Chaos in the Gauge/Gravity Correspondence

Leopoldo A. Pando Zayas

T. Raben and C. Terrero-Escalante

University of Michigan

XII Mexican Workshop on Particles and Fields, Mazatlán, November 2009

The Question

Outline

The Correspondence

Operators and Classical Trajectories

What is Chaos?

Poincare recurrences

The Power Spectrum

The main question

- Semiclassical Physics Makes Sense
- Classical Trajectories are Important
- What is the meaning of it all? What is the meaning on the full Phase Space?
- A window into non-equilibrium physics

The Question

Outline

The Correspondence

Operators and Classical Trajectories

What is Chaos?

Poincare recurrences

The Power Spectrum

Outline

- The Gauge/Gravity Correpondence: Regge, 't Hooft, Maldacena
- Operator/State correspondence in the AdS/CFT
- More Operator/State: Regge trajectories, BMN, GKP
- From Trajectory to Phase Space
- Beyond Integrability.
- What is chaos?
- What is the meaning of Chaos in the meaning of Chaos in the Gauge/Gravity Correspondence
- outlook

The Question

Outline

The Correspondence

Operators and Classical Trajectories

What is Chaos?

Poincare recurrences

The Power Spectrum

Regge Trajectories

- Hadronic Physics was a string theory already!
- Regge trajectories are best explain by spectrum of a rotating string: J ~ M².

・ロット 御マ キョット キョン

The Question

Outline

The Correspondence

Operators and Classical Trajectories

What is Chaos?

Poincare recurrences

The Power Spectrum

AdS/CFT Correspondence

$$Z_{FT}[J] = Z_{String}[\phi].$$

 $g_{YM}^{2} = 4\pi g_{string}$ $N = \int_{S^{5}} F_{5}$ $R_{S^{5}} = R_{AdS_{5}} = (g_{YM}^{2}N)^{1/4} l_{s}$

• Same superconformal symmetry $SO(2,4) \times SO(6) \subset SU(2,2|4)$

• States on AdS = Operators in the CFT Single Particle state \leftrightarrow single Trace TrFX...Multi-Particle \leftrightarrow Multitrace Tr(FX...X)Tr(F...X.X)Chiral primaries (protected, BPS) \leftrightarrow Supergravity modes

The Question

Outline

(1)

The Correspondence

Operators and Classical Trajectories

What is Chaos?

Poincare recurrences

The Power Spectrum

Berenstein-Maldacena-Nastase

Almost BPS operators

$$\mathcal{O}^J = \frac{1}{\sqrt{JN^J}} \mathrm{Tr} \ Z^J.$$

 $Z = \phi_1 + i\phi_2.$

$$\Delta - J = \sum_{-\infty}^{\infty} N_n \sqrt{1 + \frac{\lambda}{J^2} n^2}.$$
 (4)

$$\mathcal{O}_{n,-n}^{J} = \frac{1}{\sqrt{JN^{J+2}}} \sum_{l=0}^{J} e^{\frac{2\pi i n}{J} l} \operatorname{Tr}\left(\phi Z^{l} \psi Z^{J-l}\right).$$
(5)

The Question

Outline

(2)

(3)

The Correspondence

Operators and Classical Trajectories

What is Chaos?

Poincare recurrences

The Power Spectrum

Where to go?

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ● ● ●

The Question

Outline

The Correspondence

Operators and Classical Trajectories

What is Chaos?

Poincare recurrences

The Power Spectrum

Twist-two Operators Past and Present

Twist-two operators Gross-Wilczek (DIS)

$$\operatorname{Tr}\bar{\Psi}\nabla_{(a_1}\dots\nabla_{a_n)}\Psi, \Delta-S=f(\lambda)\ln n.$$

• Twist-two operators in AdS/CFT: GKP, Kruczenski, Makeenko

$$\operatorname{Tr}\Phi\nabla_{(a_1}\dots\nabla_{a_n)}\Phi,$$
 (7)

$$\Delta - S = \frac{\sqrt{\lambda}}{\pi} \ln S. \tag{8}$$

• A long production about the precise spectrum of these operators.

The Question

Outline

(6)

The Correspondence

Operators and Classical Trajectories

What is Chaos?

