15

mπ± − mπ0 effect on σ −7.88

mπ± − mπ0 effect on Γρ +4.09 +4.02

mρ± − mρ0
bare

+0.20+0.27
−0.19 +0.11+0.19

−0.11

ππγ , electrom. decays −5.91 ± 0.59 −6.39 ± 0.64

Total −16.07 ± 1.22 −16.70 ± 1.23

−16.07 ± 1.85

ence with respect to the KS results5 as systematic error. The
total correction for isospin breaking amounts to (−16.07 ±
1.85) × 10−10 for ahad,LO

µ [ππ, τ], where all systematic er-
rors have been added in quadrature except for the GS and KS
difference which has been added linearly. This correction is
to be compared to the value (−13.8±2.4)×10−10 obtained
previously [12]. Since the FSR correction was previously in-
cluded, but not counted in the IB corrections, the net change
amounts to −6.9×10−10, dominated by the electromagnetic
decay correction.

The corresponding IB-corrected ahad,LO
µ [ππ, τ]in the

dominant π+π− channel below 1.8 GeV is given in Table 2
for ALEPH, CLEO, OPAL, Belle, and for the combined
mass spectrum from these experiments. The evaluation at

5We do not confirm the significant IB correction difference of the KS
parametrisation on the ρ–ω interference with respect to the GS para-
metrisation observed in [41].
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Fig. 5 Compilation of recently published results for aSM
µ (in units

of 10−11), subtracted by the central value of the experimental av-
erage [52, 53]. The shaded band indicates the experimental error.
The SM predictions are taken from: DEHZ 03 [13], HMNT 07 [54],
J 07 [55, 56], and the present τ - and e+e−-based predictions using τ
and e+e− spectral functions

aSM
µ

[
e+e−]

=
{

11 659 177.7 ± 4.4 ± 2.6 ± 0.2,

11 659 178.8 ± 5.2 ± 2.6 ± 0.2,

where the first errors are due to the lowest order hadronic
contributions, the second error includes higher hadronic
orders, dominated by the uncertainty in the LBLS con-
tribution, and the third error accounts for the uncertain-
ties in the electromagnetic and weak contributions. The
predictions deviate from the experimental average,
a

exp
µ = 11 659 208.9(5.4)(3.3) [52, 53], by 15.7 ± 8.2 (τ ),

31.2 ± 8.1 (e+e− with KLOE) and 30.1 ± 8.6 (e+e− with-
out KLOE), respectively.

The lowest order hadronic contribution now reaches an
uncertainty that is smaller than the measurement error and
comparable in size with the LBLS uncertainty. Further
progress in this field thus requires, apart from continuously
improved low energy e+e− cross section measurements, a
more accurate muon g − 2 measurement and LBLS calcula-
tion. A compilation of this and other recent aSM

µ predictions,
compared to the experimental value, is shown in Fig. 5.

5 CVC prediction of Bππ0

The CVC relation (1) allows one to predict the branching
fraction of a heavy lepton decaying into a G-parity even
hadronic final state, X−, via the vector current

BCVC
X = 3

2
Be|Vud |2
πα2m2

τ

∫ m2
τ

smin

ds s σ I
X0

(
1 − s

m2
τ

)2(
1 + 2s

m2
τ

)
,

Table 4 Contributions to BCVC
π−π0 (×10−2) from the isospin-breaking

corrections discussed in Sect. 3. For those corrections shown in two
separated columns, they correspond to the Gounaris–Sakurai and
Kühn–Santamaria parametrisations, respectively

Source %BCVC
π−π0 (10−2)

GS model KS model

SEW +0.57 ± 0.01

GEM −0.07 ± 0.17

FSR −0.19 ± 0.02

ρ–ω interference −0.01 ± 0.01 −0.02 ± 0.01

mπ± − mπ0 effect on σ +0.19

mπ± − mπ0 effect on Γρ −0.22

mρ± − mρ0
bare

+0.08 ± 0.08 +0.09 ± 0.08

ππγ , electrom. decays +0.34 ± 0.03 +0.37 ± 0.04

Total +0.69 ± 0.19 +0.72 ± 0.19

+0.69 ± 0.22

with smin being the threshold of the invariant mass-squared
of the final state X0 in e+e− annihilation. This relation was
tested ever since the discovery of the τ lepton. In the best
known vector channel, the π−π0 final state, it has attained
a precision of better than 1% [15], and a discrepancy be-
tween BCVC

π−π0 and Bπ−π0 at a level of 4.5σ was observed.6

CVC comparisons of τ branching fractions are of special
interest because they are essentially insensitive to the shape
of the τ spectral function, hence avoiding experimental dif-
ficulties, such as the mass dependence of the π0 detection
efficiency and feed-through, and biases from the unfolding
of the raw mass distribution from acceptance and resolution
effects.

Similar to %ahad,LO
µ [ππ, τ], we have evaluated the IB

corrections to

%BCVC
π−π0 = 3

2
Be|Vud |2
πα2m2

τ

∫ m2
τ

smin

ds s σ 0
π+π−(s)

×
(

1 − s

m2
τ

)2(
1 + 2s

m2
τ

)[
SEW

RIB(s)
− 1

]
, (9)

where smin = (mπ− + mπ0)2. The results are summarised
in Table 4. The corresponding BCVC

π−π0 (Table 5) is (24.78 ±
0.17exp ±0.22IB)% and (24.92±0.21exp ±0.22IB)%, based
on the combined e+e− data, including and excluding the
KLOE data, respectively. The first error quoted corresponds
to the experimental error and the second error due to un-
certainties in the isospin-breaking corrections. It differs
from the τ measurement by (0.64 ± 0.10τ ± 0.28ee)% and

6The use of the term standard deviation (σ ) in this context requires cau-
tion because the results discussed in this paper are mostly dominated
by systematic uncertainties with questionable statistical properties.
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Color screening in a constituent quark model of hadronic matter
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The effect of color screening on the formation of a heavy quark-antiquark !QQ̄" bound state—such as the
J /! meson—is studied using a constituent-quark model. The response of the nuclear medium to the addition
of two color charges is simulated directly in terms of its quark constituents via a string-flip potential that allows
for quark confinement within hadrons yet enables the hadrons to separate without generating unphysical
long-range forces. Medium modifications to the properties of the heavy meson, such as its energy and its
mean-square radius, are extracted by solving Schrödinger’s equation for the QQ̄ pair in the presence of a
(screened) density-dependent potential. The density dependence of the heavy-quark potential is in qualitative
agreement with earlier studies of its temperature dependence extracted from lattice calculations at finite tem-
perature. In the present model it is confirmed that abrupt changes in the properties of the J /!-meson in the
hadronic medium (plasma), correlate strongly with the deconfining phase transition.
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I. INTRODUCTION

The quest for novel states of matter remains a central
theme in physics and one that spans all of its subfields. The
discovery of high-temperature superconductors and the ex-
perimental realization of Bose-Einstein condensation are
some recent examples. The widespread impact of these dis-
coveries in the areas of condensed-matter physics and atomic
physics is well documented in the literature. At the interface
between nuclear and particle physics—but with impact in
cosmology and astrophysics—is the search for the quark-
gluon plasma (QGP), a novel state of matter that may have
existed at the dawn of the Universe and that may still exist
today in the dense environments of exotic stars. The quark-
gluon plasma, a deconfined state of quarks and gluons, is
predicted from QCD to be attained at high temperatures
and/or high baryon densities. A variety of experiments have
been devoted to produce the QGP in the laboratory. These
efforts started at the AGS in Brookhaven and at the SPS in
CERN, and now continue at the relativistic-heavy-ion col-
lider (RHIC), and should culminate with the construction of
the large-hadron-collider (LHC) at CERN [1]. By colliding
extremely energetic heavy ions, the aim of these experiments
is to create a region of such high-energy density (or high
temperature) that quarks and gluons will become deconfined.
While current experimental facilities (primarily RHIC) may
have already created the QGP [2], a great challenge remains:
how to identify clearly and unambiguously the production of
such coveted state?
Spatial observations complement terrestrial searches for

the QGP. The advent of sophisticated telescopes operating at
a variety of wavelengths have turned neutron stars from the-

oretical curiosities into powerful diagnostic tools. The obser-
vation of an anomalous mass-radius relation and/or an en-
hanced cooling in neutron stars, may provide strong evidence
in support of strange stars [3], quark stars [4], or neutron
stars with exotic cores. These cores may contain novel states
of matter, such as meson condensates, strange-quark matter,
and/or color superconductors [5–7].
In the case of terrestrial searches for the QGP, there is a

