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• Recap from this morning.

• Phase transitions for mesons.

• Photon emission by sQGP.

• Implications for HIC.

• A new mechanism for quark energy loss.

• Remarks and concluding thoughts.
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The QCD challenge

• QCD remains a challenge after 36 years!

• No analytic and truly systematic methods.

• Lattice is good for static properties, but 
not for real-time physics...

• ... and for a theorist it is a black box.

• A string reformulation might help.

• Topic of this talk -- with focus on QGP.



• Certain quantitative observables (eg. T=0 spectrum) 
will require going beyond supergravity.

• However, certain predictions may be universal 
enough to apply in certain regimes. 

The QCD challenge

• Problem: Dual of QCD is inaccessible within SUGRA.

• Good example: Policastro, Son & Starinets ’01
Kovtun, Son & Starinets ‘03
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Exploit two universal properties

BHDeconfined plasma
Witten ‘98



Universality and Scaling in AdS/CFT with Flavour

This is a beautiful paper that I very much enjoyed reading. I will be happy to

recommend its publication provided the authors can clarify the precise meaning of

the operator on the r.h.s of eq. (4.6).

This operator is not gauge-invariant in the five-dimensional gauge theory, since the

left- and right-handed quarks live at different values of x4. If it is to be understood as

an operator in the effective four-dimensional theory, then what is the gauge-invariant

five-dimensional operator it descends from?

An additional minor point is that, with the definition of χg just above eq. (1.1),

which is the usual one, I believe the numerical factor in the numerator of (1.1) must

be a 4, not a 2. Similarly, there is a factor of 1/2 missing on the right-most term of

eq. (2.6).
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Glueballs

Mesons

Universality and Scaling in AdS/CFT with Flavour

This is a beautiful paper that I very much enjoyed reading. I will be happy to

recommend its publication provided the authors can clarify the precise meaning of
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Universality and Scaling in AdS/CFT with Flavour

This is a beautiful paper that I very much enjoyed reading. I will be happy to

recommend its publication provided the authors can clarify the precise meaning of
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Phase transitions for mesons
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Universality and Scaling in AdS/CFT with Flavour

This is a beautiful paper that I very much enjoyed reading. I will be happy to

recommend its publication provided the authors can clarify the precise meaning of

the operator on the r.h.s of eq. (4.6).

This operator is not gauge-invariant in the five-dimensional gauge theory, since the

left- and right-handed quarks live at different values of x4. If it is to be understood as

an operator in the effective four-dimensional theory, then what is the gauge-invariant

five-dimensional operator it descends from?

An additional minor point is that, with the definition of χg just above eq. (1.1),

which is the usual one, I believe the numerical factor in the numerator of (1.1) must

be a 4, not a 2. Similarly, there is a factor of 1/2 missing on the right-most term of eq.

(2.6). u and d quarks, s quarks and c quarks: = Mπ(140 MeV), Mφ(1020 MeV), MJ/ψ(3096 MeV).
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(Gluons are deconfined in both phases!)

Babington, Erdmenger, Guralnik & Kirsch ’03
Kruczenski, D.M., Myers & Winters ‘03

Kirsch ‘04

D.M., Myers & Thomson ’06
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• Discrete set of mesons with mass gap:

Universality and Scaling in AdS/CFT with Flavour

This is a beautiful paper that I very much enjoyed reading. I will be happy to

recommend its publication provided the authors can clarify the precise meaning of

the operator on the r.h.s of eq. (4.6).

This operator is not gauge-invariant in the five-dimensional gauge theory, since the

left- and right-handed quarks live at different values of x4. If it is to be understood as

an operator in the effective four-dimensional theory, then what is the gauge-invariant

five-dimensional operator it descends from?

An additional minor point is that, with the definition of χg just above eq. (1.1),

which is the usual one, I believe the numerical factor in the numerator of (1.1) must

be a 4, not a 2. Similarly, there is a factor of 1/2 missing on the right-most term of

eq. (2.6).
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•  Massive quarks.

•  Heavy mesons survive deconfinement!

Universality and Scaling in AdS/CFT with Flavour

This is a beautiful paper that I very much enjoyed reading. I will be happy to

recommend its publication provided the authors can clarify the precise meaning of

the operator on the r.h.s of eq. (4.6).

This operator is not gauge-invariant in the five-dimensional gauge theory, since the

left- and right-handed quarks live at different values of x4. If it is to be understood as

an operator in the effective four-dimensional theory, then what is the gauge-invariant

five-dimensional operator it descends from?

An additional minor point is that, with the definition of χg just above eq. (1.1),

which is the usual one, I believe the numerical factor in the numerator of (1.1) must

be a 4, not a 2. Similarly, there is a factor of 1/2 missing on the right-most term of eq.

(2.6). u and d quarks, s quarks and c quarks: = Mπ(140 MeV), Mφ(1020 MeV), MJ/ψ(3096 MeV).
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•  In good agreement with lattice QCD, eg. for J/Ψ:Normalization of the gauge coupling

Tfun ∼ 1.6 Tc − 2.1Tc (1)

In some of my previous papers I normalized the coupling as g2
M = 2πgs, then 2g2

M =

g2, where g2 is the usual normalization, the one normally used in gauge theory (e.g.

Peskin-Schroeder). This can be seen as follows. I write the action as

S =
1

4g2
M

∫
d4xTr[F 2] (2)

where the trace is the ordinary trace and Fµ,ν = ∂µAν−∂νAµ+[Aµ, Aν ]. Then one can

write A = AaT a, where Tr[T aT b] = 1
2δ

ab. Then the action is S = 1
2g2

M

∫
1
4F

aF a. From

this we can see that 2g2
M = g2. This can be seen by comparing with the normalization

in Peskin and Schroeder, for example. The coupling g appears to be the standard

normalization for the SU(N) coupling.

The normalization that I have used in previous papers, and in the MAGOO review

and that is used in Polchinski’s book is gM . gM is also the natural normalization when

we have a U(1) factor.

1
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• No quasi-particle excitations!

Universality and Scaling in AdS/CFT with Flavour

This is a beautiful paper that I very much enjoyed reading. I will be happy to

recommend its publication provided the authors can clarify the precise meaning of

the operator on the r.h.s of eq. (4.6).

This operator is not gauge-invariant in the five-dimensional gauge theory, since the

left- and right-handed quarks live at different values of x4. If it is to be understood as

an operator in the effective four-dimensional theory, then what is the gauge-invariant

five-dimensional operator it descends from?

