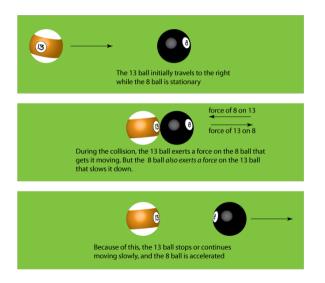
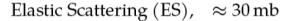
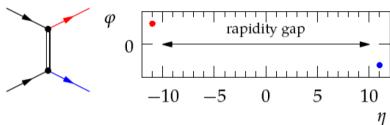
Measuring intact protons at the LHC: from the odderon discovery to the search for axion-like particles


Christophe Royon
University of Kansas, Lawrence, USA
UNAM, Mexico

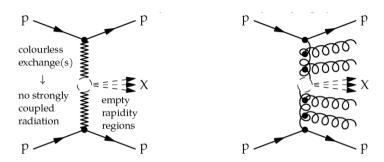
September 22 2021

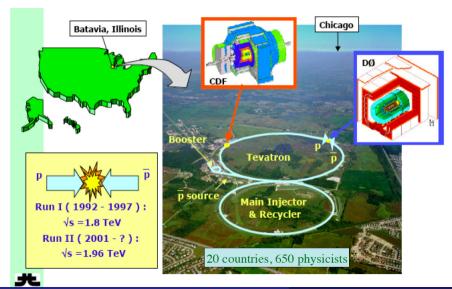
- Elastic interactions and introduction to the Odderon
- D0 $p\bar{p}$ and TOTEM pp data
- The odderon discovery
- Study of quartic anomalous couplings and search for axion-like particles
- Ultra Fast Silicon detectors



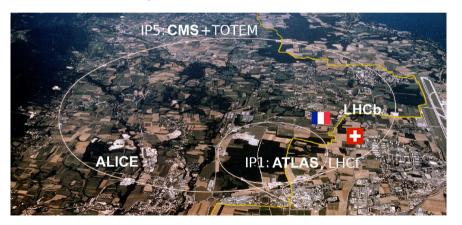

What is elastic scattering? The pool game...

- We want to study "elastic" collisions between protons and proton-antiprotons
- In high energy physics: pp o pp and $p\bar{p} o p\bar{p}$
- In these interactions, each proton/antiproton remains intact after interaction but are scattered at some angles and can lose/gain some momentum as in the pool game

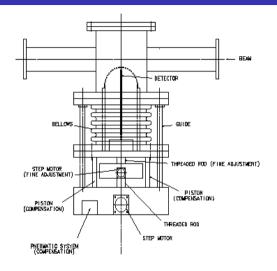

What do we want to study?


- ullet We want to study elastic interactions: pp o pp or par p o par p
- These are very clean events, where nothing is produced outside the two protons
- How to detect/measure these events? We need to detect the intact protons after interaction!
- Interactions explained by the exchange of a colorless object (≥ 2 gluons, photon, etc...)
 between the two protons

How to explain the fact that protons can be intact?

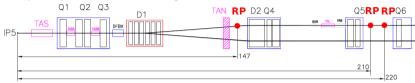

- Quarks/gluons radiate lots of gluons when one tries to separate them (confinement)
- Gluons exchange color, interact with other gluons in the proton and in that case protons are destroyed in the final state
- In order to explain how protons can remain intact: we need colorless exchanges, or at least 2 gluons to be exchanged

$p\bar{p}$ interactions: the Tevatron



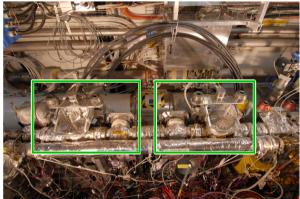
pp interactions: The Large Hadron Collider at CERN

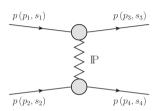
- Large Hadron Collider at CERN: proton proton collider with 2.76, 7, 8 and 13 TeV center-of-mass energy
- Circonference: 27 km; Underground: 50-100 m


Which tools do we have? Roman Pot detectors

- We use special detectors to detect intact protons/ anti-protons called Roman Pots
- These detectors can move very close to the beam (up to 3σ) when beam are stable so that protons scattered at very small angles can be measured