set of complementary observables which provide informa-
tion at different stages of the experiment. For example, lep-
tons and photons produced at the center of the collision are
expected to carry valuable information concerning the earli-
est stages of the collision, while the relative abundance of
light-flavor hadrons should reflect the freeze-out stage. Evi-
dence for the QGP is also imprinted in the response of the
medium to the formation and propagation of a heavy quark-
antiquark pair, where Debye screening of the bound state
(e.g., J /!) is expected [8,9]. In this case it is important to
study the possible dissolution of the bound state and the
evolution of the confining potential with baryon and/or en-
ergy density. While the quest for these experimental signa-
tures will undoubtedly continue, convincing arguments in fa-
vor of the discovery of a strongly-coupled QGP at RHIC
have recently been made [10]. This persuasive study, con-
taining a host of valuable references, uses existing
observables—such as bulk collective flow and jet
quenching—to justify the claim.
In the present work we study the efficiency of the nuclear

medium in screening the color charges of a heavy quark-
antiquark pair. That is, we study color screening as a function
of the baryon density rather than as a function of tempera-
ture. This distinction is important as our T=0 formalism is
unable to shed light on finite-temperature calculations, which
themselves appear to be in a state of flux. Calculations based
on potential models predict the J /!-meson to dissolve at a
temperature of T#1.1 Tc [11] (with Tc being the critical

*Electronic address: toledo@fisica.unam.mx
†Electronic address: jorgep@csit.fsu.edu

PHYSICAL REVIEW C 70, 035206 (2004)

0556-2813/2004/70(3)/035206(6)/$22.50 ©2004 The American Physical Society70 035206-1

Note that the heavy-quark potential is computed in the sud-
den approximation. That is, the many-quark wave function
[Eq. (6)] (and thus the location of all the light quarks in the
system) is assumed to remain unchanged as the heavy quarks
are introduced into the system. Not so, however, the pairing.
The presence of the medium screens the interaction between
the heavy quarks by finding the optimal pairing of the N
=3!A+1" quarks into hadrons. In this way, the potential en-
ergy between the QQ̄ pair gets modified relative to its free-
space form because of the screening. In general, VQQ̄!r"
!kr2.

E. The J /! meson in free space

To quantify how a J /!-meson (or a comparable heavy
meson) is modified by color screening, we review its free-
space properties in a model with harmonic confinement.
Consider a J /!-meson as a nonrelativistic system of a quark-
antiquark !cc̄" pair of mass mc interacting via a harmonic
confining potential of spring constant 2k. That is

H =
p1
2

2mc
+
p2
2

2mc
+
1
2

!2k"!r1 − r2"2. !13"

Introducing center-of-mass and relative coordinates

R = 1
2 !r1 + r2", r = !r1 − r2" , !14"

enables one to reduce the above Hamiltonian to the follow-
ing simple form:

H =
P2

4mc
+ # p2mc

+ kr2$ . !15"

Describing the motion of the system relative to its center of
mass, the ground-state wave function of the J /!-meson in
the present harmonic approximation becomes

"J/!!r" =
e−r

2/2b2

!#b2"3/4
%$c$c̄& 1M, b ' !kmc"−1/4. !16"

Here b is the harmonic-oscillator length and $ represents a
spin-1 /2 spinor. Using the above wave function, the ground-
state energy and mean-square radius of the J /!-meson in
free space are given by

EJ/! = 2mc +
3
2
(4k

mc
→ 11.342, !17a"

rJ/!
2 =

3
8

1
(kmc

→ 0.168. !17b"

The mean-square radius has been obtained by evaluating the
ground-state expectation value of the operator r2 /4. More-
over, the arrows in Eq. (17) indicate the appropriate numeri-
cal values for the energy and the mean-square radius in units
in which k=1 and mc /m=5. Note that the mass of the charm
quark !)1.5 GeV" has been fixed at five times the value of
the mass of the light constituent quarks !)0.3 GeV". Our
goal now is to quantify how these baseline values change as

the density of the medium increases and, further, to correlate
these changes to the deconfining phase transition.

III. RESULTS

Variational Monte Carlo calculations of a large number of
ground-state observables, such as the energy, the two-body
correlation function, and the strangeness-per-baryon ratio
have been reported in an earlier publication [28]. Here we
borrow values for the optimized variational parameter to
compute the heavy-quark potential as indicated in Eq. (12).
We reiterate that in contrast to most of the finite-temperature
models available in the literature, the string-flip model oper-
ates at zero temperature and finite baryon density. Results
obtained from our simulations are displayed in Fig. 1 for a
variety of densities around the deconfining transition density
of %c)0.09. Recall that the density is given in dimensionless
units (for a conversion to physical units see Ref. [28]). The
symbols in Fig. 1 denote the outcome from the Monte Carlo
simulations while the lines represent analytic fits to the simu-
lation data. While it is evident that quantitative changes de-
velop below the critical density as a result of screening, no
major qualitative changes emerge. For example, the QQ̄ po-
tential remains confining for all densities below the critical
density %c. However, at densities above %c, a dramatic change
in the shape of the potential emerges. Indeed, the heavy-
quark potential ceases to be confining and a QQ̄ spectrum
supporting both bound and continuum states develops. This
behavior is reminiscent of the temperature dependence of the
heavy-quark potential displayed in Fig. 6 of Ref. [18]. Fur-
ther, the deconfining phase transition is analogous to a per-
colation phase transition observed in selected condensed-
matter systems. In the case of the string-flip model, the
strings extend throughout the simulation volume, as evinced
by the behavior of the quark-cluster probabilities computed
in Ref. [25].
Medium modifications to the properties of the J /! meson

are studied by solving Schrödinger’s equation in the presence
of the heavy-quark potential. Recall that we have fixed the
mass of the charm quark (in units of the light-quark constitu-
ent mass) to mc /m=5. Expressing the “reduced” J /! wave
function as

FIG. 1. (Color online) Density dependence of the heavy-quark
potential as a function of the separation r between the heavy-quark
pair. The %=0 potential, VQQ̄!r"=r2, represents the baseline (free-
space) potential.
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Simple variational approach for an interacting Fermi trapped gas

R. Jáuregui, R. Paredes, and G. Toledo Sánchez
Instituto de Fı́sica, UNAM, Apartado Postal 20-364, Mexico 01000 D.F., Mexico

!Received 10 July 2003; published 27 January 2004"

Quantum states of a two-component Fermi trapped gas are described by introducing an effective trap
frequency, determined via variational techniques. Closed expressions for the contribution of a contact interac-
tion potential to the total energy and the pairing interaction are derived. They are valid for both few and large
number of particles, given the discrete nature of the formulation, and therefore richer than the continuous
expressions, which are perfectly matched. Pairing energies within a shell are explicitly evaluated and its
allowed values at a given energy level delimited. We show the importance of the interaction over the trap
energy as the number of particles N grows and the temperature decreases. At zero temperature we find a
polynomial dependence of the interaction energy on the Fermi energy, whose dominant term at large N
corresponds to the mean-field approximation result. In addition, the role of the strength of an attractive
potential on the total energy is exhibited.
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I. INTRODUCTION

In the last years, trapped degenerate two-component
Fermi atomic gases have received great interest both from
the theoretical #1–6$ and the experimental #7,8$ point of
view. One of the reasons is that these systems offer an ideal
scenario to study pairing interactions at variable interaction
strength, density, and temperature. It has been recognized
that atoms such as 40K and 6Li exhibit magnetically tunable
Feshbach resonances so that the s-wave scattering interaction
may be varied from repulsive to strongly attractive. The ac-
cessible states for a dilute gas of trapped atoms may be mod-
eled in the zeroth-order approximation as a system of nonin-
teracting particles. The simplest theoretical approach for
describing trapped Fermi atoms when the interactions are not
negligible, consists in approximating the system wave func-
tion as properly symmetrized products of one-particle eigen-
states of an effective harmonic oscillator, whose frequency is
determined via a variational procedure. The purpose of this
work is to make a study of the predictions of such an ap-
proach. In particular, we obtain closed expressions of the
total interaction energy that reflect its increasing relevance as
the number of particles in the system is augmented, as well
as closed expressions for pairing energies of atoms within a
given shell.

