The Question

Chaos in the Gauge/Gravity Correspondence

Leopoldo A. Pando Zayas

T. Raben and C. Terrero-Escalante

University of Michigan
XII Mexican Workshop on Particles and Fields, Mazatlán, November 2009

The main question

- Semiclassical Physics Makes Sense
- Classical Trajectories are Important
- What is the meaning of it all? What is the meaning on the full Phase Space?
- A window into non-equilibrium physics

The Question

Outline

The Question

- The Gauge/Gravity Correpondence: Regge, 't Hooft, Maldacena
- Operator/State correspondence in the AdS/CFT
- More Operator/State: Regge trajectories, BMN, GKP
- From Trajectory to Phase Space
- Beyond Integrability.
- What is chaos?
- What is the meaning of Chaos in the meaning of Chaos in the Gauge/Gravity Correspondence
- outlook

Regge Trajectories

- Hadronic Physics was a string theory already!
- Regge trajectories are best explain by spectrum of a rotating string: $J \sim M^{2}$.

Outline
The
Correspondence
Operators and
Classical
Trajectories
What is Chaos?
Volume 8, Number 1
PHYSICAL REVIEW LETTERS
JANUARY 1, 1962

FIG. 1. The spin of particles of baryon number less than two, plotted against the square of their mass in units of $m_{\pi}{ }^{2}$. In order to give a rough indication of slopes, the dashed lines connect pairs of points supposedly on the same trajectories, as explained in the text, but a strict linear behavior of the trajectories is not to be inferred.

Poincare
recurrences
The Power
Spectrum
Where to go?

The Question
Outline

Correspondence
Operators and
Classical
Trajectories
What is Chaos?
Poincare
recurrences
The Power
Spectrum
Where to go?

AdS/CFT Correspondence

$$
\begin{equation*}
Z_{F T}[J]=Z_{\text {String }}[\phi] . \tag{1}
\end{equation*}
$$

- Parameters:
$g_{Y M}^{2}=4 \pi g_{\text {string }}$
$N=\int_{S^{5}} F_{5}$
$R_{S^{5}}=R_{A d S_{5}}=\left(g_{Y M}^{2} N\right)^{1 / 4} l_{s}$
- Same superconformal symmetry

The Question
Outline
The
Correspondence
Operators and
Classical
Trajectories
What is Chaos?

Poincare

recurrences
The Power
Spectrum $S O(2,4) \times S O(6) \subset S U(2,2 \mid 4)$

- States on AdS = Operators in the CFT Single Particle state \leftrightarrow single Trace $\operatorname{Tr} F X$... Multi-Particle \leftrightarrow Multitrace $\operatorname{Tr}(F X \ldots X) \operatorname{Tr}(F \ldots X . . . X)$
Chiral primaries (protected, BPS) \leftrightarrow Supergravity modes

Berenstein-Maldacena-Nastase

Almost BPS operators

$$
\begin{gather*}
\mathcal{O}^{J}=\frac{1}{\sqrt{J N^{J}}} \operatorname{Tr} Z^{J} . \tag{2}\\
Z=\phi_{1}+i \phi_{2} . \tag{3}\\
\Delta-J=\sum_{-\infty}^{\infty} N_{n} \sqrt{1+\frac{\lambda}{J^{2}} n^{2} .} \tag{4}\\
\mathcal{O}_{n,-n}^{J}=\frac{1}{\sqrt{J N^{J+2}}} \sum_{l=0}^{J} e^{\frac{2 \pi i n}{J} l} \operatorname{Tr}\left(\phi Z^{l} \psi Z^{J-l}\right) . \tag{5}
\end{gather*}
$$

Spectrum
Where to go?

Twist-two Operators Past and Present

- Twist-two operators Gross-Wilczek (DIS)

$$
\begin{equation*}
\operatorname{Tr} \bar{\Psi} \nabla_{\left(a_{1}\right.} \ldots \nabla_{\left.a_{n}\right)} \Psi, \Delta-S=f(\lambda) \ln n \tag{6}
\end{equation*}
$$

- Twist-two operators in AdS/CFT: GKP, Kruczenski, Makeenko

$$
\begin{align*}
& \operatorname{Tr} \Phi \nabla_{\left(a_{1}\right.} \ldots \nabla_{\left.a_{n}\right)} \Phi \tag{7}\\
& \Delta-S=\frac{\sqrt{\lambda}}{\pi} \ln S .
\end{align*}
$$

- A long production about the precise spectrum of these operators.