An additional minor point is that, with the definition of χg just above eq. (1.1),

which is the usual one, I believe the numerical factor in the numerator of (1.1) must

be a 4, not a 2. Similarly, there is a factor of 1/2 missing on the right-most term of eq.
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Hoyos-Badajoz, Landsteiner & Montero ‘06
D.M., Myers & Thomson ’06

• Will illustrate this by computing a spectral function of 
electromagnetic currents, related to photon production:

Nc D4

Nf D8

Nf D̄8

SU(Nf)L × SU(Nf)R → SU(Nf)V (1)

−→ SU(Nf)V (2)
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•  Mesons absolutely stable at                              , but acquire widths away 
from this limit.
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with dΩ2
3 the metric for a three-sphere S3. The string

coupling gs is related to the Yang-Mills coupling gY M by
gs = 4πg2

Y M and the curvature radius R is related to the

’t Hooft coupling λ = g2
Y MNc by R2

α′ =
√

λ. The per-
turbative gs and α′ expansions in the bulk string theory
are related to the 1/Nc and 1√

λ
expansions in the Yang-

Mills theory respectively. The temperature T of the YM
theory is given by the Hawking temperature of the black
hole, T = r0

πR2 . Adding Nf fundamental “quarks” can
be described in the dual string theory by adding Nf D7-
branes in (1) [6]. A fundamental “quark” in the YM
theory can be described by an open string with one end
on the D7-branes and the other end on the black hole.
Open strings with both ends on the D7-branes can be
considered as “bound states” of a quark and antiquark,
thus describing meson-type excitations in the YM theory.

rm

r0!’

rm

"

"

S3

! r

!

r(  )

L

0r

FIG. 1: An embedding of the D7 brane (green) in the
AdS5 × S5 black hole geometry for T < Tdiss which lies en-
tirely outside the black hole. Inset: the Euclidean r− τ plane
at θ = 0 showing a world-sheet instanton (red) connecting the
tip of D7 brane r = rm to the horizon at the center of the
disk r = r0.

We now briefly outline the standard procedure for ob-
taining the meson spectrum [9]. We will take Nf = 1,
Nc → ∞, and λ large but finite throughout the paper.
The D7-brane can be chosen to lie along the directions
ξα = (t, %x,Ω3, θ) and using the symmetries of the prob-
lem the embedding in the two remaining transverse di-
rections can be taken as φ(ξα) = 0 and r(ξα) = r(θ).
At the lowest order in the α′ expansion, r(θ) can be
determined by extremizing the Dirac-Born-Infeld (DBI)
action of the D7-brane with the boundary condition
r(θ) cos θ|θ→π

2
→ L, where L is related to the mass mq

of a quark in the Yang-Mills theory as mq = L
2πα′ . For

T smaller than some Tdiss, r(θ) has the form shown in
Fig. 1. The brane is closest to the black hole at θ = 0,
where there lies a 4-dimensional subspace spanned by
(t, %x) since here the S3 in (2) shrinks to a point. De-
noting rm ≡ r(θ = 0) > r0, the shortest open string
connecting the D7-brane to the horizon has a mass in
the YM theory
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rm − r0
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λT
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2
, Λm =

rm

r0
(3)

Note that Λm is a dimensionless number of O(λ0) deter-

mined by the ratio L/r0, and m(T )
q can be interpreted as

the effective mass of a quark at temperature T .
The mesons corresponding to massless fluctuations on

the D7-brane can be found by solving the linearized equa-
tions resulting from expanding the DBI action around
the embedding. For example, the quadratic action for
the fluctuation χφ(ξα) of the location of D7-brane in the
φ direction can be written as

SDBI [χ
φ] = −µ7

2

∫

d8ξ
√
−g Gφφ gαβ∂αχφ∂βχφ (4)

where µ7 = 1
(2π)7gsα′4 is the tension of the D7-brane,

Gφφ = R2 cos2 θ, and gαβ denotes the induced metric on

the D7-brane. Writing χφ = e−iωt+i(k·(xYl(Ω3)ψ(θ), the
equation of motion for ψ can be written as

Ĥ(%k, l)ψ(θ) = ω2ψ(θ) (5)

where Ĥ(%k, l) is a second order differential operator in
θ and Yl are spherical harmonics on the S3. For a given
%k, l, Ĥ(%k, l) has only discrete eigenvalues ω2

n labeled by an
integer n, giving rise to dispersion relations ω = ωn(%k, l),
all of which have zero width. In particular, the meson

masses are of order M = 2
√

2L
R2 = 4

√
2πmq√

λ
. Since M is

parametrically smaller than mq in
√

λ, the mesons have

a large binding energy, given by 2m(T )
q . There exists a

temperature Tdiss = 0.122M , beyond which the D7 brane
falls into the black hole and mesons cease to exist as well-
defined quasi-particles [7, 10].

We stress that the zero-width conclusion only depends
on the topology of the embedding in Fig. 1. Since mesons
can only dissociate by falling into the black hole, when
the D7-brane lies above the black hole horizon the mesons
are necessarily stable. Given that the brane embed-
ding and the background geometry are smooth, includ-
ing higher order perturbative corrections in α′ should not
change the topology of the brane embedding if the dis-
tance between the brane and the horizon is parametri-
cally larger than the string scale. This implies that the
widths of mesons should remain zero to all orders in the
perturbative 1√

λ
expansion.

One can also turn on a quark chemical potential µ <

m(T )
q in the boundary theory by setting At = µ, where

At is the time component of the gauge field on the D7-
brane [11, 12]. Since the DBI action and its higher or-
der α′ corrections contain only derivatives of At, the D7-
embedding and the meson spectrum are not modified by
turning on the constant mode of At. Thus, the meson
widths and the net quark density remain zero to all or-
ders in the α′ expansion even at a finite chemical poten-
tial [18].

The above conclusions can be further illuminated by

simple thermodynamic reasoning. From (3), βm(T )
q ∝

•  Finite coupling: String worldsheet instantons. Faulkner & Liu ‘08
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•  Finite N: Hawking radiation.
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Photon emission by sQGP



• QGP is optically thin → Photons carry valuable information.

Caron-Huot, Kovtun, Moore, Starinets & Yaffe ’06
Parnachev & Sahakian ‘06

• Holographic results for massless matter:

Why photons?

RHIC and string theory, Gubser, PiTP 2006 6 2.1 The experimental setup

Figure 1: Ultra-relativistic quantum molecular dynamics simulation of a gold-gold collision [6],
with view before (left) and after (right). Species are probably: protons (red), neutrons (white), meson
(green), and excited baryons (blue).