Poincare recurrences

The Power Spectrum

$$L = -4\frac{R^2}{2\pi\alpha'} \int_{0}^{\rho_0} d\rho \sqrt{\cosh^2 \rho - (\dot{\phi})^2 \sinh^2 \rho}, \quad \coth^2 \rho_0 = \dot{\phi} = \text{The Question}$$

$$E = 4\frac{R^2}{2\pi\alpha'} \int_{0}^{\rho_0} d\rho \frac{\cosh^2 \rho}{\sqrt{\cosh^2 \rho - \omega^2 \sinh^2 \rho}}$$

$$S = 4\frac{R^2}{2\pi\alpha'} \int_{0}^{\rho_0} d\rho \frac{\omega \sinh^2 \rho}{\sqrt{\cosh^2 \rho - \omega^2 \sinh^2 \rho}}$$

$$\Delta - S = \frac{\sqrt{\lambda}}{\pi} \ln S. \quad (10)$$

$$S^3 = S^3 = S^3$$

General Properties

- Classical conserved quantities \equiv Quantum Numbers
- What matters are the conserved quantities not the trajectories
- Q: What is the meaning of the trajectory more generally, is it just to give the quantum numbers?
- It is natural to study the whole phase space, the space of all possible trajectories

The Question

Outline

The Correspondence

Operators and Classical Trajectories

What is Chaos?

Poincare recurrences

The Power Spectrum

Setup

$$\mathcal{L} = \frac{1}{2}\sqrt{g}g^{ab}G_{\mu\nu}\partial_a X^{\mu}\partial_b X^{\nu}.$$

$$ds^2 = -fdt^2 + \frac{dr^2}{f(r)} + r^2 \left(d\theta^2 + \sin^2\theta d\psi^2 + \cos^2\theta d\phi^2\right),$$

$$f(r) = 1 + \frac{r^2}{b^2}, \quad f(r) = 1 + \frac{r^2}{b^2} - \frac{w_4 M}{r^2}$$

$$t = t(\tau), r = r(\tau), \theta = \theta(\tau), \phi = \phi(\tau), \psi = \alpha \sigma,$$

$$\mathcal{L} = \frac{1}{2}f\dot{t}^2 - \frac{\dot{r}^2}{2f} - \frac{r^2}{2}\left(\dot{\theta}^2 + \cos^2\theta\dot{\phi}^2\right) + \frac{r^2}{2}\alpha^2\sin^2\theta$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

The Question

Operators and Classical Trajectories

$$H_r = \frac{f}{2}p_r^2 + \frac{1}{2r^2}p_\theta^2 + \frac{l^2}{2r^2\cos^2\theta} + \frac{\alpha^2}{2}r^2\sin^2\theta - \frac{E^2}{2f},$$

$$\dot{r} = -fp_r,$$

$$\dot{p}_r = \frac{E^2}{2f^2}f' + \frac{f'}{2}p_r^2 - \frac{1}{r^3}p_\theta^2 - \frac{l^2}{r^3\cos^2\theta} + \alpha^2r\sin^2\theta,$$

$$\dot{\theta} = -\frac{1}{r^2}p_\theta,$$

$$\dot{p}_\theta = \frac{l^2}{r^2}\frac{\sin\theta}{\cos^3\theta} + \alpha^2r^2\sin\theta\cos\theta,$$

$$H_r = 0, \quad \text{Constraint}$$
(11)

The Question

Outline

The Correspondence

Operators and Classical Trajectories

What is Chaos?

Poincare recurrences

The Power Spectrum

- No water-tight definition: Sensitibity to the initial conditions
- Largest Lyapunov Exponent.
- Poincaré sections: Breaking of the Kolmogorov-Arnold-Moser tori.
- Power Spectrum

The Question

Outline

The Correspondence

Operators and Classical Trajectories

What is Chaos?

Poincare recurrences

The Power Spectrum

Where to go?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のの⊙

• Poincaré sections and the destruction of the KAM torus

Lyapunov Exponent and the Poincaré Recurrence Time

$$\delta \vec{X}(t) = e^{\vec{\lambda} t} \delta \vec{X}(0).$$

$$t_{PR} = \frac{1}{\lambda}.$$

(12)

(13)

The Question

Outline

The Correspondence

Operators and Classical Trajectories

What is Chaos?

Poincare recurrences

The Power Spectrum

Largest Lyapunov Exponet: Precision

The Question

Outline

The Correspondence

Operators and Classical Trajectories

What is Chaos?

Poincare recurrences

The Power Spectrum

Where to go?

