

Proposal of local bias estimation for forward modeling Reconstruction in the BAO Peak analysis.

SEBASTIEN FROMENTEAU ICF-UNAM

Seminario de Fisíca de Altas Energias, ICN - Martes 2 de Mars 2022

GROUP PARTICIPATING ON THIS WORK

MIROSLAVA SANDOVAL RAMOS UNAM

BRENDA TAPIA BENAVIDES UNAM

MATIAS RODRIGUEZ OTERO UNAM

Marcos Toledo Ortiz UAEM

Seminario ICN - Jueves 15 de Octubre 2020

MARIANA VARGAS MAGAÑA IF-UNAM

Summary

Cosmology

•

- Perturbations description and evolution
- Halo bias and Galaxy bias

· Use of astrophysical local properties to enhance bias determination

- Galaxy luminosity as a degeneracy break information
- A direct use for the CDM mapping BAO Reconstruction
- Emission line galaxies

Cosmology Standard Model

Cosmological Parameters

Quantum Fluctuations during inflation

From Reheating to CMB

Baryon-photon oscillates

Carl Carl

avor of

Fourier / Spherical Harmonics (CMB)

Cosmic Microwave Background (CMB)

Baryonic Acoustic Oscillations (BAO) Real Space

Around all over-densities

Stop to propagate when the plasma disappear

BAO in real space

Perturbations after CMB

BAO in galaxies

Baryonic Acoustic Oscillations (BAO) Real Space

Around all over-densities

Stop to propagate when the plasma disappear

Reality

Measuring Clustering

$\overline{dP_{12}} = \bar{n}_g^2 [1 + \xi(\vec{r}_{12})] dV_1 dV_2$

We estimate it using galaxy pair counts

2-pt statistics

$$\xi(r) = \langle \delta(x)\delta(x+r) \rangle_{volumen}$$

 $\delta(x)$ is the contrast density

$$\delta(x) = \frac{\rho(x) - \langle \rho \rangle}{\langle \rho \rangle}$$

Power Spectrum P(k) is the FT of $\xi(r)$:

$$P(k) = \int d^3x e^{-ik \cdot r} \xi(r)$$

Power Spectrum and 2pt-correlation function

$$\xi(\vec{r}) = <\delta(\vec{x}) \,.\, \delta(\vec{x}+\vec{r}) >$$

$$P(\vec{k}) = \frac{1}{(2\pi)^3} \int d^3 \vec{r} \xi(\vec{r}) e^{-i\vec{k}.\vec{r}}$$

Real field condition : $\delta(-\vec{k}) = \delta^*(\vec{k})$ $(2\pi)^3 P(\vec{k}) = \langle \delta(\vec{k}), \delta^*(\vec{k}) \rangle = \langle \delta(\vec{k}) |^2 \rangle$

Galaxy 2pt-statistics measurement

21

Scales in Cosmology

$\delta > 1: {\rm Non-Linear}$

• Simulations

$\delta \sim 1$: Quasi-Linear

Simulations2-LPT

$\delta \ll 1$: Linear

- · Simulations
- LPT (Lagrangian Pert. Th)
- Analytical approx.

Millenium simulation

Linear evolution of Perturbations

$$\dot{\rho} + \nabla_{\vec{r}} (\rho \vec{u}) = 0, \qquad : \text{Continuity equation}$$

$$\phi \left[\vec{u} + (\vec{u} \cdot \nabla_{\vec{r}}) \vec{u} \right] = -\nabla_{\vec{r}} p - \rho \nabla_{\vec{r}} \Phi, \qquad : \text{Euler's equation}$$

$$+ \nabla_{\vec{r}}^2 \Phi = 4\pi G (\rho + 3p) - \Lambda. \qquad : \text{Poisson's equation}$$

$$+ \delta = \frac{\rho - \rho}{\bar{\rho}} << 1$$

Solution for whole matter as Dark Matter

linearity condition

Lagrangian Perturbation Theory

$$\Psi(q,t) = x(q,t) - q$$

 $x(q,t)$ final position
 $\Psi(q,t)$ displacement vector
 q initial position

Credit to Matsubara's presentation

Lagrangian Perturbation Theory

Equation of motion & Poisson's Equation

$$\ddot{\Psi} + \frac{\dot{a}}{a}\dot{\Psi} = -\frac{1}{a^2}\nabla_x\phi$$
$$\Delta_x\phi = 4\pi G\bar{\rho}a^2\delta(x,t)$$