$$
\begin{aligned}
& L=-4 \frac{R^{2}}{2 \pi \alpha^{\prime}} \int_{0}^{\rho_{0}} d \rho \sqrt{\cosh ^{2} \rho-(\dot{\phi})^{2} \sinh ^{2} \rho}, \quad \operatorname{coth}^{2} \rho_{0}=\dot{\phi}=\boldsymbol{T} \text { The curesition } \\
& E=4 \frac{R^{2}}{2 \pi \alpha^{\prime}} \int_{0}^{\rho_{0}} d \rho \frac{\cosh ^{2} \rho}{\sqrt{\cosh ^{2} \rho-\omega^{2} \sinh ^{2} \rho}} \\
& S=4 \frac{R^{2}}{2 \pi \alpha^{\prime}} \int_{0}^{\rho_{0}} d \rho \frac{\omega \sinh ^{2} \rho}{\sqrt{\cosh ^{2} \rho-\omega^{2} \sinh ^{2} \rho}} \\
& \Delta-S=\frac{\sqrt{\lambda}}{\pi} \ln S . \\
& \text { The } \\
& \text { Correspondence } \\
& \text { Classical } \\
& \text { Trajectories } \\
& \text { What is Chaos? } \\
& \text { recuriences } \\
& \text { The Power } \\
& \text { Spectrum } \\
& \text { (10) } \\
& \text { Where to go? }
\end{aligned}
$$

General Properties

The Question

- Classical conserved quantities \equiv Quantum Numbers
- What matters are the conserved quantities not the trajectories
- Q: What is the meaning of the trajectory more generally, is it just to give the quantum numbers?
- It is natural to study the whole phase space, the space of all possible trajectories

Setup

$$
\begin{aligned}
\mathcal{L}= & \frac{1}{2} \sqrt{g} g^{a b} G_{\mu \nu} \partial_{a} X^{\mu} \partial_{b} X^{\nu} . \\
d s^{2}= & -f d t^{2}+\frac{d r^{2}}{f(r)}+r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \psi^{2}+\cos ^{2} \theta d \phi^{2}\right), \\
& f(r)=1+\frac{r^{2}}{b^{2}}, \quad f(r)=1+\frac{r^{2}}{b^{2}}-\frac{w_{4} M}{r^{2}} \\
t= & t(\tau), r=r(\tau), \theta=\theta(\tau), \phi=\phi(\tau), \psi=\alpha \sigma, \\
\mathcal{L}= & \frac{1}{2} f \dot{t}^{2}-\frac{\dot{r}^{2}}{2 f}-\frac{r^{2}}{2}\left(\dot{\theta}^{2}+\cos ^{2} \theta \dot{\phi}^{2}\right)+\frac{r^{2}}{2} \alpha^{2} \sin ^{2} \theta
\end{aligned}
$$

Outline
The
Correspondence
Operators and
Classical
Trajectories
What is Chaos?
Poincare
recurrences
The Power
Spectrum
Where to go?

The Question
Outline

$$
\begin{aligned}
H_{r} & =\frac{f}{2} p_{r}^{2}+\frac{1}{2 r^{2}} p_{\theta}^{2}+\frac{l^{2}}{2 r^{2} \cos ^{2} \theta}+\frac{\alpha^{2}}{2} r^{2} \sin ^{2} \theta-\frac{E^{2}}{2 f}, \\
\dot{r} & =-f p_{r}, \\
\dot{p_{r}} & =\frac{E^{2}}{2 f^{2}} f^{\prime}+\frac{f^{\prime}}{2} p_{r}^{2}-\frac{1}{r^{3}} p_{\theta}^{2}-\frac{l^{2}}{r^{3} \cos ^{2} \theta}+\alpha^{2} r \sin ^{2} \theta \\
\dot{\theta} & =-\frac{1}{r^{2}} p_{\theta}
\end{aligned}
$$

The
Correspondence
Operators and
Classical
Trajectories
What is Chaos?
Poincare
recurrences
The Power
Spectrum
Where to go?

$$
\dot{p}_{\theta}=\frac{l^{2}}{r^{2}} \frac{\sin \theta}{\cos ^{3} \theta}+\alpha^{2} r^{2} \sin \theta \cos \theta
$$

$$
H_{r}=0, \quad \text { Constraint }
$$

What is chaos?

- No water-tight definition: Sensitibity to the initial conditions
- Largest Lyapunov Exponent.
- Poincaré sections: Breaking of the Kolmogorov-Arnold-Moser tori.
- Power Spectrum
- Poincaré sections and the destruction of the KAM torus

The Question
Outline
The
Correspondence
Operators and
Classical
Trajectories
What is Chaos?
Poincare
recurrences
The Power
Spectrum
Where to go?

Lyapunov Exponent and the Poincaré Recurrence Time

The Question
Outline
The
Correspondence
Operators and
Classical
Trajectories

$$
\begin{equation*}
\delta \vec{X}(t)=e^{\vec{\lambda} t} \delta \vec{X}(0) . \tag{12}
\end{equation*}
$$

Poincare
recurrences
The Power

$$
t_{P R}=\frac{1}{\lambda}
$$

Spectrum
(13)

Where to go?