II. FORMALISM

Let us consider a gas of Fermi atoms of mass M with
internal states !↑% and !↓% . They are in a harmonic trap that
for simplicity will be assumed to be of spherical symmetry
and characterized by a frequency &0. An asymmetric har-
monic trap can be treated in a completely analogous way. We
model the interaction between atoms in different internal
states by an effective contact potential

V!x! i↓!x! j↑""!4'(0)
2/M "* (3)!x! i↓!x! j↑", !1"

with (0 the scattering length. This potential is based on scat-
tering theory at low energies. It is inexact for at least two
reasons: it takes into account neither higher partial waves nor

the dependence of s-wave scattering on the momentum. One
consequence of the latter is that no parameters beyond the
scattering length such as the effective range are included in
Eq. !1". Thus, this potential is expected to be valid for low-
energy collisions. In fact it has proven to be useful to de-
scribe cold atoms at low densities #3$ and it could also be
important for intermediate densities by introducing an effec-
tive scattering length #10$.
The Hamiltonian of the system is taken as

Ĥ"+
i

" p̂ i22M #
1
2M&0

2!x! i!2## +
i↓, j↑

V!x! i↓!x! j↑". !2"

We are interested in obtaining approximate eigenfunctions of
this Hamiltonian using the variational method. The validity
of such an approach is limited by the reliability of the model
Hamiltonian. As a trial wave function, we consider the prod-
uct of two Slater determinants, one for each internal state.
These determinants are built up by the one-particle eigen-
functions of a spherical harmonic oscillator of frequency &!
and quantum numbers nx ,ny , and nz . The value of &!
should reflect the interaction effects and in the limit of zero
interaction it becomes &!"&0. Notice, however, that dra-
matic changes in &! with respect to &0 are incompatible
with the assumptions supporting the use of the contact inter-
action potential !1".
Taking into account the results summarized in the Appen-

dix, the expectation value of the Hamiltonian for this trial
function is found to be

,Ĥ%")&0-#!. t#.0"/2$!a#1/a "#.sa3/2/, !3"

where a"&!/&0,

. t" +
-nx

↑ ,ny
↑ ,nz

↑/

!nx
↑#ny

↑#nz
↑"# +

-nx
↓ ,ny

↓ ,nz
↓/

!nx
↓#ny

↓#nz
↓", !4"

.0"
3
2 !N↑#N↓", !5"
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Modeling the strangeness content of hadronic matter
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The strangeness content of hadronic matter is studied in a string-flip model that reproduces various aspects

of the QCD-inspired phenomenology, such as quark clustering at low density and color deconfinement at high

density, while avoiding long range van der Waals forces. Hadronic matter is modeled in terms of its quark

constituents by taking into account its internal flavor (u ,d ,s) and color !red, blue, green" degrees of freedom.
Variational Monte Carlo simulations in three spatial dimensions are performed for the ground-state energy of

the system. The onset of the transition to strange matter is found to be influenced by weak, yet not negligible,

clustering correlations. The phase diagram of the system displays an interesting structure containing both

continuous and discontinuous phase transitions. Strange matter is found to be absolutely stable in the model.
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I. INTRODUCTION

Strange matter, a deconfined state of quark matter consist-

ing of almost equal amounts of up, down, and strange

quarks, has been speculated to be the absolute ground state

of hadronic matter #1,2$. If true, nucleons and nuclei—and
thus most of the luminous matter in the universe—is in a
long-lived metastable state. Undoubtedly, the confirmation of
such hypothesis would have far reaching consequences on a
variety of fields, ranging from astronomy and cosmology all
the way to particle and nuclear physics. Stimulated by such
an exciting possibility, searches for strange matter are cur-
rently being conducted at terrestrial laboratories as well as at
space-based observatories. Indeed, a substantial effort has
been devoted on experimental searches for strangelets
!‘‘strange-matter nuggets’’" at both CERN and Brookhaven
National Laboratory !BNL" and more are proposed in the
future for the relativistic heavy-ion collider !RHIC" and the
large-hadronic collider !LHC". These terrestrial experiments
are being complemented by observational searches for
strange stars. What would be the signature for such exotic
objects? Since strange stars are self-bound objects having a
mass-radius relation quite different than the gravitationally
bound neutron stars, they are allowed rotational periods con-
siderably shorter than those predicted for gravitationally
bound stars. Consequently, if a pulsar with a period falling
below the limit of gravitationally bound stars were discov-
ered, the conclusion that the confined hadronic phase of
nucleons and nuclei is only metastable would be virtually
inescapable #3$.
Such a pulsar may have been recently discovered #4,5$.

The pulsar SAX J1808.4-3658, with a rotation period of 2.5
ms, is the fastest spinning x-ray pulsar ever observed. Based
on a study of its mass-radius relation it has been concluded
that SAX J1808.4-3658 is a likely strange-star candidate #6$,
although this interpretation remains controversial #7,8$. Still,
the discovery of such a fastly rotating pulsar appears to have
made the detection of strange matter within observational
reach. In turn, the confirmation of such an exotic state of
matter will help settle the claim that at present our universe
is in a long-lived metastable state.

In the present work we focus on the impact of strangeness

on the equation of state !EOS". One motivation for this study,
in addition to those mentioned earlier, is the observation that

the masses of about 20 neutron stars are remarkably close to

the ‘‘canonical’’ value of M#1.4M! #9$. Yet conventional
models of nuclear structure, with equation of states con-
strained from the bulk properties of nuclear matter, seem to
allow substantially larger masses #3,10$. However, the exis-
tence of a quark-matter phase at the core of neutron stars
!NS" will soften considerably the equation of state leading to
smaller limiting masses. Thus a study of the strangeness con-
tent of hadronic matter, using a ‘‘QCD-inspired’’ model, is
desirable. For static and spherically symmetric neutron stars
obeying the Oppenheimer-Volkoff equations the only physi-
cal ingredient that remains to be specified is the equation of
state. Yet an equation of state that is accurate over the whole
range of densities present in a neutron star remains a formi-
dable challenge. For example, such an equation of state
should be able to describe the hypothetical ‘‘hybrid stars:’’
neutron stars consisting of a quark-matter core below a
nuclear-matter mantle. Unfortunately, traditional studies of
strange matter has been conducted in two vastly different
pictures #11–14$. One picture uses a hadronic model—
similar to ordinary nuclei—where the fundamental degrees
of freedom are mesons and baryons. The other picture uses a
quark model consisting of massless, noninteracting quarks
confined inside a bag. Presumably a description of strange
matter in terms of mesons and baryons is well motivated in
the low-density regime where clustering correlations remain
important. At the same time, strange matter viewed as a rela-
tivistic Fermi gas of quark might be appropriate at the ex-
tremes of densities necessary for color deconfinement to oc-
cur. Yet this division seems ad hoc and arbitrary; for
example, at what density should one switch from a nuclear-
to quark-based description? Perhaps the most serious diffi-
culty encountered in modeling the density dependence of
hadronic matter and the resulting EOS is how to model a
system that has quarks confined inside color-neutral hadrons
at low density but free quarks at high density. Much of the
responsibility for such complexity rests on the self-
interactions among the gluons which generate quark confine-
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Dynamical heavy-quark recombination and the nonphotonic single-electron puzzle at energies
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We show that the single, nonphotonic electron nuclear modification factor Re
AA is affected by the thermal

enhancement of the heavy-baryon-to-heavy-meson ratio in relativistic heavy-ion collisions with respect to proton-
proton collisions. We make use of the dynamical quark recombination model to compute such a ratio and show
that this produces a sizable suppression factor for Re

AA at intermediate transverse momenta. We argue that this
suppression factor needs to be considered, in addition to the energy loss contribution, in calculations of Re

AA.
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I. INTRODUCTION

The suppression of single, nonphotonic electrons at the
BNL Relativistic Heavy Ion Collider (RHIC) [1,2] is usually
attributed to heavy-quark energy losses. However, calculations
that successfully describe the nuclear modification factor
of hadrons fail to describe the single, nonphotonic electron
nuclear modification factor Re

AA [3– 5]. This has prompted a
great deal of effort aimed to better describe the heavy-quark
energy-loss mechanisms to include not only the radiative
part [6– 9] but also the collisional [10,11] and the medium
dynamical properties [12] to compute the radiative piece. As
a result, although some improvement in the description of
the nuclear modification factor has been gained, it is not yet
clear whether the anomalous suppression can be completely
attributed to energy losses.