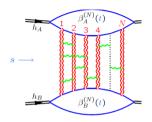
Detection


- o dipoles (D): bending
- quadrupoles (Q): (de)focusing

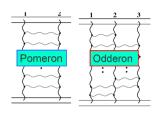

- But why are the protons/anti-protons not in the beam (which would prevent detection)?
- As we saw in the pool game, p or \bar{p} are scattered at small angles and thus can be detected in the dedicated roman pot detectors
- NB: in non-elastic diffractive case with some particles produced in CMS $pp \to pXp$, p and \bar{p} lose part of their energy and we use the LHC/Tevatron magnets as a spectrometer p/\bar{p} at smaller v, so they have a smaller bending radius than the p/\bar{p} from the beam

Roman Pot detectors at the LHC

The odderon in a nutshell


- Let us assume that elastic scattering can be due to exchange of colorless objects: Pomeron and Odderon
- Charge parity C: Charge conjugation changes the sign of all quantum charges

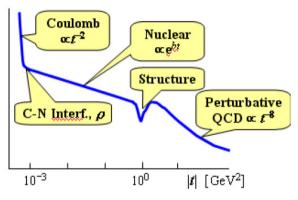
- Pomeron and Odderon correspond to positive and negative C parity: Pomeron is made of two gluons which leads to a +1 parity whereas the odderon is made of 3 gluons corresponding to a -1 parity
- Scattering amplitudes can be written as:


$$A_{pp} = Even + Odd$$

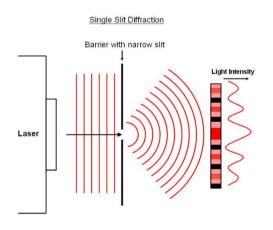
 $A_{p\bar{p}} = Even - Odd$

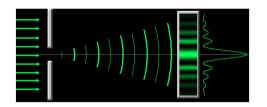
• From the equations above, it is clear that observing a difference between pp and $p\bar{p}$ interactions would be a clear way to observe the odderon

What is the odderon? The QCD picture

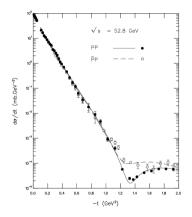


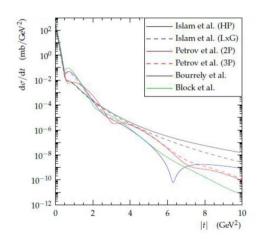
- Multi-gluon exchanges in hadron-hadron interactions in elastic pp interactions (Bartels-Kwiecinski-Praszalowicz)
- From B. Nicolescu: The Odderon is defined as a singularity in the complex plane, located at J=1 when t=0 and which contributes to the odd crossing amplitude


- Leads to contributions on 3,... gluon exchanges in terms of QCD for the perturbative odderon
- Colorless C-odd 3-gluon state (odderon) predicts differences in elastic $d\sigma/dt$ for pp and $p\bar{p}$ interactions since it corresponds to different amplitudes/ interferences

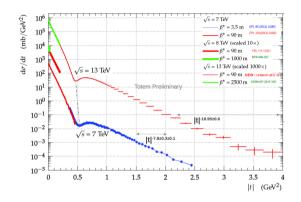

Measurement of elastic scattering at Tevatron and LHC

- Study of elastic pp → pp reaction: exchange of momentum between the two protons which remain intact
- Measure intact protons scattered close to the beam using Roman Pots installed both by D0 and TOTEM collaborations
- From counting the number of events as a function of |t| (4-momentum transferred square at the proton vertex measured by tracking the protons), we get $d\sigma/dt$


Why do we see maxima (bumps) and minima (dips): analogy with optics

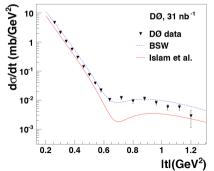

- |t| distribution expected to show maxima (bump) and minima (dip)
- Analogy with optics: analogous to the pattern of dips and bumps that can be seen when shining light against a slit (diffraction)

Why has the odderon not been observed yet? Why is it so elusive?


- The situation is not that simple: elastic scattering at low energies can be due to exchanges of additional particles to pomeron/odderon: ρ, ω, ϕ , reggeons...
- How to distinguish between all these exchanges? Not easy...
- At ISR energies, there was already some indication of a possible difference between pp and $p\bar{p}$ interactions, differences of about 3σ between pp and $p\bar{p}$ interactions but this was not considered to be a clean proof of the odderon because of these additional reggeon, meson exchanges at low \sqrt{s}

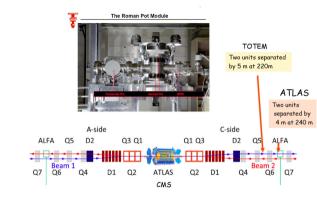
What is the expected situation at the LHC?