Linearization & Zeldovich Approximation

$$\delta(x,t) = \left[\det \left(I + \frac{\partial \Psi}{\partial q} \right) \right]^{-1} - 1 \approx -\nabla_q \Psi$$
$$\Psi \approx -D(t)\nabla_q \rho_0(q)$$

Credit to Lile Wang's presentation

Lagrangian Perturbation Theory

Taking into account the higher-order perturbations in the displacement

$$\boldsymbol{\Psi} = \sum_{n=1}^{\infty} \boldsymbol{\Psi}^{(n)} = \boldsymbol{\Psi}^{(1)} + \boldsymbol{\Psi}^{(2)} + \boldsymbol{\Psi}^{(3)} + \cdots$$

$$\begin{split} \Psi^{(1)} &= -D(t) \nabla \varphi_0(q) \\ \Psi^{(2)} &= -\frac{1}{2} D_2(t) \nabla \triangle^{-1} \left[\Psi^{(1)}_{i,i} \Psi^{(1)}_{j,j} - \Psi^{(1)}_{i,j} \Psi^{(1)}_{i,j} \right] \\ \Psi^{(3)} &= -\frac{1}{3!} \left[D_{3a}(t) \nabla \triangle^{-1} \left(\Psi^{(1)}_{i,i} \Psi^{(2)}_{j,j} - \Psi^{(1)}_{i,j} \Psi^{(2)}_{i,j} \right) + D_{3b}(t) \nabla \triangle^{-1} \det \left(\Psi^{(1)}_{i,j} \right) \\ &+ D_{3c}(t) \triangle^{-1} \left(\Psi^{(1)}_{i,j} \Psi^{(2)}_{i,j} - \Psi^{(1)}_{i,j} \Psi^{(2)}_{j,j} \right)_{,i} \right] \\ \end{split}$$

Credit to Matsubara's presentation

 $\sigma = 0.5$

 $\sigma = 1.5$

$$\sigma = 2.$$

Applying the first order displacement field on initial particle positions.

Perturbtion theory can evaluate in average how these displacements modify the correlation function and Power Spectrum

Sergel 2009 27

 $\sigma = 1.$

Perturbation Theory on stats Vs CDM simulations

Works very well up to :

 $r \sim 25 Mpc/h$ $k \sim 0.3 h/Mpc$

Reconstruction to enhance BAO peak

Displacements on density field

Reconstruction to enhance BAO peak

What we do observe?

(Image from Robertson et al. 2019)

Global bias (linear)

 $\delta_y = b_1 (\delta_x - \bar{\delta}_x)$

2pt-statistics and linear bias

$$\xi_{gg}(\vec{r}) = b_g^2 \xi_{mm}(\vec{r})$$

Complicated because bias can be complex

(Image from Robertson et al. 2019)

But what to do?

$$\xi_{mm}(\vec{r}) = \left\langle \delta_m(\vec{x} + \vec{r}) \cdot \delta_m(\vec{x}) \right\rangle_{\vec{x}} \qquad \delta_x = \frac{\rho_x - \bar{\rho}_x}{\bar{\rho}_x}$$
$$\xi_{gg}(\vec{r}) = \left\langle \delta_g(\vec{x} + \vec{r}) \cdot \delta_g(\vec{x}) \right\rangle_{\vec{x}}$$

$$\xi_{gg}(\vec{r}) = \left\langle f\left[\delta_m(\vec{x} + \vec{r})\right] . f\left[\delta_m(\vec{x})\right] \right\rangle_{\vec{x}}$$
???

Standard bias scheme

$$\delta_{g}(\overrightarrow{x}) = f\left[\delta_{m}(\overrightarrow{x})\right] \longrightarrow \delta_{g}(\overrightarrow{x}) = \sum_{i=0}^{\infty} \frac{b_{i}}{i!} \delta_{m}^{i}(\overrightarrow{x})$$
Local
non-Local

No specific form

Taylor expansion
Non-local bias orden 2

Real application : Hard!!