• The inelastic gold-on-gold cross-section may be estimated roughly as σtot =
4πR2: this is just geometric overlap.

Exercise 1 (Total cross inelastic cross section) Compute σtot in barns. About how many gold-
gold collisions has RHIC produced?

Answer

• RHIC’s design luminosity is 2× 1026 cm−2s−1. Integrated luminosity to date is
in the ballpark of 4 nb−1.

γ



photon. In this way we obtain an SU(Nc) × U(1)EM gauge theory with Lagrangean

L = LSU(Nc) −
1

4
F2

µν + eAµJEM
µ , (2.1)

where Fµν = ∂µAν − ∂νAµ and the electromagnetic current is given by

JEM
µ = Ψ̄γµΨ +

i

2
Φ∗DµΦ − i

2
(DµΦ)∗ Φ . (2.2)

A sum over flavour and colour indices is implicit in this formula.

In thermal equilibrium, the differential photon emission rate per unit time and volume,

at leading order in the electromagnetic coupling constant e, is then given by [22]

dΓ

ddk
=

e2

(2π)d 2|k| nB(k0)
d−1
∑

s=1

εµ
(s)(k)εν

(s)(k)χµν(k) , (2.3)

dΓ

ddk
=

e2

(2π)d 2|k|
1

ek0/T − 1
ηµνχµν(k) , (2.4)

where k = (k0,k), with k0 = |k|, is the photon null momentum,

χµν(k) = −2 Im GR
µν(k) (2.5)

is the spectral density, and

GR
µν(k) = −i

∫

dd+1x e−ik·x Θ(x0)〈[JEM
µ (x), JEM

ν (0)]〉 (2.6)

is the retarded correlator of two electromagnetic currents, whose diagramatic representation

(including the photon field as external legs) is given in fig. 2. Finally,

nB(k0) =
1

ek0/T − 1
(2.7)

is the standard Bose-Einstein distribution function. Without loss of generality we will assume

that k points in the x1-direction, and we will denote by xi, i = 2, . . . , d the remaining spatial

directions. The polarisation vectors εµ
(s) may be chosen to be unit spatial vectors orthogonal

to k. Transversality of the correlator implies that the sum over polarisation vectors in (2.3)
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χµ
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– 5 –

photon. In this way we obtain an SU(Nc) × U(1)EM gauge theory with Lagrangean

L = LSU(Nc) −
1

4
F2

µν + eAµJEM
µ , (2.1)

where Fµν = ∂µAν − ∂νAµ and the electromagnetic current is given by
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• To leading order in the electromagnetic coupling constant:
where

GR(k) ≡ 1

d − 1
δijGR

ij(k) . (2.10)

The trace of the spectral function also determines the electric conductivity as

σ =
e2

2(d − 1)
lim

k0→0

1

k0
χµ

µ(k0 = |k|) . (2.11)

Thus in order to study photon production we must in principle calculate the two-point

function (2.6) in the SU(Nc)×U(1)EM theory. However, to leading order in the electromagnetic

coupling constant, this reduces to a calculation purely within the original SU(Nc) theory; this

is the key observation that will allow us to perform this calculation using the gravitational

dual description, since the dual of the SU(Nc) × U(1)EM is unknown. To see this, note first

that the terms in the electromagnetic current (2.2) proportional to the photon field (implicit

in the covariant derivative) lead to higher-order contributions in e to the correlator (2.6), and

can thus be ignored to leading order in e. Second, observe that the two-point function of the

remaining terms in the current can be calculated in the SU(Nc) theory, since again the effects

of including the dynamical photon are of higher order in e. Diagramatically, this means that

no photon fields are present in the shaded blobs in fig. 2.4

We therefore conclude that, to leading order in the electromagnetic coupling constant e,

photon production in an SU(Nc)×U(1)EM theory is completely determined by the two-point

function of the electromagnetic current in the SU(Nc) theory. In the rest of the paper we will

calculate this correlator in SU(Nc) SYM theories coupled to fundamental matter.

(a) (b)

Figure 2: Diagrams contributing to the two-point function (2.6) of electromagnetic currents. The
external line corresponds to a photon of momentum k. As explained in the text, to leading order in
the electromagnetic coupling constant only SU(Nc) fields ‘run’ in the loops represented by the shaded
blobs.

4An additional observation is the fact that the tadpole diagram in fig. 2 has no imaginary part and hence

does not contribute to the desired spectral function.
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Figure 1: The two possible topologies for Dq-brane probes in the background of black Dp-branes.

From the viewpoint of the holographic description, the basic physics behind this transition

is easily understood. The asymptotic distance between the Dq-branes and the black hole is

proportional to the quark mass, whereas the size of the black hole horizon is proportional

to the temperature. Thus for sufficiently small T/Mq the Dq-branes are deformed by the

gravitational attraction of the black hole, but remain entirely outside the horizon in what we

call a ‘Minkowski’ embedding (see fig. 1). However, above a critical temperature Tfun, the

gravitational force overcomes the tension of the branes and these are pulled into the horzion.

We refer to such configurations as ‘black hole’ embeddings.

In the dual field theory, this phase transition is exemplified by discontinuities in physical

quantities such as, for example, the quark condensate or the contribution of the fundamental

matter to the energy density. However, the most striking feature of this phase transition

is found in the spectrum of physical excitations of the fundamental matter. In the low-

temperature, Minkowski phase the spectrum is gapped and contains a discrete set of deeply

bound mesons (i.e., quark-antiquark bound states) with masses of order Mmeson ∼ Mq/
√

λ.

These mesons are dual to excitations supported on the probe branes (see, e.g., [16, 17, 19]) and

are absolutely stable in the large-Nc, strong coupling limit under consideration. In addition to

the mesons, the Minkowski-phase spectrum also contains well defined, quark-like excitations

described by strings stretching between the tip of the branes and the horizon. These have

masses of order Mq and are therefore parametrically heavier than the mesons.

In the high-temperature, black hole phase stable mesons cease to exist. Rather one finds

a continuous and gapless spectrum of excitations [20, 21]. Hence at the first order phase

transition at Tfun the mesons dissociate or ‘ionise’, and the electric charge is thus ‘liberated’.

However, no well defined, quasi-particle notion of an individual quark exists in this phase,

since a string stretching between any point on the branes and the horizon will quickly fall

through the horizon. In the gauge theory this corresponds to the fact that any localised quark

charge will quickly spread across the entire plasma, thus loosing its identity.