- Expected elastic $d\sigma/dt$ before LHC measurements
- Many different predictions including many possible contributions at high |t|, such as pomeron, reggeon, mesons (ω, ϕ) whereas other predictions mentioned that, at high energies, we should be more asymptotical and pomeron dominated
- Almost nobody thought about the odderon (except a few theorists such as Martynov, Nicolescu...)

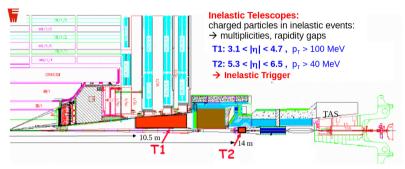

Are we in the asymptotic regime at the LHC?

- Contrary to what some models expected before LHC, the elastic cross section is smooth: we do not see reggeons, mesons...!
- Effects of reggeon, meson exchanges are negligible at LHC energies: we can concentrate on pomeron/odderon studies!
- We can directly look for the existence of the odderon by comparing pp and $p\bar{p}$ elastic cross sections at very high energies: 1.96 TeV (Tevatron), 2.76, 7, 8, 13 (LHC)

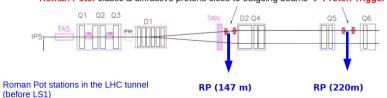
D0 elastic $p\bar{p} \ d\sigma/dt$ cross section measurements



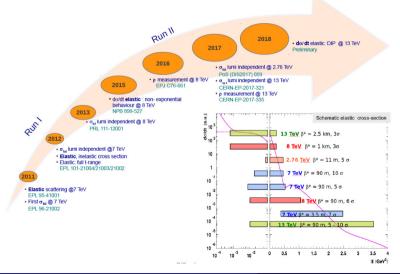
- D0 collected elastic pp̄ data with intact p and p̄ detected in the Forward Proton Detector with 31 nb⁻¹ Phys. Rev. D 86 (2012) 012009
- Measurement of elastic $p\bar{p}~d\sigma/dt$ at 1.96 TeV for 0.26 <|t|< 1.2 GeV²


Elastic cross section measurements at the LHC: detecting protons!

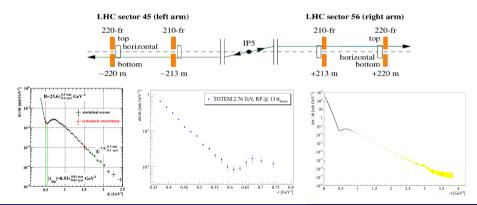
- Measurement of pp → pp elastic cross section by detecting intact protons and vetoing on activity in the main CMS detector
- TOTEM installed vertical Roman Pot detectors at 220 m from CMS



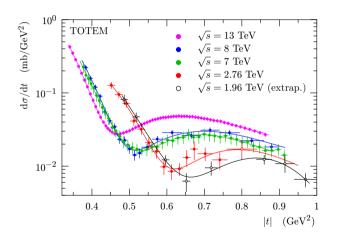
• Trigger on elastic collisions using proton in back-to-back configurations: Up (Down) on one side, Down (Up) on the other side


Forward coverage in CMS-TOTEM

Roman Pots: elastic & diffractive protons close to outgoing beams → Proton Trigger



TOTEM cross section measurements



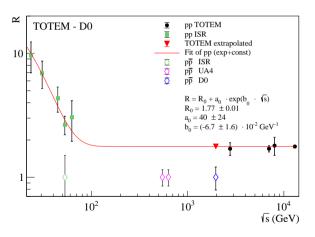
TOTEM elastic $pp \ d\sigma/dt$ cross section measurements

- Elastic $pp \ d\sigma/dt$ measurements: tag both intact protons in TOTEM Roman Pots 2.76, 7, 8 and 13 TeV
- Very precise measurements at 2.76, 7, 8 and 13 TeV: Eur. Phys. J. C 80 (2020) no.2, 91;
 EPL 95 (2011) no. 41004; Nucl. Phys. B 899 (2015) 527; Eur. Phys. J. C79 (2019) no.10, 861



Strategy to compare pp and $p\bar{p}$ data sets

- In order to identify differences between pp and $p\bar{p}$ elastic $d\sigma/dt$ data, we need to compare TOTEM measurements at 2.76, 7, 8, 13 TeV and D0 measurements at 1.96 TeV
- All TOTEM $d\sigma/dt$ measurements show the same features, namely the presence of a dip and a bump in data, whereas D0 data do not show this feature


