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The main question

Semiclassical Physics Makes Sense
Classical Trajectories are Important
What is the meaning of it all? What is the meaning
on the full Phase Space?
A window into non-equilibrium physics
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Outline

The Gauge/Gravity Correpondence: Regge, ’t Hooft,
Maldacena
Operator/State correspondence in the AdS/CFT
More Operator/State: Regge trajectories, BMN, GKP
From Trajectory to Phase Space
Beyond Integrability.
What is chaos?
What is the meaning of Chaos in the meaning of
Chaos in the Gauge/Gravity Correspondence
outlook
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Regge Trajectories

Hadronic Physics was a string theory already!
Regge trajectories are best explain by spectrum of a
rotating string: J ∼M2.
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AdS/CFT Correspondence

ZFT [J ] = ZString[φ]. (1)

• Parameters:
g2
YM = 4π gstring
N =

∫
S5

F5

RS5 = RAdS5 = (g2
YMN)1/4ls

• Same superconformal symmetry
SO(2, 4)× SO(6) ⊂ SU(2, 2|4)

• States on AdS = Operators in the CFT
Single Particle state↔ single Trace TrFX...
Multi-Particle↔ Multitrace Tr(FX...X)Tr(F...X..X)
Chiral primaries (protected, BPS)↔ Supergravity modes
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Berenstein-Maldacena-Nastase

Almost BPS operators

OJ =
1√
JNJ

Tr ZJ . (2)

Z = φ1 + iφ2. (3)

∆− J =
∞∑
−∞

Nn

√
1 +

λ

J2
n2. (4)

OJn,−n =
1√

JNJ+2

J∑
l=0

e
2πin
J

lTr
(
φZ lψZJ−l

)
. (5)
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Twist-two Operators Past and Present

• Twist-two operators Gross-Wilczek (DIS)

TrΨ̄∇(a1
. . .∇an)Ψ,∆− S = f(λ) lnn. (6)

• Twist-two operators in AdS/CFT: GKP, Kruczenski,
Makeenko

TrΦ∇(a1
. . .∇an)Φ, (7)

∆− S =

√
λ

π
lnS. (8)

• A long production about the precise spectrum of these
operators.
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L = −4
R2

2πα′

ρ0∫
0

dρ

√
cosh2 ρ− (φ̇)2 sinh2 ρ, coth2 ρ0 = φ̇ = ω2,

E = 4
R2

2πα′

ρ0∫
0

dρ
cosh2 ρ√

cosh2 ρ− ω2 sinh2 ρ

S = 4
R2

2πα′

ρ0∫
0

dρ
ω sinh2 ρ√

cosh2 ρ− ω2 sinh2 ρ
(9)

∆− S =

√
λ

π
lnS. (10)
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General Properties

Classical conserved quantities ≡ Quantum Numbers
What matters are the conserved quantities not the
trajectories
Q: What is the meaning of the trajectory more
generally, is it just to give the quantum numbers?
It is natural to study the whole phase space, the
space of all possible trajectories
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Setup

L =
1
2
√
ggabGµν∂aX

µ∂bX
ν .

ds2 = −fdt2 +
dr2

f(r)
+ r2

(
dθ2 + sin2 θdψ2 + cos2 θdφ2

)
,

f(r) = 1 +
r2

b2
, f(r) = 1 +

r2

b2
− w4M

r2

t = t(τ), r = r(τ), θ = θ(τ), φ = φ(τ), ψ = ασ,

L =
1
2
f ṫ2 − ṙ2

2f
− r2

2

(
θ̇2 + cos2 θφ̇2

)
+
r2

2
α2 sin2 θ
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Hr =
f

2
p2
r +

1
2r2

p2
θ +

l2

2r2 cos2 θ
+
α2

2
r2 sin2 θ − E2

2f
,

ṙ = −fpr,

ṗr =
E2

2f2
f ′ +

f ′

2
p2
r −

1
r3
p2
θ −

l2

r3 cos2 θ
+ α2r sin2 θ,

θ̇ = − 1
r2
pθ,

ṗθ =
l2

r2
sin θ
cos3 θ

+ α2r2 sin θ cos θ,

Hr = 0, Constraint (11)



The Question

Outline

The
Correspondence

Operators and
Classical
Trajectories

What is Chaos?

Poincare
recurrences

The Power
Spectrum

Where to go?

What is chaos?

No water-tight definition: Sensitibity to the initial
conditions
Largest Lyapunov Exponent.
Poincaré sections: Breaking of the
Kolmogorov-Arnold-Moser tori.
Power Spectrum
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• Poincaré sections and the destruction of the KAM torus
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Lyapunov Exponent and the Poincaré
Recurrence Time

δ ~X(t) = e
~λ tδ ~X(0). (12)

tPR =
1
λ.

(13)
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Largest Lyapunov Exponet: Precision
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The distance between two strings

Berenstein-Corrado-Fischler-Maldacena:
Correlations of two circular Wilson Loops ≡
exchange of light states
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Poincare recurrences and Unitarity

Initial perturbation a thermal system will be damped
by thermal dissipation as long as the time scale is
too short to resolve possible gaps in the spectrum
(Heisenberg times).
Heisenberg time tH = 1/ω- discreteness. For t� tH
the spectrum is approximately continuous.

A(t) = eitHA(0)e−itH ,

GE(t) = e−S(E)
∑

Ei,Ej≤E
|Aij |2ei(Ei−Ej)t.
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Poincare recurrences

If the matrix elements of some operator A in the
energy basis have frequency with Γ, the correlator
will decay with characteristic lifetime of order Γ−1:
GE(t) Standard dissipative behavior in Γ−1 � t� tH

For t > tH most phases in GE(t) would have
completed a period and the function GE(t) starts
showing irregularities; it is a quasiperiodic function of
time. Despite thermal damping, it returns arbitrarily
close to the initial value over periods of the order of
the recurrence time.
The new conditions: We look at strings and observe
the enhancing effect of some other charge.

e−N
2 −→ e−N

2/J2 ∼ O(1). (14)
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The power spectrum of Henon-Heiles

H =
1

2m
(
p2
x + p2

y

)
+
k

2
(
x2 + y2

)
+ λ

(
x2 y − 1

3
y3

)
(15)
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Power Spectrum: Ring string in
Schwarzschild-AdS

0

2000

4000

S

1000 2000 3000 4000 5000

k



The Question

Outline

The
Correspondence

Operators and
Classical
Trajectories

What is Chaos?

Poincare
recurrences

The Power
Spectrum

Where to go?

Summary

Following the trajectories of nearby strings −→
Positive Lyapunov Exponent.
Distance between two strings ≡ Correlation of
function of the corresponding operators
Late-time behavior of correlation functions ≡
Poincaré Recurrences
Lyapunov Exponent↔ Poincaré recurrence time
Poincaré recurrences ≡ Unitarity
Unitarity: The anti-information loss.
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Outlook

A concrete Quantitative argument involving unitarity
in black hole physics.

tPR =
1
λ.

(16)

What about other configurations? Branes moving in
AdS/CFT. The 1/N exactness of Wilson Loops.

e−N
2 −→ e−N

2/S2 ≈ O(1). (17)

The integrability/chaos balance for point particles
and for strings: KAM-theorem, Anosov story.
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