In this paper we will study photon production in the black-hole phase. We will see that
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Universality and Scaling in AdS/CFT with Flavour

This is a beautiful paper that I very much enjoyed reading. I will be happy to

recommend its publication provided the authors can clarify the precise meaning of

the operator on the r.h.s of eq. (4.6).

This operator is not gauge-invariant in the five-dimensional gauge theory, since the

left- and right-handed quarks live at different values of x4. If it is to be understood as

an operator in the effective four-dimensional theory, then what is the gauge-invariant

five-dimensional operator it descends from?

An additional minor point is that, with the definition of χg just above eq. (1.1),

which is the usual one, I believe the numerical factor in the numerator of (1.1) must

be a 4, not a 2. Similarly, there is a factor of 1/2 missing on the right-most term of

eq. (2.6).

χ =
∑

delta functions (1)

SU(Nc)×

Mmes ∼ Mq√
λ
∼ Tfun(3)

m = 0 m = 1.3 (4)

m =
2Mq√

λT
(5)

ω = 0 → σ =
e2

4
lim
k0→0

1

k0
χµ

µ(k
0 = |k|) (6)

ω = 4.8 (7)

χ/ω ∼ ω−1/3 (8)

Mq = 0 → AdS5 × S3 (9)

Mthermal ∼
√

λT % Mq (10)

χ ∼
∑

n

cn δ(p2 + m2
n) , m2

n > 0 (11)

η′ (12)

η

s
=

1

4π
(13)

M2 = −
Mq〈ψ̄ψ〉

f 2
π

(14)
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Figure 4: D3/D7 system: Trace of the spectral function as a function of ω for (from top to
bottom on the left-hand side) m = {0, 0.6, 0.85, 0.93, 1.15, 1.25, 1.306}, or equivalently for ψ0 =
{0, 0.37, 0.53, 0.58, 0.75, 0.85, 0.941}. The last value corresponds to that at which the phase transi-
tion from a black hole to a Minkowski embedding takes place. Recall that ÑD7 ∼ NfNcT 2.

Note that the top, solid, red curve in fig. 5, which corresponds to ω = 0, gives (up to

normalisation) the electric conductivity (2.10). Specifically, denoting by h(m) the curve in

question, one has:

σ =
e2

4(2πT )

dχ

dω

∣

∣

∣

∣

ω=0

=
e2

4π
NfNcTh(m) . (4.24)

Again, the difference between our NfNc scaling and the N2
c scaling found in [5] reflects the

difference in the number of electrically charged degrees of freedom.

At intermediate values of ω the spectral function is not a monotonic function of m, as

can be seen in fig. 5. In fig. 4 this is reflected in the fact that curves for different values of m

cross each other around 1 ! ω ! 2. The same behaviour is of course observed in the plot of

the photon production 6.

It is also interesting to examine the spectral function for black hole embeddings beyond

the phase transition, i.e., in the region in which these are metastable or unstable. The results

for the spectral function are shown in fig. 7. The most remarkable feature of these plots is the

appearance of well defined peaks in the spectral function, which become narrower and more

closely spaced, seemingly delta-function-like, as ψ0 → 1. We will discuss the interpretation

of this fact in the last section.
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Figure 7: D3/D7 system: Spectral function for non-stable black hole embeddings. The red curve
with the longest dashes corresponds to ψ0 = 0.9621, the green curve with intermediate dashes to
ψ0 = 0.979, the blue curve with the shortest dashes to ψ0 = 0.999996, and the solid, purple curve to
ψ0 = 0.9999981.

where

L3 = πgsNc#
3
s , f = 1 − r3

0

r3
, r0 =

16

9
π2T 2L3 . (5.3)

The five-dimensional Yang-Mills coupling constant in the dual gauge theory is dimensionful

and given by g2
YM = 4π2gs#s. It is convenient to introduce the dimensionless coordinate

u = r3/2
0 /2r3/2, in terms of which the metric becomes

ds2 =
(r0

L

)3/2 1

2u

(

−fdx2
0 + dx2

)

+
L3/2r1/2

0

(2u)1/3

(

4du2

9u2f
+ dΩ2

4

)

, (5.4)

with f = 1−4u2. As before, the horizon is at u = 1/2 and the boundary at u → 0.6 Since the

D6-branes wrap a two-sphere in the directions transverse to the D4-branes, it is also useful

to write the metric on the four-sphere as

dΩ2
4 = dθ2 + sin2 θdΩ2

2 + cos2 θdϕ2 , (5.5)

6The D4-brane metric considered in this section is not asymptotically of the form AdS times a sphere. The

framework for the calculation of correlators is less well developed for such backgrounds, so we will proceed

by analogy with the AdS case. Presumably, however, this procedure can be made rigourous by lifting the

D4-brane geometry to M-theory, in which it becomes an M5-brane geometry, which is of the asymptotic form

AdS times a sphere.
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Figure 14: Dispersion relation ω(|k|) for the lightest spin-zero mesons on a D7-brane Minkowski
embedding in a D3-brane background [8]. The solid blue curve corresponds to a pseudo-scalar
meson, whereas the red dashed curve corresponds to a scalar meson. The solid black line corresponds
to ω = |k|.

Minkowski phase possesses a mass gap, but in fact it follows from the analysis in ref. [8]. To

see this, consider the dispersion relation k0(k) for a given meson in the Minkowski phase.

The fact that there is a mass gap means that k0 > 0 at k = 0. On the other hand, in

the limit of infinite spatial momentum, |k| → ∞, the dispersion relation takes the form

k0 # v|k| with v < 1. The reason for this is easily understood: For larger and larger

spatial momenta, the wave function of the meson becomes more and more concentrated at

the tip of the Dq-branes, and so the speed of the meson is simply the local speed of light

at this lowest point. Because of the gravitational redshift, this speed is always subluminal.

Continuity then implies that there must exist a value of k such that k0(|k|) = |k|. This is

illustrated by the fact that the solid black line in figure 14 intersects the other two curves.

Although the curves shown in the figure 14 correspond to scalar mesons, it is clear from the

arguments above that an analogous result would hold for other types of mesons, in particu-

lar for vector-like mesons. Since these mesons are absolutely stable in the large-Nc, strong

coupling limit under consideration, they give rise to delta-function-like ( i.e., zero-width)

peaks in the spectral function of electromagnetic currents.

In this paper we have studied photon production by calculating the electromagnetic

current-current correlator (2.5) at light-like momenta. It would be interesting to extend the

calculation to time-like momenta, since this determines the number of dileptons produced

by virtual photon decay. A first step in this direction was given in ref. [21], where the

correlator was calculated for vanishing spatial momentum.