$$\begin{split} \delta_{g} &= c_{\delta} \ \delta + \frac{1}{2} \ c_{\delta^{2}} \ \left(\delta^{2} - \sigma^{2}\right) + \frac{1}{2} c_{s^{2}} \ \left(s^{2} - \frac{2}{3} \sigma^{2}\right) + \frac{1}{3!} \ c_{\delta^{3}} \ \delta^{3} + \frac{1}{2} c_{\delta s^{2}} \ \delta \ s^{2} + c_{\psi} \ \psi + c_{st} \ st + \frac{1}{3!} \ c_{s^{3}} \ s^{3} + c_{\epsilon} \ \epsilon + c_{\delta \epsilon} \ \delta \epsilon + \frac{1}{2} \ c_{\delta^{2} \epsilon} \ \delta^{2} \epsilon + \frac{1}{2} c_{s^{2} \epsilon} \ s^{2} \epsilon + \frac{1}{2} c_{\epsilon^{2}} \ \left(\epsilon^{2} - \sigma_{\epsilon}^{2}\right) + \frac{1}{2} c_{\delta \epsilon^{2}} \ \delta \epsilon^{2} + \frac{1}{3!} c_{\epsilon^{3}} \ \epsilon^{3} + \dots \end{split}$$

$$\begin{split} P_{mg}(k) &= c_{\delta} \ P_{\rm NL}(k) \\ &+ c_{\delta^2} \ \int \frac{d^3 \mathbf{q}}{(2\pi)^3} P\left(q\right) P\left(|\mathbf{k} - \mathbf{q}|\right) F_S^{(2)}\left(\mathbf{q}, \mathbf{k} - \mathbf{q}\right) + \frac{34}{21} \ c_{\delta^2} \ \sigma^2 \ P\left(k\right) \\ &+ c_{s^2} \ \int \frac{d^3 \mathbf{q}}{(2\pi)^3} P\left(q\right) P\left(|\mathbf{k} - \mathbf{q}|\right) F_S^{(2)}\left(\mathbf{q}, \mathbf{k} - \mathbf{q}\right) S\left(\mathbf{q}, \mathbf{k} - \mathbf{q}\right) \\ &+ 2 \ c_{s^2} \ P\left(k\right) \ \int \frac{d^3 \mathbf{q}}{(2\pi)^3} P\left(q\right) F_S^{(2)}\left(-\mathbf{q}, \mathbf{k}\right) S\left(\mathbf{q}, \mathbf{k} - \mathbf{q}\right) \\ &+ \frac{1}{2} \ c_{\delta^3} \ \sigma^2 \ P\left(k\right) + \frac{1}{3} \ c_{\delta s^2} \ \sigma^2 \ P\left(k\right) \\ &+ 2 \ c_{\psi} \ P\left(k\right) \ \int \frac{d^3 \mathbf{q}}{(2\pi)^3} P\left(q\right) \left[\frac{3}{2} D_S^{(3)}\left(\mathbf{q}, -\mathbf{q}, -\mathbf{k}\right) - 2 \ F_S^{(2)}\left(-\mathbf{q}, \mathbf{k}\right) D_S^{(2)}\left(\mathbf{q}, \mathbf{k} - \mathbf{q}\right) \right] \\ &+ 2 \ c_{st} \ P\left(k\right) \ \int \frac{d^3 \mathbf{q}}{(2\pi)^3} P\left(q\right) D_S^{(2)}\left(-\mathbf{q}, \mathbf{k}\right) S\left(\mathbf{q}, \mathbf{k} - \mathbf{q}\right) \\ &+ \frac{1}{2} \ c_{\delta \epsilon^2} \ \sigma_{\epsilon}^2 \ P\left(k\right) \ . \end{split}$$

All galaxies are leaving in halos

Spherical halo model

The 2 areas A & B are considered as local universe with proper scale factor evolution

(Gunn & Gott 1972)

Galaxy clusters

The number of virialized halos of a given mass at a given redshift

Galaxy clusters

The number of virialized halos of a given mass at a given redshift

More massive halos formed in large scale over densities

Conexión halo - materia

Excursion Set

Peak Background Split

Stellar formation and galaxy evolution is much more complex

Invert HOD statistics

Seminario ICN - Jueves 15 de Octubre 2020

Reverting the information

$$\mathcal{P}(M_h | L) = \frac{\mathcal{P}(L | M_h) \cdot \mathcal{P}(M_h)}{\mathcal{P}(L)}$$

