

Present and Future Oscillation Experiments: Lecture 3 M. Shaevitz Columbia University

Outline

- Lecture 1: Experimental Neutrino Physics
 - Neutrino Physics and Interactions
 - Neutrino Mass Experiments
 - Neutrino Sources/Beams and Detectors for Osc. Exp's
- Lecture 2: The Current Oscillation Results
 - Solar and Kamland Neutrino Results
 - Atmospheric and Accelerator Neutrino Results
 - Global Oscillation Fits
- Lecture 3: Present and Future Oscillation Experiments
 - The Fly in the Ointment: LSND and MiniBooNE
 - Searches for θ_{13} / Mass Hierarchy / CP Violation
 - Current Hints
 - Reactor Experiments
 - Longbaseline experiments
 - Combining Experiments
 - Future Plans for Oscillation Experiments

Current Oscillation Summary

The Fly in the Ointment – "La mosca en la sopa" The LSND Anomaly

LSND took data from 1993-98 - 49,000 Coulombs of protons - L = 30m and 20 < E_v < 53 MeV With an oscillation probability of $(0.264 \pm 0.067 \pm 0.045)\%$.

3.8 σ evidence for oscillation.

LSND Interpretations

LSND observed a (~3.8 σ) excess of \overline{v}_e events in a pure \overline{v}_μ beam: 87.9 ± 22.4 ± 6.0 events Oscillation Probability: $P(\overline{v}_\mu \rightarrow \overline{v}_e) = (0.264 \pm 0.067 \pm 0.045)\%$

The MiniBooNE Experiment at Fermilab

- Proposed in summer 1997, operating since 2002
- Goal to confirm or exclude the LSND result Similar L/E as LSND
 - Different systematics: event signatures and backgrounds different from LSND
 - High statistics: ~ x5 LSND
- Since August 2002 have collected data:
 - 6.9×10²⁰ POT ν
 - 5.1×10²⁰ POT $\overline{\nu}$

MiniBooNE $\nu_{\mu} \rightarrow \nu_{e}$ Appearance Search in LSND Region ⁷

New MiniBooNE $v_{\mu} \rightarrow v_{e}$ Appearance Results

- · The antineutrino search important because
 - Provides direct tests of LSND \overline{v} appearance
 - More information on low-energy excess
- The backgrounds at low-energy are almost the same for the neutrino and antineutrino data samples.
- Antineutrino analysis is the same as the neutrino analysis.
- First antineutrino result has low statistics
 - 3.4×10²⁰ POT giving about 100K event
 - Inconclusive wrt LSND

No indication of \overline{v} data-MC excess:

200-475 MeV: -0.5 ± 11.7 events

475-1250 MeV: 3.2 ± 10.0 events

Low Energy Excess Models

- Few standard model explanations and many new physics ideas
- Many models have equal effects in neutrinos and antineutrinos \Rightarrow These models are "disfavored" by absence of \overline{v}_e excess.

Possible explanation	Status	
Anomaly Mediated Neutrino-Photon Interactions:	Disfavored	
Harvey, Hill, & Hill, arXiv: arXiv:0905.029		
CP-Violation 3+2 Model:	Possible	
Maltoni & Schwetz, arXiv:0705.0107; T. Goldman, G. J. Stephenson Jr., B. H. J. McKellar, Phys. Rev. D75 (2007) 091301.		
Lorentz Violation:	Possible	
Katori, Kostelecky, & Tayloe, Phys. Rev. D74 (2006) 105009		
CPT Violation 3+1 Model:	Possible	
Barger, Marfatia, & Whisnant, Phys. Lett. B576 (2003) 303		
VSBL Electron Neutrino Disappearance:	Disfavored	
Giunti and Laveder arXiv:0902.1992		
New Gauge Boson with Sterile Neutrinos:	Disfavored	
Ann E. Nelson & Jonathan Walsh, arXiv:0711.1363		

Future Plans and Prospects

- Will triple the MiniBooNE \overline{v} data over the next 2 years \Rightarrow Allow better comparison of low-energy excess
- New MicroBooNE Experiment approved at Fermilab
 - Liquid Argon TPC detector which can address the low-energy excess:
 - Reduced background levels
 - Is excess due to single electron or photon events?
 - Approximately 70-ton fiducial volume detector, located near MiniBooNE (initial data: end 2011)

The Search for the "Little Mixing Angle" (θ_{13}), CP Violation, and the Mass Hierarchy

Oscillations Parameterized by 3x3 Unitary Mixing Matrix

$$\begin{pmatrix} v_{e} \\ v_{\mu} \\ v_{\tau} \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3}e^{i\delta} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \begin{pmatrix} v_{1} \\ v_{2} \\ v_{3} \end{pmatrix}$$

$$\begin{pmatrix} Flavor \\ Eigenstate \end{pmatrix} = (Mixing Matrix) \begin{pmatrix} Mass \\ Eigenstate \end{pmatrix}$$