A further extension consists of calculating the rate of photon and dilepton production

in the presence of a finite baryon chemical potential [31, 32] or density [28, 33]. For non-

– 26 –
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Figure 14: Dispersion relation ω(|k|) for the lightest spin-zero mesons on a D7-brane Minkowski
embedding in a D3-brane background [8]. The solid blue curve corresponds to a pseudo-scalar
meson, whereas the red dashed curve corresponds to a scalar meson. The solid black line corresponds
to ω = |k|.

Minkowski phase possesses a mass gap, but in fact it follows from the analysis in ref. [8]. To

see this, consider the dispersion relation k0(k) for a given meson in the Minkowski phase.
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lar for vector-like mesons. Since these mesons are absolutely stable in the large-Nc, strong

coupling limit under consideration, they give rise to delta-function-like ( i.e., zero-width)
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In this paper we have studied photon production by calculating the electromagnetic

current-current correlator (2.5) at light-like momenta. It would be interesting to extend the

calculation to time-like momenta, since this determines the number of dileptons produced

by virtual photon decay. A first step in this direction was given in ref. [21], where the

correlator was calculated for vanishing spatial momentum.

A further extension consists of calculating the rate of photon and dilepton production

in the presence of a finite baryon chemical potential [31, 32] or density [28, 33]. For non-
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where

L3 = πgsNc#
3
s , f = 1 − r3

0

r3
, r0 =

16

9
π2T 2L3 . (5.3)

The five-dimensional Yang-Mills coupling constant in the dual gauge theory is dimensionful

and given by g2
YM = 4π2gs#s. It is convenient to introduce the dimensionless coordinate

u = r3/2
0 /2r3/2, in terms of which the metric becomes

ds2 =
(r0

L

)3/2 1

2u

(

−fdx2
0 + dx2

)

+
L3/2r1/2

0

(2u)1/3

(

4du2

9u2f
+ dΩ2

4

)

, (5.4)

with f = 1−4u2. As before, the horizon is at u = 1/2 and the boundary at u → 0.6 Since the

D6-branes wrap a two-sphere in the directions transverse to the D4-branes, it is also useful

to write the metric on the four-sphere as

dΩ2
4 = dθ2 + sin2 θdΩ2

2 + cos2 θdϕ2 , (5.5)

6The D4-brane metric considered in this section is not asymptotically of the form AdS times a sphere. The

framework for the calculation of correlators is less well developed for such backgrounds, so we will proceed

by analogy with the AdS case. Presumably, however, this procedure can be made rigourous by lifting the

D4-brane geometry to M-theory, in which it becomes an M5-brane geometry, which is of the asymptotic form

AdS times a sphere.
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Figure 14: Dispersion relation ω(|k|) for the lightest spin-zero mesons on a D7-brane Minkowski
embedding in a D3-brane background [8]. The solid blue curve corresponds to a pseudo-scalar
meson, whereas the red dashed curve corresponds to a scalar meson. The solid black line corresponds
to ω = |k|.

Minkowski phase possesses a mass gap, but in fact it follows from the analysis in ref. [8]. To

see this, consider the dispersion relation k0(k) for a given meson in the Minkowski phase.

The fact that there is a mass gap means that k0 > 0 at k = 0. On the other hand, in

the limit of infinite spatial momentum, |k| → ∞, the dispersion relation takes the form

k0 # v|k| with v < 1. The reason for this is easily understood: For larger and larger

spatial momenta, the wave function of the meson becomes more and more concentrated at

the tip of the Dq-branes, and so the speed of the meson is simply the local speed of light

at this lowest point. Because of the gravitational redshift, this speed is always subluminal.

Continuity then implies that there must exist a value of k such that k0(|k|) = |k|. This is

illustrated by the fact that the solid black line in figure 14 intersects the other two curves.

Although the curves shown in the figure 14 correspond to scalar mesons, it is clear from the

arguments above that an analogous result would hold for other types of mesons, in particu-

lar for vector-like mesons. Since these mesons are absolutely stable in the large-Nc, strong

coupling limit under consideration, they give rise to delta-function-like ( i.e., zero-width)

peaks in the spectral function of electromagnetic currents.

In this paper we have studied photon production by calculating the electromagnetic

current-current correlator (2.5) at light-like momenta. It would be interesting to extend the

calculation to time-like momenta, since this determines the number of dileptons produced

by virtual photon decay. A first step in this direction was given in ref. [21], where the

correlator was calculated for vanishing spatial momentum.

A further extension consists of calculating the rate of photon and dilepton production

in the presence of a finite baryon chemical potential [31, 32] or density [28, 33]. For non-
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FIG.2:Decayofavectormesonintoandon-shellphoton.

null,andsothemesonpossessesthesamequantumnum-
bersasaphoton[9].Suchamesoncanthendecayinto
anon-shellphoton[10],asdepictedinfig.2.Thispro-
cesscontributesaresonancepeak,atanenergyωpeak,to
thein-mediumspectralfunctionoftwoelectromagnetic
currents,χµν(ω,k)∼〈Jµ(ω,k)Jν(−ω,−k)〉,evaluatedat
null-momentumω=k.Thisinturnproducesapeakin
thespectrumofthermalphotonsemittedbytheplasma,
dNγ/dω∼e−ω/Tχµ

µ(ω,T).Thewidthofthispeakis
thewidthofthemesonintheplasma.Infig.3wehave
illustratedthiseffectfortheN=4SYMplasmacoupled
toonemasslessquarkandoneheavyquark.Theresults
arevalidatstrongcouplingandlargeNc,sincetheywere
obtainedbymeansofthegravitydual[8].Thespectral
functionforthemasslessquarkisstructure-less,whereas
thatfortheheavyquarkexhibitsaresonancepeak–see
[8]forfurtherdetails.
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FIG.3:SpectralfunctionsfortheN=4SYMplasmacou-
pledtoamasslessquark(top,redcurve)andaheavyquark
(bottom,bluecurve),atlargeNcandstrongcoupling.