・ロト・西ト・西ト・西ト・日・

The distance between two strings

 Berenstein-Corrado-Fischler-Maldacena: Correlations of two circular Wilson Loops = exchange of light states

$$\begin{split} \frac{\langle W(\mathcal{C},L)W(\mathcal{C},0)\rangle}{\langle W(\mathcal{C},L)\rangle\langle W(\mathcal{C},0)\rangle} &= \sum_{i,j;m,n} c_i^{(m)} c_j^{(n)} a^{\Delta_i^{(m)} + \Delta_j^{(n)}} \langle \mathcal{O}_i^{(m)}(L)\mathcal{O}_j^{(n)}(0)\rangle \\ &= \sum_i (c_i^{(0)})^2 \frac{a^{2\Delta_i^{(0)}}}{L^{2\Delta_i^{(0)}}} \\ &+ \sum_{i,\{m,n\} \neq \{0,0\}} c_i^{(m)} c_i^{(n)} a^{\Delta_i^{(m)} + \Delta_i^{(n)}} \langle \mathcal{O}_i^{(m)}(L)\mathcal{O}_i^{(n)}(0) \end{split}$$

The Question

Outline

The Correspondence

Operators and Classical Trajectories

What is Chaos?

Poincare recurrences

The Power Spectrum

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つのの

The Question

Outline

The Correspondence

Operators and Classical Trajectories

What is Chaos?

Poincare recurrences

The Power Spectrum

Poincare recurrences and Unitarity

- Initial perturbation a thermal system will be damped by thermal dissipation as long as the time scale is too short to resolve possible gaps in the spectrum (Heisenberg times).
- Heisenberg time $t_H = 1/\omega$ discreteness. For $t \ll t_H$ the spectrum is approximately continuous.

$$A(t) = e^{itH} A(0) e^{-itH},$$

$$G_E(t) = e^{-S(E)} \sum_{E_i, E_j \le E} |A_{ij}|^2 e^{i(E_i - E_j)t}.$$

・ロト ・ 雪 ト ・ ヨ ト ・ ヨ ト

The Question

Outline

The Correspondence

Operators and Classical Trajectories

What is Chaos?

Poincare recurrences

The Power Spectrum

Poincare recurrences

- If the matrix elements of some operator A in the energy basis have frequency with Γ, the correlator will decay with characteristic lifetime of order Γ⁻¹: G_E(t) Standard dissipative behavior in Γ⁻¹ ≪ t ≪ t_H
- For t > t_H most phases in G_E(t) would have completed a period and the function G_E(t) starts showing irregularities; it is a quasiperiodic function of time. Despite thermal damping, it returns arbitrarily close to the initial value over periods of the order of the recurrence time.
- The new conditions: We look at strings and observe the enhancing effect of some other charge.

$$e^{-N^2} \longrightarrow e^{-N^2/J^2} \sim \mathcal{O}(1).$$
 (14)

The Question

Outline

The Correspondence

Operators and Classical Trajectories

What is Chaos?

Poincare recurrences

The Power Spectrum

The power spectrum of Henon-Heiles

$$H = \frac{1}{2m} \left(p_x^2 + p_y^2 \right) + \frac{k}{2} \left(x^2 + y^2 \right) + \lambda \left(x^2 y - \frac{1}{3} y^3 \right)$$
(15)

The Question

Outline

The Correspondence

Operators and Classical Trajectories

What is Chaos?

Poincare recurrences

The Power Spectrum

Where to go?

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● ○ ○ ○

Power Spectrum: Ring string in Schwarzschild-AdS

The Question

Outline

The Correspondence

Operators and Classical Trajectories

What is Chaos?

Poincare recurrences

The Power Spectrum

Summary

- Following the trajectories of nearby strings → Positive Lyapunov Exponent.
- Late-time behavior of correlation functions = Poincaré Recurrences
- Lyapunov Exponent ↔ Poincaré recurrence time
- Poincaré recurrences = Unitarity
- Unitarity: The anti-information loss.

The Question

Outline

The Correspondence

Operators and Classical Trajectories

What is Chaos?

Poincare recurrences

The Power Spectrum

Outlook

 A concrete Quantitative argument involving unitarity in black hole physics.

$$t_{PR} = \frac{1}{\lambda.}$$

• What about other configurations? Branes moving in AdS/CFT. The 1/N exactness of Wilson Loops.

$$e^{-N^2} \longrightarrow e^{-N^2/S^2} \approx \mathcal{O}(1).$$
 (17)

 The integrability/chaos balance for point particles and for strings: KAM-theorem, Anosov story.

The Question

Outline

The Correspondence

Operators and Classical Trajectories

What is Chaos?

Poincare recurrences

(16)

The Power Spectrum