Estudio sobre el flujo de muones con el detector de centelleo en Chiapas

Alumno: Victor Manuel Lopez Luna Asesora: Dra Karen Salomé Caballero Mora Co-asesor: Oscar Gustavo Morales Olivares

Facultad de Ciencias en Física y Matemáticas Universidad Autónoma de Chiapas

21 de noviembre de 2021

Objetivo General

1. Estudiar el flujo de muones atmosféricos en Tuxtla Gutiérrez con el detector de centelleo Escaramujo.

Objetivo General

1. Estudiar el flujo de muones atmosféricos en Tuxtla Gutiérrez con el detector de centelleo Escaramujo.

Objetivo General

1. Estudiar el flujo de muones atmosféricos en Tuxtla Gutiérrez con el detector de centelleo Escaramujo.

Objetivos Particulares

Estudiar la diferencia del flujo de muones atmosféricos día-noche.

Objetivo General

1. Estudiar el flujo de muones atmosféricos en Tuxtla Gutiérrez con el detector de centelleo Escaramujo.

- Estudiar la diferencia del flujo de muones atmosféricos día-noche.
 - Parametrización con series de Tiempo.

Objetivo General

1. Estudiar el flujo de muones atmosféricos en Tuxtla Gutiérrez con el detector de centelleo Escaramujo.

- Estudiar la diferencia del flujo de muones atmosféricos día-noche.
 - Parametrización con series de Tiempo.
- 2 Contribuir en mediciones del flujo de muones atmosféricos para corroborar la existencia de la Anomalía del Atlántico sur.

Objetivo General

1. Estudiar el flujo de muones atmosféricos en Tuxtla Gutiérrez con el detector de centelleo Escaramujo.

- Estudiar la diferencia del flujo de muones atmosféricos día-noche.
 - Parametrización con series de Tiempo.
- 2 Contribuir en mediciones del flujo de muones atmosféricos para corroborar la existencia de la Anomalía del Atlántico sur.
 - Colaboración con el grupo de la Universidad Nacional de Asunción (Paraguay).

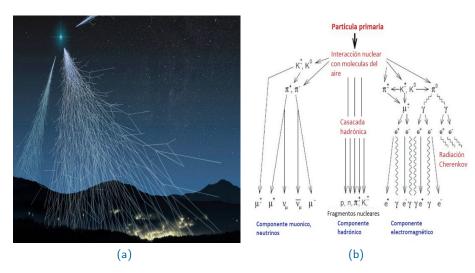


Figura: a) Partículas de alta energía al chocar con las moléculas de la atmósfera [3]. b) Chubasco atmosférico (EAS) con sus tres componentes[4].

Detección por Centelleo

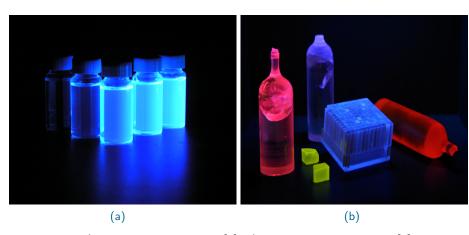


Figura: a) Liquidos centelladores [7]. b) Centelladores de Cristal [8].

Anómalia del atlantico sur

Región del atlántico sur donde la intensidad de radiación es más alta que otras regiones.

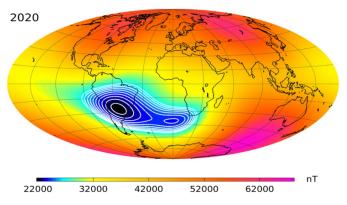


Figura: Anómalia del atlántico sur [13].

Detector Escaramujo

Detector Escaramujo

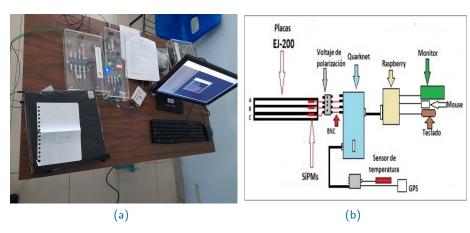


Figura: a) Detector Escarmujo instalado. b) Estrucura de como se encuentra ensamblada.

Placas Centelladoras

Figura: a) Placa centelladora de plástico [11]. b) placas EJ-200 forradas con papel EMI/Static (exterior) y Tyvek (interior), con dimensiones de $25 \times 25 \times 1$ cm3.

Es un fotomultplicador de Silicio.

Ventaja

- Son baratos en comparación con los PMT.
- Tiene la misma eficiencia que los PMT

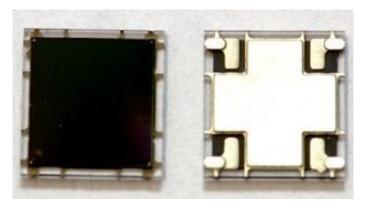


Figura: El SiPM (Fotomultiplicador de Silicio) MicroFC-60035-SMT [12].

Figura: Componentes básicos de Escaramujo.