3.Auniversalpropertyofplasmaswithagravity
dual.ThegravitydualofQCDispresentlyunknown.
Whenstudyingstrongly-coupledplasmaswithagrav-
itydual,itisthereforeimportanttofocusonproperties
thatapplytoasbroadaclassofplasmasaspossible,
sincethesemayalsoapplytoQCD.Inthissectionwe
willshowthatthetwoassumptionsaboveaboutheavy
mesonsinaQGParetrueinallstronglycoupled,large-
Ncplasmaswithagravitydual,becausetheyfollowfrom
twouniversalpropertiesoftheduality:Thefactthatthe
deconfinedphaseisdescribedbyabackgroundwitha
blackhole(BH)[11],andthefactthat,inthelarge-Nc

limit,afinitenumberofflavoursNfisdescribedbyNf

D-braneprobesinthisbackground[12].
Inthepresenceoftheblackhole,therearetwopossible

phasesfortheD-branes,separatedbyauniversalfirst-
orderphasetransition[13,14].Geometrically,thesetwo
phasesaredistinguishedbywhetherornottheD-brane
tensioncancompensatefortheblackholegravitational
attraction(seefig.4).Inthefirstcasethebraneslie

FIG.4:PossibleD-braneembeddingsinaBHbackground.

completelyoutsidethehorizonina‘Minkowskiembed-
ding’.Inthesecondcasetheyfallthroughthehorizon
ina‘BHembedding’.Fromthegaugetheoryviewpoint,
thisphasetransitioncorrespondstothedissociationof
heavymesons[13,18].IntheMinkowskiphasestable
mesonsexist,andtheirspectrumisdiscreteandgapped.
Themesonmassinthisphaseincreasesastheseparation
betweenthebranesandtheblackholeincreases[19].By
contrast,intheblackholephasenomesonboundstates
exist.Recallingthattheradiusoftheblackholeispro-
portionaltotheplasmatemperature,weseethatifame-
sonissufficientlyheavycomparedtothetemperatrure,
thenthismesonremainsboundintheplasmaandisde-
scribedbyaMinkowskibrane.

Theexistenceofasubluminallimitingvelocityfor
mesonsisobviousfromthegeometricpictureabove:It
isjustthelocalspeedoflightatthetipofthebranes
[7].Indeed,thewavefunctionofamesonissupported
ontheD-branes.Thelargertheenergyofthemeson,
themoreitisattractedbytheblackholeandthemore
itswave-functionisconcentratedatthetipofthebranes
(seefig.4).Inthelimitk→∞thevelocityofthisme-
sonapproachesthelocalspeedoflightatthetipofthe
branes.BecauseoftheredshiftcausedbytheBH,this
limitingvelocityislowerthanthespeedoflightatthe
boundary,wherethegaugetheoryresides.Inthegauge
theorythistranslatesintothestatementthatvlimislower
thanthespeedoflightinthevacuum[7].Thiseffectis
clearlyillustratedinfig.1.
4.HeavyIonCollisions.Ouranalysissofarapplies
toaninfinitely-extendedplasmaatconstanttempera-
ture.Acrucialquestioniswhetherapeakinthephoton
spectrumcouldbeobservedinaheavyioncollisionex-
periment.Naturalheavyvectormesonstoconsiderare
theJ/ψandtheΥ,sincetheseareexpectedtosurvive
deconfinement.Wewishtocomparethenumberofpho-
tonscomingfromthesemesonstothenumberofpho-
tonscomingfromothersources.Accuratelycalculating
themesoncontributionwouldrequireaprecisetheoret-
icalunderstandingofthedynamicsofthesemesonsin
theQGP,whichatpresentisnotavailable.Ourgoalwill
thereforebetoestimatetheorderofmagnitudeofthis
effectwithasimplemodel.

Following[21],wemodelthefireballasanexpand-
ingcylinderwithvolumeV(t)=π(z0+vzt)(r0+
a⊥t2/2)2.Thisleadstothetemperatureevolution

2

γMeson

FIG. 2: Decay of a vector meson into and on-shell photon.

null, and so the meson possesses the same quantum num-
bers as a photon [9]. Such a meson can then decay into
an on-shell photon [10], as depicted in fig. 2. This pro-
cess contributes a resonance peak, at an energy ωpeak, to
the in-medium spectral function of two electromagnetic
currents, χµν(ω, k) ∼ 〈Jµ(ω, k)Jν(−ω,−k)〉, evaluated at
null-momentum ω = k. This in turn produces a peak in
the spectrum of thermal photons emitted by the plasma,
dNγ/dω ∼ e−ω/T χµ

µ(ω, T ). The width of this peak is
the width of the meson in the plasma. In fig. 3 we have
illustrated this effect for the N = 4 SYM plasma coupled
to one massless quark and one heavy quark. The results
are valid at strong coupling and large Nc, since they were
obtained by means of the gravity dual [8]. The spectral
function for the massless quark is structure-less, whereas
that for the heavy quark exhibits a resonance peak – see
[8] for further details.
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FIG. 3: Spectral functions for the N = 4 SYM plasma cou-
pled to a massless quark (top, red curve) and a heavy quark
(bottom, blue curve), at large Nc and strong coupling.

3. A universal property of plasmas with a gravity
dual. The gravity dual of QCD is presently unknown.
When studying strongly-coupled plasmas with a grav-
ity dual, it is therefore important to focus on properties
that apply to as broad a class of plasmas as possible,
since these may also apply to QCD. In this section we
will show that the two assumptions above about heavy
mesons in a QGP are true in all strongly coupled, large-
Nc plasmas with a gravity dual, because they follow from
two universal properties of the duality: The fact that the
deconfined phase is described by a background with a
black hole (BH) [11], and the fact that, in the large-Nc

limit, a finite number of flavours Nf is described by Nf

D-brane probes in this background [12].
In the presence of the black hole, there are two possible

phases for the D-branes, separated by a universal first-
order phase transition [13, 14]. Geometrically, these two
phases are distinguished by whether or not the D-brane
tension can compensate for the black hole gravitational
attraction (see fig. 4). In the first case the branes lie

FIG. 4: Possible D-brane embeddings in a BH background.

completely outside the horizon in a ‘Minkowski embed-
ding’. In the second case they fall through the horizon
in a ‘BH embedding’. From the gauge theory viewpoint,
this phase transition corresponds to the dissociation of
heavy mesons [13, 18]. In the Minkowski phase stable
mesons exist, and their spectrum is discrete and gapped.
The meson mass in this phase increases as the separation
between the branes and the black hole increases [19]. By
contrast, in the black hole phase no meson bound states
exist. Recalling that the radius of the black hole is pro-
portional to the plasma temperature, we see that if a me-
son is sufficiently heavy compared to the temperatrure,
then this meson remains bound in the plasma and is de-
scribed by a Minkowski brane.