Reference points of elastic $d\sigma/dt$

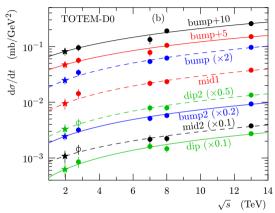
• Define 8 characteristic points of elastic pp $d\sigma/dt$ cross sections (dip, bump...) that are feature of elastic pp interactions

- Determine how the values of |t| and $d\sigma/dt$ of characteristic points vary as a function of \sqrt{s} in order to predict their values at 1.96 TeV
- We use data points closest to those characteristic points (avoiding model-dependent fits)
- Data bins are merged in case there are two adjacent dip or bump points of about equal value
- This gives a distribution of t and $d\sigma/dt$ values as a function of \sqrt{s} for all characteristic points

Bump over dip ratio

- Bump over dip ratio measured for pp interactions at ISR and LHC energies
- Bump over dip ratio in pp elastic collisions: decreasing as a function of \sqrt{s} up to ~ 100 GeV and flat above
- D0 $p\bar{p}$ shows a ratio of 1.00 ± 0.21 given the fact that no bump/dip is observed in $p\bar{p}$ data within uncertainties: more than 3σ difference between pp and $p\bar{p}$ elastic data (assuming flat behavior above $\sqrt{s}=100\,\text{GeV}$)

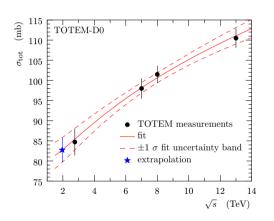

Fits of t and $d\sigma/dt$ values for reference points


• Fit of all reference points using the following formulae:

$$|t| = a \log(\sqrt{s}[\text{TeV}]) + b$$
$$(d\sigma/dt) = c\sqrt{s}[\text{TeV}] + d$$

- The same form is used for the 8 reference points (this is an assumption and works to describe all characteristic points): this simple form is chosen since we fit at most 4 points, corresponding to $\sqrt{s}=2.76,\,7,\,8$ and 13 TeV
- We also tried alternate parametrizations such as $|t| = e(s)^f$ leading to compatible results well within 1σ
- ullet Leads to very good χ^2 per dof, better than 1 for most of the fits
- ullet Extrapolating the fits leads to predictions for |t| and $d\sigma/dt$ at 1.96 TeV for each characteristic point

Variation of t and $d\sigma/dt$ values for reference points



$$|t| = a \log(\sqrt{s} [\text{TeV}]) + b$$
 $(d\sigma/dt) = c\sqrt{s} [\text{TeV}] + d$

Fits of TOTEM extrapolated characteristic points at 1.96 TeV

- The last step is to predict the *pp* elastic cross sections at the same *t* values as measured by D0 in order to make a direct comparison
- Fit the reference points extrapolated to 1.96 TeV from TOTEM measurements using a double exponential fit ($\chi^2 = 0.63$ per dof): $h(t) = a_1 e^{-b_1|t|^2 c_1|t|} + d_1 e^{-f_1|t|^3 g_1|t|^2 h_1|t|}$
 - This function is chosen for fitting purposes only
 - Low-t diffractive cone (1st function) and asymmetric structure of bump/dip (2nd function)
 - The two exponential terms cross around the dip, one rapidly falling and becoming negligible in the high *t*-range where the other term rises above the dip
- Systematic uncertainties evaluated from an ensemble of MC experiments in which the
 cross section values of the eight characteristic points are varied within their Gaussian
 uncertainties. Fits without a dip and bump position matching the extrapolated values
 within their uncertainties are rejected, and slope and intercept constraints are used to
 discard unphysical fits
- Such formula leads also to a good description of TOTEM data in the dip/bump region at 2.76, 7, 8 and 13 TeV

Relative normalization between D0 measurement and extrapolated TOTEM data: total *pp* cross section at 1.96 TeV

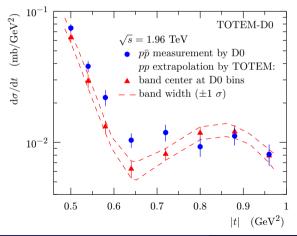
- Differences in normalization taken into account by adjusting TOTEM and D0 data sets to have the same cross sections at the optical point $d\sigma/dt(t=0)$ (NB: OP cross sections expected to be equal if there are only C-even exchanges)
- Predict the pp total cross section from extrapolated fit to TOTEM data ($\chi^2 = 0.27$)

$$\sigma_{tot} = a_2 \log^2 \sqrt{s} [\text{TeV}] + b_2$$

Other parametrizations lead to same results

ullet Leads to estimate of pp σ_{tot} =82.7 \pm 3.1 mb at 1.96 TeV

Relative normalization between D0 measurement and extrapolated TOTEM data: Rescaling TOTEM data