POSTERIOR WE WANT TO EVALUATE

CONDITIONAL LUMINOSITY FUNCTION

CONVOLUTION OF HOD AND HMF

NORMALIZATION WHICH HAVE NOT IMPACT HERE

Halo Mass Function

1pt-statistics based on Press-Schechter and spherical collapse (Gunn & Gott) formalisms + Semi-analitical corrections

Halo Occupation Distribution

Link between the clustering of observed galaxies and the theoretical correlation function and the Halo profile

Associate a mean number of galaxies at a given halo mass

Each sample of galaxies has is proper HOD

$$\langle N(M) \rangle = \langle N_{cen}(M) \rangle + \langle N_{sat}(M) \rangle$$

Halo Occupation Distribution

Example of HOD parametrization

$$\langle N_{cen}(M) \rangle = \frac{1}{2} \left[1 + \operatorname{erf} \left(\frac{\log M - \log M_{min}}{\sigma_{\log M}} \right) \right] \qquad \langle N_{sat}(M) \rangle = \left(\frac{M - M_0}{M_1} \right)^{\alpha}$$

Conditional Luminosity Function (Yang, Mo, Van den Bosch 2009)

Conditional Luminosity Function

Conditional Luminosity Function

Satellite density as modified Schechter function:

$$\phi_{sat}(L \mid M_h) = \phi_s^* \left(\frac{L}{L_s^*}\right)^{(\alpha_s^*)} \exp\left\{-\left(\frac{L}{L_s^*}\right)^2\right\}$$

Follow the subhalo mass function

Central density as modified log-normal function:

$$\phi_{cen}(L \mid M_h) = \frac{1}{\sqrt{2\pi\sigma_c}} \exp\left\{-\frac{(\log L - \log L_c)^2}{2\sigma_c^2}\right\}$$

Canibal evol. Can be at the most one.

Reverting the information

$$\mathcal{P}(M_h | L) = \frac{\mathcal{P}(L | M_h) \cdot \mathcal{P}(M_h)}{\mathcal{P}(L)}$$

POSTERIOR WE WANT TO EVALUATE

CONDITIONAL LUMINOSITY FUNCTION

CONVOLUTION OF HOD AND HMF

NORMALIZATION WHICH HAVE NOT IMPACT HERE

Prior estimation

Joint Probability

Joint Probability

Posterior Results

Average Mass

Estimation of the mass using L In simulation

Gaussian filter at 10 Mpc

Gaussian filter at 10 Mpc

Reconstruction to enhance BAO peak

Displacements on density field

Reconstruction to enhance BAO peak

Baryonic Acoustic Oscillations Peak

BAO Detection in the correlation function of Luminous Red Galaxies

Mariana's talk on Saturday

Conclusions

Obtain non-linear local bias information using luminosity information in a probabilistic way

This method can be generalized to any statistical information connecting the tracer to the halo mass (for example density)

We can use this method in order to implement a redshift dependent reconstruction inside the large surveys

Different tracers

Luminous Red Galaxy

LRG

Emission Line Galaxy

ELG

Quasar QSO/AGN

Emission Line galaxies

Avila et al 2020

THANKS !

Halo Occupation Distribution

1 HALO TERM

$$\xi_{gg}(r) \propto \int d \log(M) \frac{dn}{d \log(M)} < N(M) > (< N(M) > -1) P_{NFW}(r | M)$$
$$+ \int d \log(M_1) \int d \log(M_2) < N(M_1) > . < N(M_2) > b^2 \xi_{mm}(r) \times$$
$$\times \frac{P_{NFW}(r_1 | M_1) dn}{d \log(M_1)} \frac{P_{NFW}(r_2 | M_2) dn}{d \log(M_2)}$$

2 HALO TERM

$$P_{NFW}(r \mid M) = \frac{\rho_{NFW}(r \mid M) \times 4\pi r^2 dr}{M}$$

Increase H₀ crisis

Increase H₀ crisis

eBOSS collaboration 2020 (in prep.)

2-point correlation function

We count the number of pairs of galaxies for each distance r

We compare with the number obtain for random distribution

$$\begin{aligned} & \text{Estimator} \\ & \xi(r) = \frac{N pairs(r) - N pairs_{rand}(r)}{N pairs_{rand}(r)} \end{aligned}$$

Quantity

$$P(r) = 4\pi r^2 dr \,.\,\bar{n} \left[1 + \xi(r)\right]$$

2-point correlation function