The existence of a subluminal limiting velocity for
mesons is obvious from the geometric picture above: It
is just the local speed of light at the tip of the branes
[7]. Indeed, the wave function of a meson is supported
on the D-branes. The larger the energy of the meson,
the more it is attracted by the black hole and the more
its wave-function is concentrated at the tip of the branes
(see fig. 4). In the limit k → ∞ the velocity of this me-
son approaches the local speed of light at the tip of the
branes. Because of the redshift caused by the BH, this
limiting velocity is lower than the speed of light at the
boundary, where the gauge theory resides. In the gauge
theory this translates into the statement that vlim is lower
than the speed of light in the vacuum [7]. This effect is
clearly illustrated in fig. 1.
4. Heavy Ion Collisions. Our analysis so far applies
to an infinitely-extended plasma at constant tempera-
ture. A crucial question is whether a peak in the photon
spectrum could be observed in a heavy ion collision ex-
periment. Natural heavy vector mesons to consider are
the J/ψ and the Υ, since these are expected to survive
deconfinement. We wish to compare the number of pho-
tons coming from these mesons to the number of pho-
tons coming from other sources. Accurately calculating
the meson contribution would require a precise theoret-
ical understanding of the dynamics of these mesons in
the QGP, which at present is not available. Our goal will
therefore be to estimate the order of magnitude of this
effect with a simple model.

Following [21], we model the fireball as an expand-
ing cylinder with volume V (t) = π(z0 + vzt)(r0 +
a⊥t2/2)2. This leads to the temperature evolution
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• Comparison with HIC experiments requires model for  
spacetime evolution of the fireball, number and 
distribution of  J/Ψ’s, etc.
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• Simple model yields, for LHC energies:
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• Result exponentially sensitive to many parameters.

• Location of the peak between 3-5 GeV.

Thermal background 
from light quarks

 J/Ψ signal

• Quadratically sensitive to        cross-section                     
-- not observable at RHIC.
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Figure 130: Direct-γ spectra in 0-10% central (left) and 60-90% peripheral (right) Pb-Pb

at
√
s
NN
= 5.5 TeV, with the thermal (QGP and HRG) and prompt (pQCD) contributions

differentiated.

LHC simulations shown in comparison we assume a final charged hadron multiplicity near

the upper end of the predicted range:
dNch
dy
(b=y=0)=2350 (680 at RHIC). Correspondingly

we increase the initial peak entropy density in central Au+Au collisions from s0=351 fm
−3

at τ0=0.2 fm/c for RHIC to s0=2438 fm−3 at τ0 = 0.1 fm/c for LHC.

1. Thermal photon spectra: Figure 131 shows the thermal photon pT -spectra (angle-

integrated) for RHIC and LHC. At both collision energies the total spectrum is dominated

by quark matter once pT exceeds a few hundred MeV. Its inverse slope (“effective tempera-

ture”) in the range 1.5< pT <3GeV/c increases by almost 50%, from 303MeV at RHIC to

442MeV at LHC, reflecting the higher initial temperature and significantly increased radial

flow (visible in the HM contribution) at LHC.

2. Thermal photon elliptic flow: Figure 132 shows the differential elliptic flow of thermal

photons at RHIC and LHC, with quark matter (QM) and hadronic matter (HM) radiation

shown separately for comparison. The decrease at high pT of the QM and total photon

v2 reflects the dominance of QM radiation at high pT (emission from the early, hot stage

when radial and elliptic flow are still small). At fixed pT , the photon elliptic flow from QM

radiation is larger at LHC than at RHIC since the LHC fireballs start hotter and fluid cells

with a given temperature thus flow more rapidly. At low pT , hadronic radiation dominates,

and since it flows more rapidly at LHC than at RHIC the corresponding photon elliptic is

significantly larger at LHC than RHIC. This is different from hadrons whose elliptic flow at

low pT decreases from RHIC to LHC, reflecting a redistribution of the momentum anisotropy
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• Signal is also comparable (or larger) than pQCD background: 
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BoundaryNormalization of the gauge coupling

v > vlim (1)

Tfun ∼ 1.6 Tc − 2.1Tc (2)

In some of my previous papers I normalized the coupling as g2
M = 2πgs, then 2g2

M =

g2, where g2 is the usual normalization, the one normally used in gauge theory (e.g.

Peskin-Schroeder). This can be seen as follows. I write the action as

S =
1

4g2
M

∫
d4xTr[F 2] (3)

where the trace is the ordinary trace and Fµ,ν = ∂µAν−∂νAµ+[Aµ, Aν ]. Then one can

write A = AaT a, where Tr[T aT b] = 1
2δ

ab. Then the action is S = 1
2g2

M

∫
1
4F

aF a. From

this we can see that 2g2
M = g2. This can be seen by comparing with the normalization

in Peskin and Schroeder, for example. The coupling g appears to be the standard

normalization for the SU(N) coupling.

The normalization that I have used in previous papers, and in the MAGOO review

and that is used in Polchinski’s book is gM . gM is also the natural normalization when

we have a U(1) factor.
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Comments
• Will also radiate 
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• Will also radiate R-charged 
mesons:

Fig. 36. D7-branes’ embedding in AdS5 × S5. At non-zero temperature this picture
is slightly modified: First, the horizon lies at r = r0 > 0, and second the D7-branes
terminate at r = U(0) "= L. This ‘termination point’ corresponds to the tip of the
branes in fig. 35.

U(∞) and U(0) respectively. In this case the position in AdS at which the
D7-branes terminate is r = U(0) "= L, and therefore they fill up the AdS space
down to a radial position related to the thermal mass. Note also that at finite
temperature the horizon lies at r = r0 > 0.

7.1.3 Meson spectrum

We are now ready to compute the spectrum of low-spin mesons. Recall that
mesons are described by open strings attached to the D7-branes. In particular,
spin-zero and spin-one mesons correspond to the scalar and vector fields on the
D7-branes. For simplicity, we will focus on the former. Following section ???,
we know that in order to determine the spectrum of scalar mesons, we need
to determine the spectrum of normalisable modes of small fluctuations of the
scalar fields on the D7-branes. At this point we restrict ourselves to a single
D7-brane, ie. we set Nf = 1; as we will see below, the spectrum for Nf > 1
consists of N2

f copies of the Nf = 1 spectrum. Under these circumstances, the
dynamics is described by the DBI action (85).

We use the coordinates in eqn. (305) as worldvolume coordinates for the D7-
brane, which we collectively denote by σµ. The physical scalar fields on the
D7-brane are then x8(σµ), x9(σµ). By a rotation in the 89-plane we can assume
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• But exactly calculable and not necessarily subleading 
for real-world QGP.