- Adjust 1.96 TeV $d\sigma/dt(t=0)$ from extrapolated TOTEM data to D0 measurement
- From TOTEM $pp \ \sigma_{tot}$, obtain $d\sigma/dt(t=0)$:

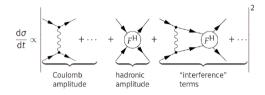
$$\sigma_{tot}^2 = \frac{16\pi(\hbar c)^2}{1+\rho^2} \left(\frac{d\sigma}{dt}\right)_{t=0}$$

- Assuming $\rho=0.145$, the ratio of the imaginary and the real part of the elastic amplitude, as taken from COMPETE extrapolation
- ullet This leads to a TOTEM $d\sigma/dt(t=0)$ at the OP of 357.1 \pm 26.4 mb/GeV²
- D0 measured the optical point of $d\sigma/dt$ at small t: 341±48 mb/GeV²
- ullet TOTEM data rescaled by 0.954 \pm 0.071
- NB: We do not claim that we performed a measurement of $d\sigma/dt$ at the OP at t=0 (it would require additional measurements closer to t=0), but we use the two extrapolations simply in order to obtain a common and somewhat arbitrary normalization point

Predictions at $\sqrt{s} = 1.96$ TeV

- ullet Reference points at 1.96 TeV (extrapolating TOTEM data) and 1σ uncertainty band
- Comparison with D0 data

Comparison between D0 measurement and extrapolated TOTEM data

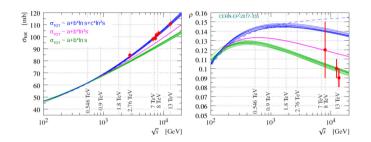

• χ^2 test to examine the probability for the D0 and TOTEM $d\sigma/dt$ to agree

$$\chi^2 = \sum_{i,j} [(T_i - D_i)C_{ij}^{-1}(T_j - D_j)] + \frac{(A - A_0)^2}{\sigma_A^2} + \frac{(B - B_0)^2}{\sigma_B^2}$$

where T_j and D_j are the j^{th} $d\sigma/dt$ values for TOTEM and D0, C_{ij} the covariance matrix, A(B) the nuisance parameters for scale (slope) with $A_0(B_0)$ their nominal values

- Slopes constrained to their measured values (pp to $p\bar{p}$ integrated elastic cross section ratio (dominated by the exp part) becomes 1 in the limit $\sqrt{s} \to \infty$ which means similar slopes at small |t| as observed in data)
- Test using the difference of the integrated cross section in the examined |t|-range with its fully correlated uncertainty, and the experimental and extrapolated points with their covariance matrices
- Given the constraints on the OP normalization and logarithmic slopes of the elastic cross sections, the χ^2 test with six degrees of freedom yields the *p*-value of 0.00061, corresponding to a significance of 3.4 σ

Combination with additional TOTEM measurement: ρ measurement



• Measure elastic scattering at very low t: Coulomb-Nuclear interference region

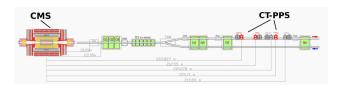
$$\frac{d\sigma}{dt} \sim |A^C + A^N(1 - \alpha G(t))|^2$$

- The differential cross section is sensitive to the phase of the nuclear amplitude
- In the CNI region, both the modulus and the phase of the nuclear amplitude can be used to determine $\rho = \frac{Re(A^N(0))}{Im(A^N(0))}$ where the modulus is constrained by the measurement in the hadronic region and the phase by the t dependence

A previous measurement by TOTEM: ρ and σ_{tot} measurements as an indication for odderon

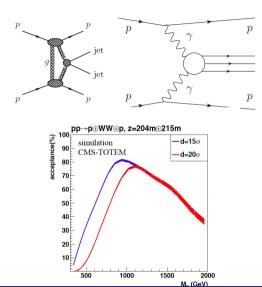
- ρ is the ratio of the real to imaginary part of the elastic amplitude at t=0
- Using low |t| data in the Coulomb-nuclear interference region, measurement of ρ at 13 TeV: $\rho = 0.09 \pm 0.01$ (EPJC 79 (2019) 785)
- ullet Combination of the measured ho and σ_{tot} values not compatible with any set of models without odderon exchange (COMPETE predictions above as an example)
- This result can be explained by the exchange of the Odderon in addition to the Pomeron Measuring intact protons at the LHC: from the odderon discovery to the search for axion-like particles

