Simulaciones para la caracterización del telescopio atmosférico Cherenkov M@TE

Josué Cuzco

Ibrahim Torres, Rodrigo Sacahuí

Noviembre 2021

ECF	=M.	U	SA	С

Proyecto M@TE

M@TE

Simulación de cascadas atmosféricas

Simulación del detector

Reconstrucción de energía

・ロン ・日 ・ ・ ヨン・

Monitoring At TeV Energies

Telescopio atmosférico Cherenkov (IACT) a instalarse en Parque Nacional de San Pedro Mártir (SPM), Baja California.

- ▶ 2830 msnm
- ► Clima favorable
- Noches oscuras

< □ > < 同 > < 回 > < Ξ > < Ξ

Monitoreo de fuentes en rayos gamma:

- ► Blazares
- ► Radio galaxias

Complementar monitoreo realizado por otros instrumentos:

- ► FACT, observaciones coordinadas
- ► HAWC

• • • • • • • • • • • •

Telescopio atmosférico Cherenkov/Imaging Atmospheric Cherenkov Telescope

Se observa la luz Cherenkov producida por partículas cargadas de cascadas atmosféricas iniciadas por rayos gama o rayos cósmicos.

Figura 1: Principio de detección de cascadas atmosféricas por luz Cherenkov.

Figura 2: Imagen producida por una cascada gama simulada.

A D > <
 A P >
 A

El diseño de M@TE se basa en el usado para FACT:

- ► Pixeles: 1440
- Sensores: fotomultiplicadores de silicio (SiPM)

Cambios implementados en M@TE:

- Sensores: SiPM SensL MicroJC
- Nuevos espejos hexagonales en disposición parabólica.

Image: A math a math

M@TE: Diseño (cont.)

Figura 3: Comparación de PDE de los Figura 4: Comparación de sensores de M@TE y FACT. reflectividad media de los espejos de M@TE y FACT.

ECFM, USAC

Proyecto M@TE

Noviembre 2021 7 / 14

Software de simulación: CORSIKA 77410.

Modelos de interacción: QGSJET 01C para altas energías, GHEISHA 2002 para bajas energías.

Parámetros:

Partículas	Fotones
Rango de energía	100 GeV - 10 TeV
Pendiente del espectro	-1.5
Rango de λ Cherenkov	205 nm - 700 nm
Nivel de observación	2830 m
Área simulada	810000 <i>m</i> ² (cuadrada)
Coordenadas	30°54'43"N, 115°30'04"W
Campo magnético	24.4304 μT (N), 37.5714 μT (\downarrow)
Modelo atmósferico	MODTRAN: La Palma, verano

Tabla 1: Parámetros de simulación para cascadas atmosféricas.

Image: A math the second se

Simulación de cascadas atmosféricas (cont.)

La biblioteca generada cuenta con 19.66 M de cascadas.

Figura 5: Distribución de energía simulada. Bines de 100 GeV.

Image: A math a math

Software de simulación: MARS (MAGIC Analysis Reconstruction Software).

Etapas:

- Cámara y reflector
- Calibración de señales
- Parámetros de imagen

En este software se integran los nuevos sensores y espejos.

De las 19.66 M de cascadas gamma, ${\sim}4.4$ M de eventos activan el detector (22.4 %).

A D A A B A A B A A

Umbral de energía

Máximo de la distribución de energía de eventos detectados.

$$\frac{dN}{dE} = \frac{dN}{d\log E} \frac{1}{E\ln 10} \tag{1}$$

Figura 6: Distribución de energía con bines logarítmicos, rango de simulación completo. Figura 7: Distribución de energía con bines logarítmicos, 100 GeV \leq E \leq 300 GeV.

4 A 1

Software: Ranger.

Algoritmo: Random Forest.

Variables de entrenamiento: Size, Width, Length, Leakage1, SlopeLong, TimeSpreadWeighted.

División de datos: 50 % entrenamiento, 50 % prueba.

A B > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Reconstrucción de energía (cont.)

Figura 8: Energía verdadera y energía reconstruida.

Figura 9: Diferencia entre energía verdadera y energía reconstruida.

Image: A math a math

Se generó una biblioteca de simulaciones de cascadas atmosféricas iniciadas por rayos gamma.

Se adaptó la simulación del detector con las nuevas características de M@TE.

Se identificó el umbral de energía en 130 GeV para un espectro de pendiente -1.5.

Se utilizó un algoritmo Random Forest para realizar reconstrucción de energía de rayos gamma.

< □ > < 同 > < 回 > < Ξ > < Ξ