El programa que permite modificar las configuraciones se MINICOM.

```
BF90B8EF B1 00 00 00 00 00 00 00 BF70C439 203046.039 090821 A 10 0 +0061
BF90B8F0 00 00 37 00 00 00 00 00 BF70C439 203046.039 090821 A 10 0 +0061
BF90B8F0 00 00 00 38 00 00 00 00 BF70C439 203046.039 090821 A 10 0 +0061
C04E5E8E AA 00 00 00 00 00 00 00 BF70C439 203046.039 090821 A 10 0 +0061
C04F5F8F 00 00 32 00 00 00 00 00 BF70C439 203046.039 090821 A 10 0 +0061
C061DC22 BC 00 00 00 00 00 00 00 BF70C439 203046.039 090821 A 10 0 +0061
C061DC23 00 00 28 00 00 00 00 00 BE70C439 203046.039 090821 A 10 0 +0061
C061DC24 00 00 00 21 00 00 00 08 BF70C439 203046.039 090821 A 10 0 +0061
C24DE328 AE 00 29 00 00 00 00 00 C0EE3C79 203047.047 090821 A 10 0 +0053
C2B5C016 B5 00 00 00 00 00 00 00 C26BB4B9 203048.039 090821 A 10 0 +0061
C2B5C016 00 00 3D 00 00 00 00 00 C26BB4B9 203048.039 090821 A 10 0 +0061
C2B5C017 00 00 00 3F 00 00 00 00 C26BB4B9 203048.039 090821 A 10 0 +0061
C461F125 A1 00 22 00 00 00 00 00 C3E92CF9 203049.047 090821 A 10 0 +0053
C511E788 BE 00 00 00 00 00 00 00 C3E92CF9 203049.047 090821 A 10 0 +0053
C511E789 00 00 29 00 00 00 00 00 C3E92CF9 203049.047 090821 A 10 0 +0053
C511E78A 00 00 00 22 00 00 00 00 C3E92CF9 203049.047 090821 A 10 0 +0053
C6CB4052 B3 00 33 00 00 00 00 00 C566A539 203050.039 090821 A 10 0 +0061
C6D417A3 B4 00 00 00 00 00 00 00 C566A539 203050.039 090821 A 10 0 +0061
C6D417A3 00 00 38 00 00 00 00 00 C566A539 203050.039 090821 A 10 0 +0061
C73D6EFF AC 00 2F 00 00 00 00 00 C6E41D79 203051.047 090821 A 10 0 +0053
C867A273 AF 00 00 00 00 00 00 00 C86195B9 203052.039 090821 A 10 0 +0053
C867A273 00 00 36 00 00 00 00 00 C86195B9 203052.039 090821 A 10 0 +0053
C8F957AD A4 00 00 00 00 00 00 00 C86195B9 203052.039 090821 A 10 0 +0062
C8E957AD 00 00 2B 00 00 00 00 00 C86195B9 203052.039 090821 A 10 0 +0062
C8F957AD 00 00 37 31 00 00 00 00 C86195B9 203052.039 090821 A 10 0 +0062
```

Figura: Formato que entrega el QuarkNet

Detector en Paraguay

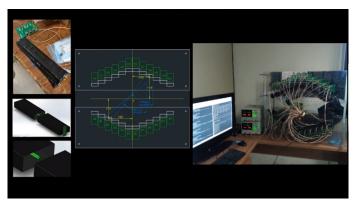


Figura: Detector en Paraguay en forma de rombo [14].

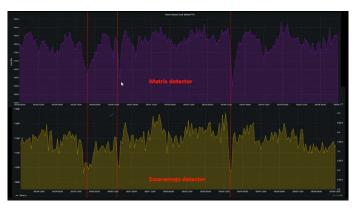


Figura: Comparación de Datos con escaramujo y la Matriz (detector de paraguay).

Mediciones

Mediciones

Figura: Mediciones.

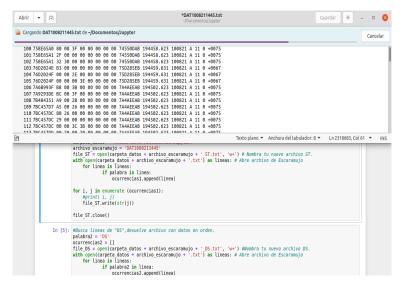


Figura: Análisis de Datos.

Resultados preliminares

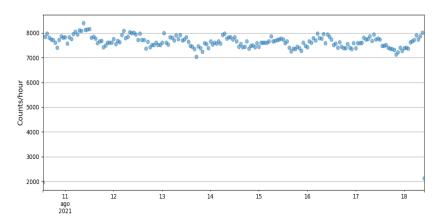


Figura: a) Separación de placas 10 cm.

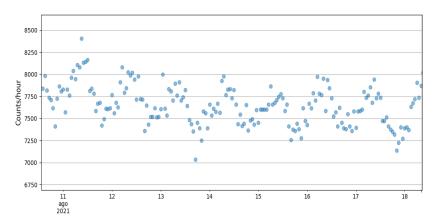


Figura: a) Separación de placas 10 cm.