Working along a complementary approach to describe
the nonphotonic electron yield at RHIC, it has been argued
[13,14] that under the assumption of an enhancement in the
heavy-quark baryon-to-meson ratio, analogous to the case
of the proton-to-pion and the !-to-kaon ratios in Au + Au
collisions [15– 18], it is possible to achieve a larger suppression
of the nuclear modification factor. The rationale behind the
idea is that heavy-quark mesons have a larger branching ratio to
decay inclusively into electrons as compared with heavy-quark
baryons, and therefore, when the former are less copiously
produced in a heavy-ion environment, the nuclear modification
factor decreases, even in the absence of heavy-quark energy
losses in the plasma.

To give a qualitative argument that shows how an enhance-
ment in the heavy-quark baryon-to-meson ratio can suppress
the single, nonphotonic electron nuclear modification factor,
let us look at the pT integrated Re

AA and consider that the heavy
hadrons are only those containing a single charm,

R
e pT int
AA = 1

⟨np⟩
N!

AAB!→e + ND
AABD→e

N!
ppB!→e + ND

ppBD→e
, (1)

where ⟨np⟩ is the average number of participants in the
collision for a given centrality class, Nx

AA (pp) refers to the

number of x particles produced in A + A(p + p) collisions,
and Bx→e is the branching ratio for the inclusive decay of x
particles into electrons. Let us bring Eq. (1) into a form that
contains the corresponding pT integrated nuclear modification
factor for particles containing charm. We write

R
e pT int
AA = 1

⟨np⟩

(
ND

AA

ND
pp

)⎛

⎝
BD→e + N!

AA

ND
AA

B!→e

BD→e + N!
pp

ND
pp

B!→e

⎞

⎠ . (2)

Let us introduce the shorthand notation

C =
N!

AA

/
ND

AA

N!
pp

/
ND

pp

,

(3)

x = B!→e

BD→e
,

where C represents the enhancement factor for the ratio
of charm baryons to mesons in A + A as compared with
p + p collisions and x is the charm baryon-to-meson relative
branching ratios for their corresponding inclusive decays into
electrons. With these definitions, and after rewriting the factor
ND

AA/ND
pp in the form

ND
AA

ND
pp

= ND
AA + N!

AA −N!
AA

ND
pp + N!

pp −N!
pp

=
(

ND
AA + N!

AA

ND
pp + N!

pp

) [
1 −N!

AA

/(
ND

AA + N!
AA

)

1 −N!
pp

/(
ND

pp + N!
pp

)
]

, (4)

we can express Eq. (2) as

R
e pT int
AA = 1

⟨np⟩

(
ND

AA + N!
AA

ND
pp + N!

pp

) [
1 −N!

AA

/(
ND

AA + N!
AA

)

1 −N!
pp

/(
ND

pp + N!
pp

)
]

×
(

1 + CxN!
pp

/
ND

pp

1 + xN!
pp

/
ND

pp

)

≡ 1
⟨np⟩

(
ND

AA + N!
AA

ND
pp + N!

pp

)

T
e pT int
AA . (5)
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Abstract
We provide an efficient form to express the action of a many-body Hamiltonian of
harmonically trapped interacting Fermi particles on wavefunctions built from paired states.
The expression is suitable to numerically determine the ground state energy, regardless of the
form of the two-body interaction. It takes advantage of the knowledge of the two-particle
problem and the inherent properties of the matrix form of the many-body wavefunction. As an
example, we evaluate the properties of a system composed of a balanced mixture of two
families of fermions confined in a harmonic trap interacting through a short-range exponential
potential. Numerical results for N ! 10 and N = 35, 56, 84 and 165 particles of each family
are reported. In the strong interacting regime corresponding to an infinite s-wave scattering
length, our results give an upper bound to the Bertsch parameter for harmonically trapped
systems (E/EIFG)2 = 1 + β ! 0.376 ± 0.008 with E the total energy and EIFG the energy for
the analogous ideal Fermi gas. The influence of the harmonic trap and the interaction potential
is exhibited in one and two-body correlation functions.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

A wide variety of interacting Fermi systems can be found
in nature, for example, nucleons in nuclei, electrons in
superconductors, neutrons in neutron stars and cold deuterium
atoms. Ultracold gases composed of two different hyperfine
spin species are another example which nowadays has become
accessible in the laboratory [1, 2]. Such systems can exhibit
different features depending on the kind of interaction and the
environment where the system is placed. The corresponding
theoretical description, including all the quantum mechanical
effects, is based on the knowledge of the interaction among the
particles and the proper account of the environment. Different
treatments and approaches have been elaborated to estimate
and predict their corresponding behaviour. On one hand, the
seminal theory proposed by Eagles [3] and Leggett [4] gave
rise to effective field theories and self-consistent approaches
that allow us to determine the chemical potential and the
energy gap in the superfluid state in terms of the effective
two-particle interaction and the particle density from coupled

1 Author to whom any correspondence should be addressed.

integral equations. On the other hand, computational schemes
offer an alternative route to establish and characterize the
ground state properties. Quantum Monte Carlo simulation
has proven to be a very useful tool to study such systems
[5, 6].

Green function Monte Carlo (GFMC) and variational
quantum Monte Carlo are probably the most used
computational techniques to address the description of
confined and unconfined Fermi systems [7– 13]. One of the
limitations of both methods is in their ability to handle a
large number of particles. Besides, the intrinsic symmetry
properties of the wavefunction in the fermion case lead to
the well-known sign problem when a physical observable is
evaluated using the GFMC method. This latter complication
can be circumvented using the fixed-node approximation
since it prevents the crossing of the nodal surface exhibited
in the antisymmetric many-body wavefunctions. Regarding
the variational approach, the sampling is weighted with the
squared wavefunction and therefore it is free of the sign
problem. For this case, in [6] an efficient algorithm was
designed to update the wavefunction. Ceperley et al used the
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Monte Carlo simulations of neutron-rich matter of relevance to the inner neutron-star crust are performed for
a system of A = 5000 nucleons. To determine the proton fraction in the inner crust, numerical simulations are
carried out for a variety of densities and proton fractions. We conclude—as others have before us using different
techniques—that the proton fraction in the inner stellar crust is very small. Given that the purported nuclear pasta
phase in stellar crusts develops as a consequence of the long-range Coulomb interaction among protons, we ques-
tion whether pasta formation is possible in such proton-poor environments. To answer this question, we search for
physical observables sensitive to the transition between spherical nuclei and exotic pasta structures. Of particular
relevance is the static structure factor S(k)—an observable sensitive to density fluctuations. However, no dramatic
behavior was observed in S(k). We regard the identification of physical observables sensitive to the existence—or
lack thereof—of a pasta phase in proton-poor environments as an open problem of critical importance.
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I. INTRODUCTION

Neutron stars are unique laboratories for the study of matter
under extreme conditions of density and isospin asymmetry
[1,2]. Indeed, the conditions in the interior of neutron stars are
so extreme that they are unattainable in terrestrial laboratories.
Thus, neutron stars—and the exotic phases within—owe their
existence to the presence of enormous gravitational fields. To
maintain hydrostatic equilibrium throughout the star, these
enormous gravitational fields must be balanced by the pressure
support of its underlying constituents. This results in an
enormous dynamic range of pressures and densities that
enables one to probe the equation of state (EOS) far away
from the equilibrium density of normal nuclei [3].

Neutron stars contain a nonuniform crust above the uniform
liquid mantle (or stellar core). The core is composed of a
uniform assembly of neutrons, protons, electrons, and muons
packed to densities that may exceed that of normal nuclei by
up to an order of magnitude. The highest density attained
in the core depends critically on the equation of state of
neutron-rich matter which at those high densities is presently
poorly constrained. The core accounts for almost all of the
mass and most of the size of the neutron star. However, at
densities of about half of normal nuclear density, the uniform
core becomes unstable against cluster formation. At these
“low” densities the average internucleon separation increases
to such an extent that it becomes energetically favorable for
the system to segregate into regions of normal density (nuclear
clusters) and regions of low density (dilute neutron vapor).
Such a clustering instability signals the transition from the
uniform liquid core to the nonuniform crust. Note, however,
that the precise value of the crust-to-core transition density is
presently unknown, as it is sensitive to the poorly constrained
density dependence of the symmetry energy [4].