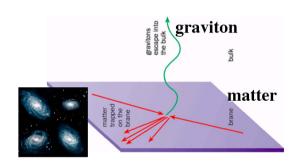
Comparison between D0 measurement and extrapolated TOTEM data


- ullet Combination with the independent evidence of the odderon found by the TOTEM Collaboration using ho and total cross section measurements at low t in a completely different kinematical domain
- For the models included in COMPETE, the TOTEM ρ measurement at 13 TeV provided a 3.4 to 4.6 σ significance, to be combined with the D0/TOTEM result
- \bullet The combined significance ranges from **5.3 to 5.7** σ depending on the model
- Models without colorless C-odd gluonic compound are excluded including the Durham model and different sets of COMPETE models (blue, magenta and green bands on the previous slide)

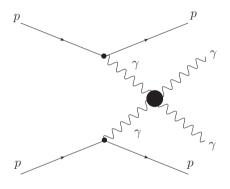
33 / 55

Searching for beyond standard model physics using intact protons

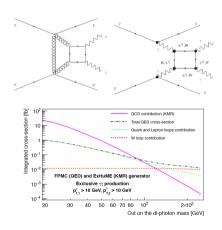

What is the CMS-TOTEM Precision Proton Spectrometer (CT-PPS)?


- Joint CMS and TOTEM project: https://cds.cern.ch/record/1753795
- LHC magnets bend scattered protons out of the beam envelope
- ullet Detect scattered protons a few mm from the beam on both sides of CMS: 2016-2018, $\sim 115~{
 m fb^{-1}}$ of data collected
- Similar detectors: ATLAS Forward Proton (AFP)

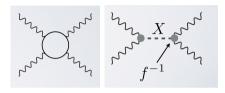
Detecting intact protons in ATLAS/CMS-TOTEM at the LHC


- Tag and measure protons at ±210 m: AFP (ATLAS Forward Proton), CT-PPS (CMS TOTEM - Precision Proton Spectrometer)
- All diffractive cross sections computed using the Forward Physics Monte Carlo (FPMC)
- Complementarity between low and high mass diffraction (high and low cross sections): special runs at low luminosity (no pile up) and standard luminosity runs with pile up

Looking for extra-dimensions in the universe


- We live in a 4-dimensional space: space-time continuum
- Gravity might live in extra-dimensions: this is idea is being explored at the LHC by looking for new couplings between particles and production of new particles
- If discovered at the LHC, this might lead to major changes in the way we see the world

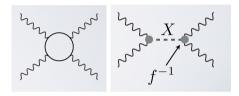
Search for new $\gamma\gamma\gamma\gamma$ couplings using $\gamma\gamma$ and two intact protons


- Search for production of two photons and two intact protons in the final state: $pp \rightarrow p\gamma\gamma p$
- Number of events predicted to be increased by extra-dimensions, composite Higgs models
- Discovering those extra-dimensions would be a very fundamental discovery in physics
- Look in other channels: WW, ZZ, $Z\gamma$, $t\bar{t}$..

$\gamma\gamma$ exclusive production: SM contribution

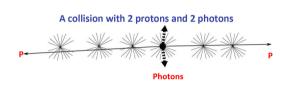
- QCD production dominates at low $m_{\gamma\gamma}$, QED at high $m_{\gamma\gamma}$
- Important to consider W loops at high $m_{\gamma\gamma}$
- At high masses (> 200 GeV), the photon induced processes are dominant
- Conclusion: Two photons and two tagged protons means photon-induced process

Motivations to look for quartic $\gamma\gamma$ anomalous couplings



- ullet Two effective operators and two different couplings at low energies ζ
- \bullet $\gamma\gamma\gamma\gamma$ couplings can be modified in a model independent way by loops of heavy charge particles

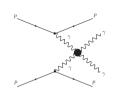
$$\zeta_1 = \alpha_{em}^2 Q^4 m^{-4} N c_{1,s}$$

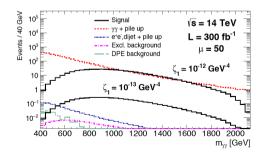

where the coupling depends only on Q^4m^{-4} (charge and mass of the charged particle) and on spin, $c_{1,s}$ depends on the spin of the particle This leads to ζ_1 of the order of 10^{-14} - 10^{-13}