• Characteristic v-dependence. 



Preliminary results for D3/D7

• Focus on sphere zero mode since QCD has no sphere.
Fig. 36. D7-branes’ embedding in AdS5 × S5. At non-zero temperature this picture
is slightly modified: First, the horizon lies at r = r0 > 0, and second the D7-branes
terminate at r = U(0) "= L. This ‘termination point’ corresponds to the tip of the
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• Expand in normalizable modes in radial direction: 
Infinite tower of massive 4D vector mesons.

• Energy loss in longitudinal and transverse modes.
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• Coupling to each mode is proportional to meson 
radial wave function at the location of the quark.

n=0 n=1



Preliminary results 
for D3/D7
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• Photon peak and energy loss may exist in 
QCD, irrespectively of whether a string dual 
exists. 

J/ψ, Υ, ...
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Nc → ∞ , λ → ∞ (14)

Tdec = 175 MeV (15)

k0 = 1 GeV (16)
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- Vector mesons (                    ) survive deconfinement.         

Lattice, effective potentials, etc.    

- Their limiting velocity in the QGP is subluminal.         
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• Depends on only two assumptions:



Deconfinement 

BH

Quarks

• Verifying in QCD is hard. Reassuring that effect is 
universal property of all gauge theories with gravity 
dual:



Figure 1: The two possible topologies for Dq-brane probes in the background of black Dp-branes.

From the viewpoint of the holographic description, the basic physics behind this transition

is easily understood. The asymptotic distance between the Dq-branes and the black hole is

proportional to the quark mass, whereas the size of the black hole horizon is proportional

to the temperature. Thus for sufficiently small T/Mq the Dq-branes are deformed by the

gravitational attraction of the black hole, but remain entirely outside the horizon in what we

call a ‘Minkowski’ embedding (see fig. 1). However, above a critical temperature Tfun, the

gravitational force overcomes the tension of the branes and these are pulled into the horzion.

We refer to such configurations as ‘black hole’ embeddings.

In the dual field theory, this phase transition is exemplified by discontinuities in physical

quantities such as, for example, the quark condensate or the contribution of the fundamental

matter to the energy density. However, the most striking feature of this phase transition

is found in the spectrum of physical excitations of the fundamental matter. In the low-

temperature, Minkowski phase the spectrum is gapped and contains a discrete set of deeply

bound mesons (i.e., quark-antiquark bound states) with masses of order Mmeson ∼ Mq/
√

λ.

These mesons are dual to excitations supported on the probe branes (see, e.g., [16, 17, 19]) and

are absolutely stable in the large-Nc, strong coupling limit under consideration. In addition to

the mesons, the Minkowski-phase spectrum also contains well defined, quark-like excitations

described by strings stretching between the tip of the branes and the horizon. These have

masses of order Mq and are therefore parametrically heavier than the mesons.

In the high-temperature, black hole phase stable mesons cease to exist. Rather one finds

a continuous and gapless spectrum of excitations [20, 21]. Hence at the first order phase

transition at Tfun the mesons dissociate or ‘ionise’, and the electric charge is thus ‘liberated’.

However, no well defined, quasi-particle notion of an individual quark exists in this phase,

since a string stretching between any point on the branes and the horizon will quickly fall

through the horizon. In the gauge theory this corresponds to the fact that any localised quark

charge will quickly spread across the entire plasma, thus loosing its identity.

In this paper we will study photon production in the black-hole phase. We will see that
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Two phases:

Heavy mesons 
survive deconfinement.
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Figure 14: Dispersion relation ω(|k|) for the lightest spin-zero mesons on a D7-brane Minkowski
embedding in a D3-brane background [8]. The solid blue curve corresponds to a pseudo-scalar
meson, whereas the red dashed curve corresponds to a scalar meson. The solid black line corresponds
to ω = |k|.

Minkowski phase possesses a mass gap, but in fact it follows from the analysis in ref. [8]. To

see this, consider the dispersion relation k0(k) for a given meson in the Minkowski phase.

The fact that there is a mass gap means that k0 > 0 at k = 0. On the other hand, in

the limit of infinite spatial momentum, |k| → ∞, the dispersion relation takes the form

k0 # v|k| with v < 1. The reason for this is easily understood: For larger and larger

spatial momenta, the wave function of the meson becomes more and more concentrated at

the tip of the Dq-branes, and so the speed of the meson is simply the local speed of light

at this lowest point. Because of the gravitational redshift, this speed is always subluminal.

Continuity then implies that there must exist a value of k such that k0(|k|) = |k|. This is

illustrated by the fact that the solid black line in figure 14 intersects the other two curves.

Although the curves shown in the figure 14 correspond to scalar mesons, it is clear from the

arguments above that an analogous result would hold for other types of mesons, in particu-

lar for vector-like mesons. Since these mesons are absolutely stable in the large-Nc, strong

coupling limit under consideration, they give rise to delta-function-like ( i.e., zero-width)

peaks in the spectral function of electromagnetic currents.

In this paper we have studied photon production by calculating the electromagnetic

current-current correlator (2.5) at light-like momenta. It would be interesting to extend the

calculation to time-like momenta, since this determines the number of dileptons produced

by virtual photon decay. A first step in this direction was given in ref. [21], where the

correlator was calculated for vanishing spatial momentum.

A further extension consists of calculating the rate of photon and dilepton production

in the presence of a finite baryon chemical potential [31, 32] or density [28, 33]. For non-
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Normalization of the gauge coupling
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Tfun ∼ 1.6 Tc − 2.1Tc (2)

In some of my previous papers I normalized the coupling as g2
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M =

g2, where g2 is the usual normalization, the one normally used in gauge theory (e.g.

Peskin-Schroeder). This can be seen as follows. I write the action as

S =
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d4xTr[F 2] (3)

where the trace is the ordinary trace and Fµ,ν = ∂µAν−∂νAµ+[Aµ, Aν ]. Then one can

write A = AaT a, where Tr[T aT b] = 1
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ab. Then the action is S = 1
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aF a. From

this we can see that 2g2
M = g2. This can be seen by comparing with the normalization

in Peskin and Schroeder, for example. The coupling g appears to be the standard

normalization for the SU(N) coupling.

The normalization that I have used in previous papers, and in the MAGOO review

and that is used in Polchinski’s book is gM . gM is also the natural normalization when

we have a U(1) factor.
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Thank you.