*jpiekarewicz@fsu.edu
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The solid crust is divided into an outer and an inner region.
In particular, the outer crust spans a region of about seven
orders of magnitude in density (from about 104 g/cm3 to 4 ×
1011 g/cm3 [5– 7]). Structurally, the outer crust is composed
of a Coulomb lattice of neutron-rich nuclei embedded in a
uniform electron gas. As the density increases—and given that
the electronic Fermi energy increases rapidly with density—it
becomes energetically favorable for electrons to capture into
protons. This results in the formation of Coulomb crystals
of progressively more neutron-rich nuclei. Eventually, the
neutron-proton asymmetry becomes too large for the nuclei to
absorb any more neutrons and the excess neutrons go into the
formation of a dilute neutron vapor; this signals the transition
from the outer to the inner crust.

In this contribution we are interested in modeling the
structure of the inner crust. The outer-to-inner crust transition
density is predicted to occur at about 4 × 1011 g/cm3 [5– 7]. At
this—neutron-drip—density the neutron-rich nucleus (118Kr)
that comprises the crystalline lattice is unable to retain any
more neutrons. Thus, the top layer of the inner crust consists
of a Coulomb crystal of neutron-rich nuclei immersed in a
uniform electron gas and a dilute—likely superfluid—neutron
vapor. In contrast, at the bottom layer of the inner crust the
density has become high enough (of the order of 1014 g/cm3) to
“melt” the crystal into a uniform mixture of neutrons, protons,
and electrons. Yet the transition from the highly ordered
crystal to the uniform liquid is both interesting and complex.
This is because distance scales that were well separated in
both the crystalline phase (where the long-range Coulomb
interaction dominates) and in the uniform phase (where the
short-range strong interaction dominates) become comparable.
This unique situation gives rise to “Coulomb frustration.”
Frustration, a phenomenon characterized by the existence of a
very large number of low-energy configurations, emerges from
the impossibility to simultaneously minimize all “elementary”
interactions in the system. Whereas protons are correlated
at short distances by attractive strong interactions, they are
anticorrelated at large distances because of the Coulomb
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We consider a system composed of two identical light quarks (qq) and two identical antiquarks (Q̄Q̄) that
can be linked either as two mesons or as a tetraquark, incorporating quantum correlations between identical
particles and an effective many-body potential between particles. We perform a three-dimensional Monte Carlo
simulation of the system, considering the configurations allowed to form: i) Only two mesons, ii) only tetraquark,
and iii) two mesons and a tetraquark. We characterize each case and determine whether it is energetically more
favorable to form a tetraquark or two mesons, as a function of the interparticle separation distance which, for
a fixed number of particles, can be identified as a particle density. We determine how the two mesons, which
dominate the low density regime, mixes with a tetraquark state as the density increases. Properties like the mean
square radius and the two-particle correlation function are found to reflect such transition, and we provide a
parametrization of the diquark correlation function in the isolated case. We track the dynamical flipping among
configurations to determine the recombination probability, exhibiting the importance of the tetraquark state. We
analyze the four-body potential evolution and show that its linear behavior is preserved, although the slope can
reflect the presence of a mixed state. Results are shown for several light-quarks to heavy-antiquarks mass ratios
whenever they are found to be relevant.
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I. INTRODUCTION

The formation of multiquark systems can have important
implications in the phenomena we observe in nature, from
an enhanced spectroscopy to quark recombination effects. A
tetraquark state, the simplest of this kind of system, has been
extensively studied from the theoretical and experimental point
of view. Recently, experimental research has provided strong
evidence on the formation of such state [1– 3]. These findings
signal a new era in hadron spectroscopy, where more refined
modeling and a better understanding of the strong interaction,
in the low energy regime, is required. Since the early years of
the quark model, theoretical studies have been performed to
inquire about the existence and stability of the tetraquark as an
isolated object [4– 16], and how its mixing with a meson state
can help us to understand the observed spectroscopy of states
like the σ meson [16,17]. Less attention has been paid to the
features of the tetraquark formation as two mesons are forced
to approach each other as it could happen in a meson-meson
collision or, the opposite, when the four quarks are produced
very close in space as in the WW decay, which eventually
freeze-out to two mesons [18,19]. At which stage do they turn
into a tetraquark or mixed state? How do their properties reflect
such modification? These are certainly important questions.

In the present work we address these questions using
an effective model (string-flip model) to mimic the strong
interaction among quarks. For definiteness we consider two
identical light quarks qq (denoted by u) and two identical
antiquarks Q̄Q̄ (denoted by d,s,c, and b, depending on the
mass ratio with respect to the light one). The seminal work by
Lenz et al. [7] laid down a procedure to describe such a system
in this context and found its general properties, as isolated
objects, using a harmonic potential interaction. Here, we
perform a three-dimensional (3D) Monte Carlo simulation of
the system including quantum correlations between particles to
determine whether it is energetically more favorable to form a

four-body state (tetraquark) or two mesons, as a function of the
interparticle separation which, for a fixed number of particles,
can be identified as a particle density. We are interested in
s-wave states where tensor and spin interaction effects are
expected to be negligible in the gross features of the properties.
In Sec. II, we set the basis to identify a quark-antiquark
state interacting via a linear potential and elaborate on a
variational approach. In Sec. III, we describe the dynamical
quark recombination model and generalize the variational
two-body wave function to a four-body system. In Sec. IV, we
describe the energy evaluation from a Monte Carlo simulation.
In Sec. V, we show the results on: A) The determination of
the optimal variational parameter and system energy; B) the
hadron radial distribution characterization; C) the two-particle
correlation functions, among the two mesons and among
quarks, in particular we provide a parametrization of the
diquark correlation function and the static structure factor;
D) The dynamical recombination probabilities among mesons
with/without tetraquark configurations; E) We characterize
the four body potential, estimating its linear behavior and its
strength as an effective contact interaction. The conclusions
are presented in Sec. VI.

II. QUARK-ANTIQUARK STATE WITH LINEAR
POTENTIAL

Let us start with the description of the exact solution and
the variational approach of a meson state, composed of a
quark and an antiquark of mass m1 and m2, respectively. The
strong interaction between this pair can be represented by a
flux tube [6], which can be effectively described by a linear
potential V [r⃗1,r⃗2] = k|r⃗1 − r⃗2| = kr , where k is an interaction
constant and r = |r⃗1 − r⃗2| is the relative distance between
them. Lattice QCD studies have confirmed the linear behavior
of the interaction among quarks at large distances [20].
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Fig. 1 Mechanisms for
ψ → γ D+D−: a, b D pole
mechanisms; c contact term
demanded by gauge invariance.
In parenthesis the momenta of
the particles
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Fig. 2 Loop mechanisms for ψ → γ DD̄ production. In parenthesis the momenta of the particles

leads to

a kµ + b Pµ(P · k)+ d kµ(P · k) = 0 (10)

which implies two independent equations

a + d (P · k) = 0 (11)

b = 0. (12)

The b term does not contribute because of the Lorentz con-
dition ϵµ(ψ)Pµ = 0 and the c and e terms do not contribute
because of the Lorentz condition on the photon ϵν(γ )kν = 0.
Hence, only the a and d terms of Eq. (8) contribute to the
amplitude and it is enough to calculate only the a or d coef-
ficient. It is easy to see that only the diagrams (a), (b) of
Fig. 2 contribute to the d coefficient and since two external
momenta Pµkν are factorized out of the integral, for dimen-
sional reasons this means two powers of q less in the integral,
which renders it convergent. In addition, if we work at the
end, as we do, in the Coulomb gauge, ϵ0(γ ) = 0, ϵ(γ )·k = 0,
then the term dPi k jϵ j (ψ)ϵi (γ ) = 0 in the ψ rest frame, and
the whole amplitude is given by

t = aϵµ(ψ)ϵµ(γ ) ; a = −d (P · k) (13)

It is customary to perform the integration of the loop inte-
gral using Feynman parametrization, but here we must divert
from this formalism because the DD̄ → DD̄ scattering
matrix regularized with a cut off, qmax , transfers a structure
%(qmax −|q|)%(qmax −| p|) to the T matrix [41] and we
must implement a cut off in the loop integral. On the other
hand, we can benefit from the fact that the D mesons are
heavy particles, they are close to on-shell in the loops and

we can just keep the positive energy part of their propagators

D(q ) → 1

q 2 −m2
D + iϵ

≡ 1
2ω(q)

(
1

q 0 −ω(q)+ iϵ
− 1

q 0 + ω(q) −iϵ

)
(14)

→ 1
2ω(q)

1
q 0 −ω(q)+ iϵ

(15)

with ω(q) =
√
q2 + m2

D .
The contribution of the two diagrams of Fig. 2a, b with

D0 D̄0 in the final state is given by

−i tL = 2
∫

d4q
(2π)4 (−i)gψ (P −q −q )µϵµ(ψ)(−ie)