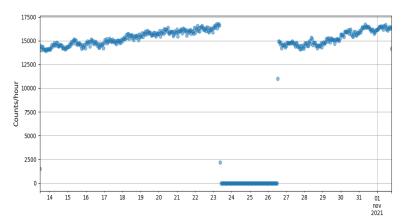


Figura: Sin separación de placas.

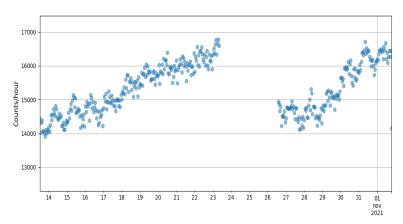


Figura: Sin separación de placas.

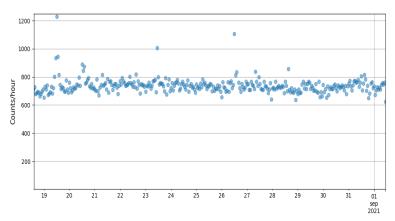


Figura: a) Separación de placas 60 cm con concreto en medio de las placas.

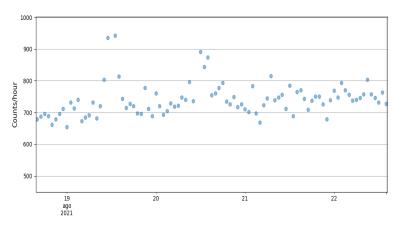
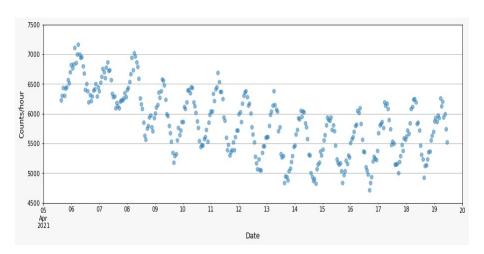
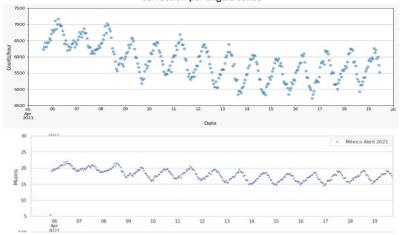




Figura: a) Separación de placas 60 cm con concreto en medio de las placas.

Lo que esperamos

Corrección por ángulo sólido

- Grupo de Paraguay
- Umbral alto (30 mV, ahora 10 mV)
- Falta por presión y temperatura

Trabajo que sigue

- Correción por ángulo sólido
- La corrección por temperatura y presión con base de datos.
- Calcular la aceptancia para ver la anomalia.
- Seguir realizando las mediciones con distintas separaciones de las placas.
- Seguir trabajando para obtener una parametrización de la variación del flujo muones día-noche con series de tiempo.
- Resolver los distintos problemas que vayan surgiendo.

Gracias wokol a walik

Bibliografia I

- Olive, K. A., et al. Review of particle Physics. Chin. Phys., C38, 090001, 2014. 1, 8.
- http://www.hap-astroparticle.org/img/cosmic-rays_ web-thumbnail.jpg
- https:
 //www.foronuclear.org/descubre-la-energia-nuclear/
 preguntas-y-respuestas/sobre-fisica-nuclear/
 de-donde-proceden-los-rayos-cosmicos/
- www.iteda.cnea.gov.ar/?q=node/28
- Frank G.Schroder RP3-News on Cosmic-Ray-Air Shower(Rappouteur talk on CRI) c.a 2019.

Bibliografia II

- A. Tavera Vázquez, Estudio de la componente muónica en chubascos de partículas, producidos por rayos cósmicos en la atmósfera, usando el experimento KASKADE-Grande, (2010), U.M.S.N.H.
- https://science.sckcen.be/en/Services/LRM/Scintillation
- https://tickle.utk.edu/smrc/
- https://www.hamamatsu.com/jp/en/product/optical-sensors/
 pmt/index.html
- https://www.nuclear-power.com/nuclear-engineering/
 radiation-detection/
 scintillation-counter-scintillation-detector/
 components-of-photomultiplier-tube/
- https://www.youtube.com/watch?v=5pcgay0wl0c

Bibliografia III

- Nicoleta Dinu, Silicon photomultipliers (SiPM), National Centre for Scientific Research (CNRS), National Institute of Nuclear and Particles Physics (IN2P3), Laboratory of Linear Accelerator (LAL), France
- https://doi.org/10.1186/s40623-020-01252-9
- Presentación de Dr. Jorge Molina, Universidad Nacional de Asunción
- https://es.wikipedia.org/wiki/Serie_temporal
- A First Course on Time Series Analysis Examples with SAS, Chair of Statistics, University of Wurzburg, March 20, 2011.

Gracias wokol a walik