Motivations to look for quartic $\gamma\gamma$ anomalous couplings

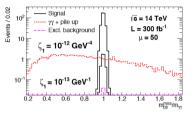
- Two effective operators at low energies
- ζ_1 can also be modified by neutral particles at tree level (extensions of the SM including scalar, pseudo-scalar, and spin-2 resonances that couple to the photon) $\zeta_1 = (f_s m)^{-2} d_{1,s}$ where f_s is the $\gamma \gamma X$ coupling of the new particle to the photon, and $d_{1,s}$ depends on the spin of the particle; for instance, 2 TeV dilatons lead to $\zeta_1 \sim 10^{-13}$

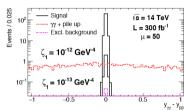
So what is pile up at LHC?




can be faked by one collision with 2 photons and protons from different collisions

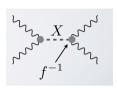
- The LHC collides packets of protons
- Due to high number of protons in one packet, there can be more than one interaction between two protons when the two packets collide
- Typically up to 50 pile up events

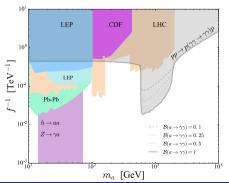

Search for quartic $\gamma\gamma$ anomalous couplings



- • Search for $\gamma\gamma\gamma\gamma$ quartic anomalous couplings
- Couplings predicted by extra-dim, composite Higgs models
- Analysis performed at hadron level including detector efficiencies, resolution effects, pile-up...
- Anomalous coupling events appear at high di-photon masses
- S. Fichet, G. von Gersdorff, B. Lenzi, C.R., M. Saimpert ,JHEP 1502 (2015) 165

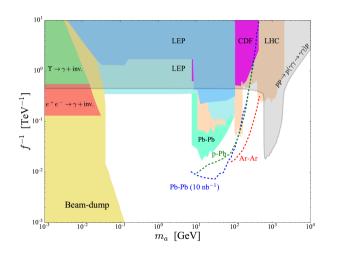
Search for quartic $\gamma\gamma$ anomalous couplings



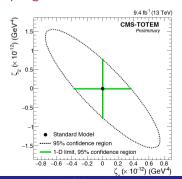


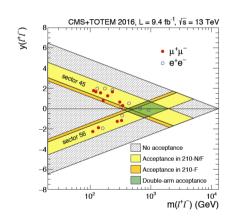
Cut / Process	Signal (full)	Signal with (without) f.f (EFT)	Excl.	DPE	DY, di-jet + pile up	$\gamma\gamma$ + pile up
$[0.015 < \xi_{1,2} < 0.15,$ $p_{\text{T1},(2)} > 200, (100) \text{ GeV}]$	65	18 (187)	0.13	0.2	1.6	2968
$m_{\gamma\gamma} > 600 \text{ GeV}$	64	17 (186)	0.10	0	0.2	1023
$[p_{T2}/p_{T1} > 0.95,$ $ \Delta \phi > \pi - 0.01]$	64	17 (186)	0.10	0	0	80.2
$\sqrt{\xi_1 \xi_2 s} = m_{\gamma \gamma} \pm 3\%$	61	16 (175)	0.09	0	0	2.8
$ y_{\gamma\gamma} - y_{pp} < 0.03$	60	12 (169)	0.09	0	0	0

- No background after cuts for 300 fb⁻¹: sensitivity up to a few 10⁻¹⁵, better by 2 orders of magnitude with respect to "standard" methods
- Exclusivity cuts using proton tagging needed to suppress backgrounds (Without exclusivity cuts using CT-PPS: background of 80.2 for 300 fb⁻¹)

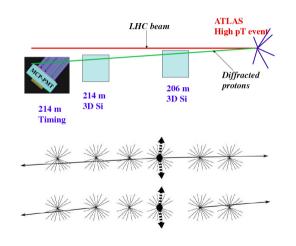

Search for axion like particles

- Production of ALPs via photon exchanges and tagging the intact protons in the final state complementary to the usual search at the LHC (Z decays into 3 photons): sensitivity at high ALP mass, C. Baldenegro, S. Fichet, G. von Gersdorff, C. Royon, ArXiv 1803.10835, JHEP 1806 (2018) 131
- Complementarity with Pb Pb running: sensitivity to low mass diphoton, low luminosity but cross section increased by Z^4