×(P −q + P −q −k)νϵν(γ )(−i)tD+D−→D0 D̄0

× i

(P −q )2 −m2
D + iϵ

× i

q 2 −m2
D + iϵ

i

(P −q −k)2 −m2
D + iϵ

, (16)

tL = −2egψϵµ(ψ)ϵν(γ )i

×
∫

d4q
(2π)4 2qµ(2P −2q )ν tD+D−→D0 D̄0

× 1

(P −q )2 −m2
D + iϵ

× 1

q 2 −m2
D + iϵ

1

(P −q −k)2 −m2
D + iϵ

, (17)

where tD+D−→D0 D̄0 is a function of the D0 D̄0 invariant
mass. We can now take the propagators of Eq. (14) and per-
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tion in which the D0 D̄0 production does not proceed at tree
level, while D+D− has contribution from tree level. As a
consequence, the D0 D̄0 production is directly influenced by
the DD̄ pole below threshold and exhibits a behavior close
to threshold very different from phase space. For the D+D−

production the tree level part is very important and the behav-
ior is quite different and in addition, it shows the infrared
divergence behavior when the photon energy goes to zero,
which, again, is not the case for D0 D̄0 production. The reac-
tion is, thus, suited for investigation of the DD̄ bound state
and the present rates of ψ(3770) production make the exper-
imental investigation feasible.

2 Formalism

The state ψ(3770) decays into DD̄ [22] with a width " =
27.2 MeV, 52% of which goes to D0 D̄0 and 41% to D+D−.
Its shape in e+e− production and the decay width have been
the object of intense study [23– 29,53,54]. In [29] the cc̄
component is allowed to get hadronized into meson-meson
components, and the strength of the hadronization is fitted
to the ψ(3770) lineshape. One of the conclusions in [29]
is that from the experimental data one can induce that the
ψ(3770) is largely a cc̄ state and the weight of the meson-
meson components is only of the order of 15%. The ψ(3770)
state bears some similarity to the φ(1020), which is assumed
to be a ss̄ state and decays into K K̄ . The decay mode
ψ(3770) → DD̄γ necessarily has much resemblance to
the φ → γ K K̄ , γπ0π0 decays, which have also been the
subject of much study [30– 37]. As in the φ → γπ0π0 reac-
tion, which does not proceed via tree level, we shall also see
that ψ(3770) → γ D0 D̄0 does not get contribution from tree
level and both processes proceed via a similar loop mecha-
nism.

2.1 Tree level for ψ(3770) → γ D+D−

The tree level mechanism in ψ(3770) → γ D+D− is shown
diagrammatically in Fig. 1.

The ψ → D+D− elementary vertex is given by

− i tψD+D− = −igψ (pD+ − pD−)µϵµ(ψ) . (1)

The ψ → D+D− decay width is given by

"ψ = 1
8π

1

M2
ψ

|q|
∑ ∑

|t |2 , (2)

where the sum and average of |t |2 calculated from Eq. (1)
gives

∑ ∑
|t |2 = 4

3
g2
ψ q2 , (3)

and q is the D+ momentum in the ψ decay at rest. Adjust-
ing to the experimental D+D− decay width, assuming all
the width coming from DD̄ decay, we find (we make some
comments and corrections to this assumption at the end of
the results section)

gψ = 13.7 (4)

Considering also the γ D+D− coupling D+(pD+)γ →
D+(p ′

D+)

i tγ D+D− = −i e (pD+ + p ′
D+)µ ϵµ(γ ) , (5)

with e the electron charge, e2/4π = α = 1/137, the ψ →
γ D+D− amplitude of the diagram of Fig. 1 is given by

ta + tb + tc = −2 e gψ ϵµ(ψ)ϵν(γ )

×
(
gµν + p2µ p1ν

1
p1 · k + iϵ

+ p1µ p2ν

1
p2 · k + iϵ

)

(6)

where the term gµν corresponds to the diagram of Fig. 1c
and is introduced to respect gauge invariance. The photon
has zero coupling to D0D0 and hence there is no tree level
for ψ → γ D0 D̄0.

2.2 Loop mechanism

There is, however, a loop mechanism that allows the ψ →
γ D0 D̄0 decay which is depicted in Fig. 2.

This follows exactly the same trend as in [30– 37] for φ →
γπ0π0, where the intermediate state is K+K− and the final
DD̄ are replaced by π0π0. The diagram of Fig. 2d is also
demanded by gauge invariance of the loops. Gauge invariance
plays an important role in this process and thanks to it there
is an efficient computational scheme which requires only
the evaluation of diagrams (a) and (b) of Fig. 2, which give
the same contribution, and shows that the result of the loop
integral is convergent [34,38– 40]. The derivation goes as
follows: The full amplitude for the diagrams of Fig. 2 has the
structure

tL = ϵµ(ψ)ϵν(γ ) Tµν (7)

and Tµν must be a tensor that can be written in terms of the
two independent momenta P and k, the momentum of the ψ

and γ respectively. The most general form for Tµν is given
by

Tµν = a gµν + b PµPν + c Pµkν + d kµPν + e kµkν .

(8)

Gauge invariance, substituting ϵν(γ ) by kν and demanding

Tµνkν = 0 (9)
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There is no tree level for the neutral case

Amplitude
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Abstract We perform a calculation of the mass distribution
in the ψ(3770) → γ DD̄ decay, studying both the D+D−

and D0 D̄0 decays. The electromagnetic interaction is such
that the tree level amplitude is null for the neutral chan-
nel, which forces the ψ(3770) → γ D0 D̄0 transition to go
through a loop involving the D+D− → D0 D̄0 scattering
amplitude. We take the results for this amplitude from a the-
oretical model that predicts a DD̄ bound state and find a
D0 D̄0 mass distribution in the decay drastically different
than phase space. The rates obtained are relatively large and
the experiment is easily feasible in the present BESIII facil-
ity. The performance of this experiment could provide an
answer to the issue of this much searched for state, which is
the analogue of the f0(980) resonance.

1 Introduction

Molecular states made from mesons or mesons and baryons
have become some of the important objects in the present
plethora of hadronic states. Reviews on this topic can be
found in [1,2] and more recently in [3– 6]. One of the interest-
ing predicted states is a bound state of DD̄ [7– 9] for which
there is no clear experimental evidence so far. The state is
analogous to the K K̄ bound state which was claimed in [10]
to be a good representation of the f0(980) state. This early
claim found support later with the results of the chiral unitary
approach for the meson-meson interaction [11– 14], where
the meson meson interaction in coupled channels was stud-
ied, and other states, as the f0(500), K ∗

0 (700),a0(980), were
also found dynamically generated from that interaction.

a e-mail: dailianrong68@126.com (corresponding author)
b e-mail: toledo@fisica.unam.mx
c e-mail: oset@ific.uv.es

There has been some search for this state and in [15] it
was shown that an accumulation of strength close to the DD̄
threshold in the e+e− → J/ψDD̄ reaction [16], found a
natural explanation in terms of the predicted bound state of
[7] with a mass of 3730 MeV, yet with large uncertainties
due to the limited experimental precision. Hopes were raised
that an update of the experiment in [17] would put further
constraints on the predictions, but it was shown in [18] that
this is not the case, and there is a large ambiguity in the
conclusions.

In view of this, there has been some work proposing new
reactions that would give evidence for this elusive state. In
[19] the radiative decay of the ψ(3770) resonance into γ

and the DD̄ bound state was proposed and the feasibility
of the reaction with present production rates of the ψ(3770)
was assessed. There is of course the problem of which one
should be the ideal channel to observe the bound state. In [20]
three different reactions were suggested to detect that state.
In [21] the B0 → D0 D̄0K 0 , B+ → D0 D̄0K+ reactions
were suggested to find evidence for the state, looking into
the mass distribution of DD̄ production close to threshold.
The analysis found a good agreement with experiment for the
B+ → D0 D̄0K+ reaction, but it was shown there that the
B0 → D0 D̄0K 0 reaction was better suited to search for the
DD̄ state, because there is no tree level contribution in this
later reaction, and hence the amplitude for that mechanism is
proportional to the DD̄ amplitude which contains the pole of
the DD̄ bound state. The mass distribution then was rather
different to that of phase space, and its precise measurement
close to threshold should give an answer to the question.