Largest Lyapunov Exponet: Precision

The
Correspondence
Operators and
Classical
Trajectories
What is Chaos?
Poincare
recurrences
The Power
Spectrum

Where to go?

The distance between two strings

- Berenstein-Corrado-Fischler-Maldacena: Correlations of two circular Wilson Loops \equiv exchange of light states

$$
\begin{aligned}
\frac{\langle W(\mathcal{C}, L) W(\mathcal{C}, 0)\rangle}{\langle W(\mathcal{C}, L)\rangle\langle W(\mathcal{C}, 0)\rangle}= & \sum_{i, j ; m, n} c_{i}^{(m)} c_{j}^{(n)} a^{\Delta_{i}^{(m)}+\Delta_{j}^{(n)}\left\langle\mathcal{O}_{i}^{(m)}(L) \mathcal{O}_{j}^{(n)}(0)\right\rangle} \\
= & \sum_{i}\left(c_{i}^{(0)}\right)^{2} \frac{a^{2 \Delta_{i}^{(0)}}}{L^{2 \Delta_{i}^{(0)}}} \\
& +\sum_{i,\{m, n\} \neq\{0,0\}} c_{i}^{(m)} c_{i}^{(n)} a^{\Delta_{i}^{(m)}+\Delta_{i}^{(n)}}\left\langle\mathcal{O}_{i}^{(m)}(L) \mathcal{O}_{i}^{(n)}(0)\right\rangle .
\end{aligned}
$$

The Question

The
Correspondence
Operators and
Classical
Trajectories
What is Chaos?
Poincare
recurrences
The Power
Spectrum
Where to go?

Poincare recurrences and Unitarity

- Initial perturbation a thermal system will be damped by thermal dissipation as long as the time scale is too short to resolve possible gaps in the spectrum (Heisenberg times).
- Heisenberg time $t_{H}=1 / \omega$ - discreteness. For $t \ll t_{H}$ the spectrum is approximately continuous.

The Question

$$
\begin{aligned}
A(t) & =e^{i t H} A(0) e^{-i t H} \\
G_{E}(t) & =e^{-S(E)} \sum_{E_{i}, E_{j} \leq E}\left|A_{i j}\right|^{2} e^{i\left(E_{i}-E_{j}\right) t}
\end{aligned}
$$

Poincare recurrences

- If the matrix elements of some operator A in the energy basis have frequency with Γ, the correlator will decay with characteristic lifetime of order Γ^{-1} : $G_{E}(t)$ Standard dissipative behavior in $\Gamma^{-1} \ll t \ll t_{H}$
- For $t>t_{H}$ most phases in $G_{E}(t)$ would have completed a period and the function $G_{E}(t)$ starts showing irregularities; it is a quasiperiodic function of time. Despite thermal damping, it returns arbitrarily close to the initial value over periods of the order of the recurrence time.
- The new conditions: We look at strings and observe the enhancing effect of some other charge.

$$
\begin{equation*}
e^{-N^{2}} \longrightarrow e^{-N^{2} / J^{2}} \sim \mathcal{O}(1) \tag{14}
\end{equation*}
$$

Outline
The
Correspondence
Operators and
Classical
Trajectories
What is Chaos?
Poincare
recurrences
The Power
Spectrum
Where to go?

The power spectrum of Henon-Heiles

$$
\begin{equation*}
H=\frac{1}{2 m}\left(p_{x}^{2}+p_{y}^{2}\right)+\frac{k}{2}\left(x^{2}+y^{2}\right)+\lambda\left(x^{2} y-\frac{1}{3} y^{3}\right) \tag{15}
\end{equation*}
$$

The Question
Outline
The
Correspondence
Operators and
Classical
Trajectories
What is Chaos?
Poincare
recurrences
The Power
Spectrum
Where to go?

Power Spectrum: Ring string in Schwarzschild-AdS

The Question
Outline
The
Correspondence

Operators and
Classical
Trajectories
What is Chaos?
Poincare
recurrences
The Power
Spectrum
Where to go?

Summary

The Question

- Lyapunov Exponent \leftrightarrow Poincaré recurrence time
- Poincaré recurrences \equiv Unitarity
- Unitarity: The anti-information loss.

Outlook

The Question

$$
\begin{equation*}
t_{P R}=\frac{1}{\lambda} \tag{16}
\end{equation*}
$$

- What about other configurations? Branes moving in AdS/CFT. The $1 / N$ exactness of Wilson Loops.

$$
\begin{equation*}
e^{-N^{2}} \longrightarrow e^{-N^{2} / S^{2}} \approx \mathcal{O}(1) \tag{17}
\end{equation*}
$$

- The integrability/chaos balance for point particles and for strings: KAM-theorem, Anosov story.