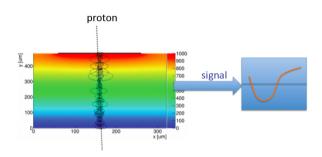

Search for axion like particles: complementarity with heavy ion runs



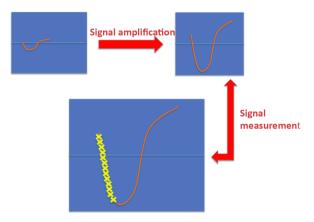
- Production of ALPs via photon exchanges in heavy ion runs:
 Complementarity to pp running
- Sensitivity to low mass ALPs: low luminosity but cross section increased by Z⁴, C. Baldenegro, S. Hassani, C.R., L. Schoeffel, ArXiv:1903.04151
- Similar gain of three orders of magnitude on sensitivity for $\gamma\gamma\gamma Z$, $\gamma\gamma WW$, $\gamma\gamma ZZ$, etc, couplings in pp collisions


Evidence for quasi-exclusive dilepton production and 1st search for quartic $\gamma\gamma\gamma\gamma$ anomalous couplings (CMS)

- 20 quasi-exclusive dilepton production in CMS with one tagged proton
- 1st search for quartic $\gamma\gamma\gamma\gamma$ anomalous couplings in CMS

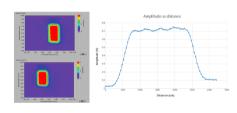


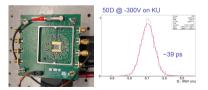
Additional method to remove pile up: Measuring proton time-of-flight


- Measure the proton time-of-flight in order to determine if they originate from the same interaction as the selected photon
- Typical precision: 10 ps means 2.1 mm
- Idea: use ultra-fast Si detectors (signal duration of ~few ns and possibility to use fast sampling to reconstruct full signal)

Timing measurements in Particle Physics

- Proton going through a detector (for instance scintillator, Silicon) emits a signal
- Measure this signal using an oscilloscope, or some electronics

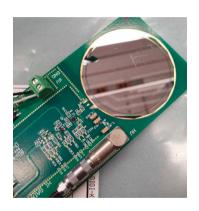

Signal analysis



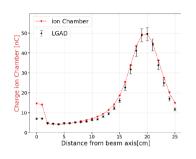
- Amplify the signal
- Very fast digitization of the signal: measure many points on the fast increasing signal as an example
- Allows reconstructing both the shape and amplitude of signal
- Leads to precise timing measurements (using for instance time when signal starts), and energy/type of particle measurements

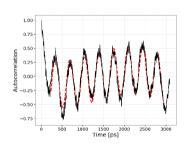
Test stand at the University of Kansas

Example of fast timing measurements using lasers



- ◆ Visualize pixels from Si detectors: Pixel size: ~3 mm
- ullet Test timing detectors at Fermilab: Timing resolution per layer of Si detector: \sim 39 ps
- The main idea is to reconstruct the full signal by performing very fast sampling → Many applications


51 / 55


Measuring cosmic ray in space: the AGILE project

- We want to measure the type of particles (p, He, Fe, Pb, ...) and at the same time their energies
- Analysis of cosmic ray particles: using a cube sat, cheap to be sent into space
- Use similar technics: measure the signal (Bragg peak) where the particle stops in a ultra-fast Si detector
- Allows extracting type/energy of particles: project in collaboration with NASA, to be launched in Spring 2022, https://arxiv.org/abs/2103.00613

Tests performed at St Luke hospital, University of Dublin, Ireland

- Measurement of charge deposited in Si detector compared to standard measurement using an ion chamber: good correlation
- Our detectors see in addition the beam structure (periodicity of the beam of \sim 330 ps, contrary to a few seconds for the ion chamber): measure single particles from the beam
- Fundamental to measure instantaneous doses for high intensity proton therapy as example
- For more details: https://arxiv.org/abs/2101.07134

Conclusion

- Detailed comparison between $p\bar{p}$ (1.96 TeV from D0) and pp (2.76, 7, 8, 13 TeV from TOTEM) elastic $d\sigma/dt$ data FERMILAB-PUB-20-568-E; CERN-EP-2020-236, accepted in PRL
- pp and $p\bar{p}$ cross sections differ with a significance of 3.4 σ in a model-independent way and thus provides evidence that the Colorless C-odd gluonic compound i.e. the odderon is needed to explain elastic scattering at high energies
- When combined with the ρ and total cross section result at 13 TeV, the significance is in the range 5.3 to 5.7 σ and thus constitutes the first experimental observation of the odderon: Major discovery at CERN/Tevatron
- PPS allows probing quartic anomalous couplings with unprecedented precision: sensitivity to composite Higgs, extra-dimension models, axion-like particles
- Development of fast timing detectors for HEP and applications in medicine, cosmic-ray physics

We need to look everywhere! For instance using intact protons...