In the present work we wish to combine the lessons drawn
from the works of [19,21] and study the DD̄ mass distribu-
tion close to threshold from the ψ(3770) → γ DD̄ decay.
Anticipating the results, we will find an interesting situa-
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Fig. 1 Mechanisms for
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leads to

a kµ + b Pµ(P · k)+ d kµ(P · k) = 0 (10)

which implies two independent equations

a + d (P · k) = 0 (11)

b = 0. (12)

The b term does not contribute because of the Lorentz con-
dition ϵµ(ψ)Pµ = 0 and the c and e terms do not contribute
because of the Lorentz condition on the photon ϵν(γ )kν = 0.
Hence, only the a and d terms of Eq. (8) contribute to the
amplitude and it is enough to calculate only the a or d coef-
ficient. It is easy to see that only the diagrams (a), (b) of
Fig. 2 contribute to the d coefficient and since two external
momenta Pµkν are factorized out of the integral, for dimen-
sional reasons this means two powers of q less in the integral,
which renders it convergent. In addition, if we work at the
end, as we do, in the Coulomb gauge, ϵ0(γ ) = 0, ϵ(γ )·k = 0,
then the term dPi k jϵ j (ψ)ϵi (γ ) = 0 in the ψ rest frame, and
the whole amplitude is given by

t = aϵµ(ψ)ϵµ(γ ) ; a = −d (P · k) (13)

It is customary to perform the integration of the loop inte-
gral using Feynman parametrization, but here we must divert
from this formalism because the DD̄ → DD̄ scattering
matrix regularized with a cut off, qmax , transfers a structure
%(qmax −|q|)%(qmax −| p|) to the T matrix [41] and we
must implement a cut off in the loop integral. On the other
hand, we can benefit from the fact that the D mesons are
heavy particles, they are close to on-shell in the loops and

we can just keep the positive energy part of their propagators

D(q ) → 1

q 2 −m2
D + iϵ

≡ 1
2ω(q)

(
1

q 0 −ω(q)+ iϵ
− 1

q 0 + ω(q) −iϵ

)
(14)

→ 1
2ω(q)

1
q 0 −ω(q)+ iϵ

(15)

with ω(q) =
√
q2 + m2

D .
The contribution of the two diagrams of Fig. 2a, b with

D0 D̄0 in the final state is given by

−i tL = 2
∫

d4q
(2π)4 (−i)gψ (P −q −q )µϵµ(ψ)(−ie)

×(P −q + P −q −k)νϵν(γ )(−i)tD+D−→D0 D̄0

× i

(P −q )2 −m2
D + iϵ

× i

q 2 −m2
D + iϵ

i

(P −q −k)2 −m2
D + iϵ

, (16)

tL = −2egψϵµ(ψ)ϵν(γ )i

×
∫

d4q
(2π)4 2qµ(2P −2q )ν tD+D−→D0 D̄0

× 1

(P −q )2 −m2
D + iϵ

× 1

q 2 −m2
D + iϵ

1

(P −q −k)2 −m2
D + iϵ

, (17)

where tD+D−→D0 D̄0 is a function of the D0 D̄0 invariant
mass. We can now take the propagators of Eq. (14) and per-
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tion in which the D0 D̄0 production does not proceed at tree
level, while D+D− has contribution from tree level. As a
consequence, the D0 D̄0 production is directly influenced by
the DD̄ pole below threshold and exhibits a behavior close
to threshold very different from phase space. For the D+D−

production the tree level part is very important and the behav-
ior is quite different and in addition, it shows the infrared
divergence behavior when the photon energy goes to zero,
which, again, is not the case for D0 D̄0 production. The reac-
tion is, thus, suited for investigation of the DD̄ bound state
and the present rates of ψ(3770) production make the exper-
imental investigation feasible.

2 Formalism

The state ψ(3770) decays into DD̄ [22] with a width " =
27.2 MeV, 52% of which goes to D0 D̄0 and 41% to D+D−.
Its shape in e+e− production and the decay width have been
the object of intense study [23– 29,53,54]. In [29] the cc̄
component is allowed to get hadronized into meson-meson
components, and the strength of the hadronization is fitted
to the ψ(3770) lineshape. One of the conclusions in [29]
is that from the experimental data one can induce that the
ψ(3770) is largely a cc̄ state and the weight of the meson-
meson components is only of the order of 15%. The ψ(3770)
state bears some similarity to the φ(1020), which is assumed
to be a ss̄ state and decays into K K̄ . The decay mode
ψ(3770) → DD̄γ necessarily has much resemblance to
the φ → γ K K̄ , γπ0π0 decays, which have also been the
subject of much study [30– 37]. As in the φ → γπ0π0 reac-
tion, which does not proceed via tree level, we shall also see
that ψ(3770) → γ D0 D̄0 does not get contribution from tree
level and both processes proceed via a similar loop mecha-
nism.

2.1 Tree level for ψ(3770) → γ D+D−

The tree level mechanism in ψ(3770) → γ D+D− is shown
diagrammatically in Fig. 1.

The ψ → D+D− elementary vertex is given by

− i tψD+D− = −igψ (pD+ − pD−)µϵµ(ψ) . (1)

The ψ → D+D− decay width is given by

"ψ = 1
8π

1

M2
ψ

|q|
∑ ∑

|t |2 , (2)

where the sum and average of |t |2 calculated from Eq. (1)
gives

∑ ∑
|t |2 = 4

3
g2
ψ q2 , (3)

and q is the D+ momentum in the ψ decay at rest. Adjust-
ing to the experimental D+D− decay width, assuming all
the width coming from DD̄ decay, we find (we make some
comments and corrections to this assumption at the end of
the results section)

gψ = 13.7 (4)

Considering also the γ D+D− coupling D+(pD+)γ →
D+(p ′

D+)

i tγ D+D− = −i e (pD+ + p ′
D+)µ ϵµ(γ ) , (5)

with e the electron charge, e2/4π = α = 1/137, the ψ →
γ D+D− amplitude of the diagram of Fig. 1 is given by

ta + tb + tc = −2 e gψ ϵµ(ψ)ϵν(γ )

×
(
gµν + p2µ p1ν

1
p1 · k + iϵ

+ p1µ p2ν

1
p2 · k + iϵ

)

(6)

where the term gµν corresponds to the diagram of Fig. 1c
and is introduced to respect gauge invariance. The photon
has zero coupling to D0D0 and hence there is no tree level
for ψ → γ D0 D̄0.

2.2 Loop mechanism

There is, however, a loop mechanism that allows the ψ →
γ D0 D̄0 decay which is depicted in Fig. 2.

This follows exactly the same trend as in [30– 37] for φ →
γπ0π0, where the intermediate state is K+K− and the final
DD̄ are replaced by π0π0. The diagram of Fig. 2d is also
demanded by gauge invariance of the loops. Gauge invariance
plays an important role in this process and thanks to it there
is an efficient computational scheme which requires only
the evaluation of diagrams (a) and (b) of Fig. 2, which give
the same contribution, and shows that the result of the loop
integral is convergent [34,38– 40]. The derivation goes as
follows: The full amplitude for the diagrams of Fig. 2 has the
structure

tL = ϵµ(ψ)ϵν(γ ) Tµν (7)

and Tµν must be a tensor that can be written in terms of the
two independent momenta P and k, the momentum of the ψ

and γ respectively. The most general form for Tµν is given
by

Tµν = a gµν + b PµPν + c Pµkν + d kµPν + e kµkν .

(8)

Gauge invariance, substituting ϵν(γ ) by kν and demanding

Tµνkν = 0 (9)
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D0 D̄0 in the final state is given by
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where tD+D−→D0 D̄0 is a function of the D0 D̄0 invariant
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Fig. 2 Loop mechanisms for ψ → γ DD̄ production. In parenthesis the momenta of the particles

leads to

a kµ + b Pµ(P · k)+ d kµ(P · k) = 0 (10)

which implies two independent equations

a + d (P · k) = 0 (11)

b = 0. (12)

The b term does not contribute because of the Lorentz con-
dition ϵµ(ψ)Pµ = 0 and the c and e terms do not contribute
because of the Lorentz condition on the photon ϵν(γ )kν = 0.
Hence, only the a and d terms of Eq. (8) contribute to the
amplitude and it is enough to calculate only the a or d coef-
ficient. It is easy to see that only the diagrams (a), (b) of
Fig. 2 contribute to the d coefficient and since two external
momenta Pµkν are factorized out of the integral, for dimen-
sional reasons this means two powers of q less in the integral,
which renders it convergent. In addition, if we work at the
end, as we do, in the Coulomb gauge, ϵ0(γ ) = 0, ϵ(γ )·k = 0,
then the term dPi k jϵ j (ψ)ϵi (γ ) = 0 in the ψ rest frame, and
the whole amplitude is given by

t = aϵµ(ψ)ϵµ(γ ) ; a = −d (P · k) (13)

It is customary to perform the integration of the loop inte-
gral using Feynman parametrization, but here we must divert
from this formalism because the DD̄ → DD̄ scattering
matrix regularized with a cut off, qmax , transfers a structure
%(qmax −|q|)%(qmax −| p|) to the T matrix [41] and we
must implement a cut off in the loop integral. On the other
hand, we can benefit from the fact that the D mesons are
heavy particles, they are close to on-shell in the loops and

we can just keep the positive energy part of their propagators

D(q ) → 1

q 2 −m2
D + iϵ

≡ 1
2ω(q)

(
1

q 0 −ω(q)+ iϵ
− 1

q 0 + ω(q) −iϵ

)
(14)

→ 1
2ω(q)

1
q 0 −ω(q)+ iϵ

(15)

with ω(q) =
√
q2 + m2

D .
The contribution of the two diagrams of Fig. 2a, b with

D0 D̄0 in the final state is given by

−i tL = 2
∫

d4q
(2π)4 (−i)gψ (P −q −q )µϵµ(ψ)(−ie)

×(P −q + P −q −k)νϵν(γ )(−i)tD+D−→D0 D̄0

× i

(P −q )2 −m2
D + iϵ

× i

q 2 −m2
D + iϵ

i

(P −q −k)2 −m2
D + iϵ

, (16)

tL = −2egψϵµ(ψ)ϵν(γ )i

×
∫

d4q
(2π)4 2qµ(2P −2q )ν tD+D−→D0 D̄0

× 1

(P −q )2 −m2
D + iϵ

× 1

q 2 −m2
D + iϵ

1

(P −q −k)2 −m2
D + iϵ

, (17)

where tD+D−→D0 D̄0 is a function of the D0 D̄0 invariant
mass. We can now take the propagators of Eq. (14) and per-
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Fig. 5 The differential cross
section for ψ(3770) → γ D0 D̄0

as a function of the D0 D̄0

invariant mass, a= 42

3730 3735 3740 3745 3750 3755 3760 3765 3770
0

0.5

1

1.5

2

Minv [MeV]

dΓ
/d
M

in
v
[×

10
−
6 ]

Fig. 6 Phase space for
ψ(3770) → γ D0 D̄0 and
γ D+D−normalized to the
same area
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the dominance of the isospin I = 0 contribution. The ampli-
tudes also exhibit a fast fall around threshold corresponding
to the opening of the DD̄ decay channel (Flatté effect).

Next we plot the coefficients d1, d2 in Fig. 4 given by
Eqs. (26), (27). We see that the coefficient d1 is bigger than
d2 by about a factor of two. At low invariant mass close
to threshold they increase, reflecting the amplitude tDD̄,DD̄
which is contained in the coefficients.

The most important result is shown in Fig. 5 where we
show the results of d#/dMinv for the D0 D̄0 distribution. We
see a concentration of the strength around threshold with a
peak around 3735 MeV. In order to see that this structure is
tied to the resonance below threshold we plot in Fig. 6 the
phase space for ψ(3770) → γ D0 D̄0 substituting

∑∑ |t |2

of Eq. (25) by a constant. We also show the phase space
for ψ(3770) → γ D+D− keeping the physical masses for
the D mesons. We can observe that the shape of the phase
space distribution is drastically different from that predicted
in the presence of a DD̄ bound state. The phase space peaks
around 3742 MeV instead of 3735 MeV for the distribution
with the DD̄ bound state. The shapes of the fall down of
the two distributions are also different, the one with the DD̄
bound state falling as a concave curve and the phase space
as a convex one.

Finally we show in Fig. 7 the mass distribution for
ψ(3770) → γ D+D−. The shape is quite different than the
one for ψ(3770) → γ D0 D̄0 and the reason is the contribu-
tion of the tree level, which is absent for D0 D̄0 production.
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tion in which the D0 D̄0 production does not proceed at tree
level, while D+D− has contribution from tree level. As a
consequence, the D0 D̄0 production is directly influenced by
the DD̄ pole below threshold and exhibits a behavior close
to threshold very different from phase space. For the D+D−

production the tree level part is very important and the behav-
ior is quite different and in addition, it shows the infrared
divergence behavior when the photon energy goes to zero,
which, again, is not the case for D0 D̄0 production. The reac-
tion is, thus, suited for investigation of the DD̄ bound state
and the present rates of ψ(3770) production make the exper-
imental investigation feasible.

2 Formalism

The state ψ(3770) decays into DD̄ [22] with a width " =
27.2 MeV, 52% of which goes to D0 D̄0 and 41% to D+D−.
Its shape in e+e− production and the decay width have been
the object of intense study [23– 29,53,54]. In [29] the cc̄
component is allowed to get hadronized into meson-meson
components, and the strength of the hadronization is fitted
to the ψ(3770) lineshape. One of the conclusions in [29]
is that from the experimental data one can induce that the
ψ(3770) is largely a cc̄ state and the weight of the meson-
meson components is only of the order of 15%. The ψ(3770)
state bears some similarity to the φ(1020), which is assumed
to be a ss̄ state and decays into K K̄ . The decay mode
ψ(3770) → DD̄γ necessarily has much resemblance to
the φ → γ K K̄ , γπ0π0 decays, which have also been the
subject of much study [30– 37]. As in the φ → γπ0π0 reac-
tion, which does not proceed via tree level, we shall also see
that ψ(3770) → γ D0 D̄0 does not get contribution from tree
level and both processes proceed via a similar loop mecha-
nism.

2.1 Tree level for ψ(3770) → γ D+D−

The tree level mechanism in ψ(3770) → γ D+D− is shown
diagrammatically in Fig. 1.

The ψ → D+D− elementary vertex is given by

− i tψD+D− = −igψ (pD+ − pD−)µϵµ(ψ) . (1)

The ψ → D+D− decay width is given by

"ψ = 1
8π

1

M2
ψ

|q|
∑ ∑

|t |2 , (2)

where the sum and average of |t |2 calculated from Eq. (1)
gives

∑ ∑
|t |2 = 4

3
g2
ψ q2 , (3)

and q is the D+ momentum in the ψ decay at rest. Adjust-
ing to the experimental D+D− decay width, assuming all
the width coming from DD̄ decay, we find (we make some
comments and corrections to this assumption at the end of
the results section)

gψ = 13.7 (4)

Considering also the γ D+D− coupling D+(pD+)γ →
D+(p ′

D+)

i tγ D+D− = −i e (pD+ + p ′
D+)µ ϵµ(γ ) , (5)

with e the electron charge, e2/4π = α = 1/137, the ψ →
γ D+D− amplitude of the diagram of Fig. 1 is given by

ta + tb + tc = −2 e gψ ϵµ(ψ)ϵν(γ )

×
(
gµν + p2µ p1ν

1
p1 · k + iϵ

+ p1µ p2ν

1
p2 · k + iϵ

)

(6)

where the term gµν corresponds to the diagram of Fig. 1c
and is introduced to respect gauge invariance. The photon
has zero coupling to D0D0 and hence there is no tree level
for ψ → γ D0 D̄0.

2.2 Loop mechanism

There is, however, a loop mechanism that allows the ψ →
γ D0 D̄0 decay which is depicted in Fig. 2.

This follows exactly the same trend as in [30– 37] for φ →
γπ0π0, where the intermediate state is K+K− and the final
DD̄ are replaced by π0π0. The diagram of Fig. 2d is also
demanded by gauge invariance of the loops. Gauge invariance
plays an important role in this process and thanks to it there
is an efficient computational scheme which requires only
the evaluation of diagrams (a) and (b) of Fig. 2, which give
the same contribution, and shows that the result of the loop
integral is convergent [34,38– 40]. The derivation goes as
follows: The full amplitude for the diagrams of Fig. 2 has the
structure

tL = ϵµ(ψ)ϵν(γ ) Tµν (7)

and Tµν must be a tensor that can be written in terms of the
two independent momenta P and k, the momentum of the ψ

and γ respectively. The most general form for Tµν is given
by

Tµν = a gµν + b PµPν + c Pµkν + d kµPν + e kµkν .

(8)

Gauge invariance, substituting ϵν(γ ) by kν and demanding

Tµνkν = 0 (9)
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