Three mass splittings: $\Delta m_{12}^2 = m_1^2 - m_2^2$, $\Delta m_{23}^2 = m_2^2 - m_3^2$, $\Delta m_{31}^2 = m_3^2 - m_1^2$ But only two are independent since only three masses If $\delta \neq 0$, then have CP violation $\Rightarrow P(v_{\mu} \rightarrow v_{e}) \neq P(\overline{v}_{\mu} \rightarrow \overline{v}_{e})$ solar atmospheric Current Measurements: $\Delta m_{12}^2 = 8 \times 10^{-5} \text{ eV}^2$, $\Delta m_{13}^2 \approx \Delta m_{23}^2 = 2.5 \times 10^{-3} \text{ eV}^2$ $U = \begin{pmatrix} \cos\theta_{12} & \sin\theta_{12} & 0\\ -\sin\theta_{12} & \cos\theta_{12} & 0\\ 0 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} \cos\theta_{13} & 0 & e^{-i\delta_{CP}}\sin\theta_{13}\\ 0 & 1 & 0\\ -e^{i\delta_{CP}}\sin\theta_{13} & 0 & \cos\theta_{13} \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0\\ 0 & \cos\theta_{23} & \sin\theta_{23}\\ 0 & -\sin\theta_{23} & \cos\theta_{23} \end{pmatrix}$ "Little mixing angle, θ_{13} " 3-mixing Solar: $\theta_{12} \sim 33^{\circ}$ sin² $2\theta_{13} < 0.2$ at 90% CL Atmospheric: $\theta_{23} \sim 45^{\circ}$ angles (or $\theta_{13} < 13^{\circ}$) and $\delta = ??$

CP Violation in Neutrino Oscillations

• Disappearance measurements cannot see CP violation effect

$$P(\nu_{\mu} \to \nu_{\mu}) = P(\overline{\nu}_{\mu} \to \overline{\nu}_{\mu})$$

- Very, very hard to see CP violation effects in exclusive (appearance) measurements.
 - Only can see CP violation effects if an experiment is sensitive to oscillations involving at least three types of neutrinos.

$$P(v_{\mu} \to v_{e}) - P(\bar{v}_{\mu} \to \bar{v}_{e}) = 4 \operatorname{Im}(U_{\mu 1}U_{e1}^{*}U_{\mu 3}^{*}U_{e3})(s_{12} + s_{23} + s_{31})$$

where $\mathbf{s}_{ij} = \sin(\delta m_{ij}^{2} L/2E)$ and $\delta m_{ij}^{2} = m_{i}^{2} - m_{j}^{2}$

- All the terms (s_{12}, s_{13}, s_{23}) must not be <<1 or effectively becomes only two component oscillation
 - For example, if $s_{31} \approx 0$ then $s_{12} \approx -s_{23} \Rightarrow s_{12} + s_{31} + s_{23} \approx 0$
- ⇒To see CP violation must be sensitive to all three neutrino oscillations
- ⇒ Make L/E experiment appropriate for $\Delta m_{23}^2 = 2.5 \times 10^{-3} \text{ eV}^2$ and look for the small effects from $\Delta m_{12}^2 = 8 \times 10^{-5} \text{ eV}^2$

CP violation in the neutrino sector may explain the matter-antimatter asymmetry in the universe

Before the electroweak phase transition...

Interference between these two types of diagrams can lead to a different rate of decay to particles than antiparticles \rightarrow CP Violation

which seems more plausible if we see CP violation in the light neutrinos

Current Global Fits to Solar, Atmospheric, Accelerator, and ¹⁵ Reactor Data

Parameter	Best fit	2σ	3σ
$\Delta m_{21}^2 (10^{-5} \mathrm{eV}^2)$	7.6	7.3-8.1	7.1 - 8.3
$ \Delta m_{31}^2 $ (10 ⁻³ eV ²)	2.4	2.1 – 2.7	2.0 - 2.8
$\sin^2 \theta_{12}$	0.32	0.28 - 0.37	0.26 - 0.40
$\sin^2 \theta_{23}$	0.50	0.38 - 0.63	0.34 - 0.67
$\sin^2 \theta_{13}$	0.007	≤ 0.033	≤ 0.050

Big Questions in Neutrino Oscillations

Still missing some information

What $sin^2 2\theta_{13}$ Sensitivity Is Needed?

- Theoretical / Phenomenology
 - Really no solid information or constraints.
 - $U_{v} \neq U_{CKM}$
 - Data driven not theory driven field
 - $sin^2 2\theta_{13}$ could be very small if associated with some symmetry.
 - Models:
 - Simple models do not fit current oscillation data
 - \Rightarrow Put in small? perturbations

 $\theta_{13} = \Delta m_{\text{solar}}^2 / \Delta m_{\text{atmos}}^2 \text{ or } \sqrt{(..)}$

or $\sqrt{(m_e/m_\mu)}$

(i.e. Altarelli, Feruglio, hep-ph/0206077)

?? $sin^2 2\theta_{13} \approx$ very small to CHOOZ limit??

- Practical / Political
 - Information for next step
 - Need $\sin^2 2\theta_{13} > \sim 0.01$ to measure neutrino mass hierarchy and CP violation with longbaseline exp's
 - Probably will not embark on expensive (~500M\$) project without a clear measurement of $sin^2 2\theta_{13}$
 - Competition and Complementarity
 - Proposed experiments have sensitivity in the >sin²2θ₁₃≈0.01 region
 - Combination of appearance and disappearance may be powerful if comparable sensitivity

Predicted Values of θ_{13} **for Various Models**

Carl H. Albright, arXiv:0803.4176v1 [hep-ph] 28 Mar 2008

MINOS v_e Appearance: Hint of θ_{13} ?

A.Habig, TAUP2009

35 $v_{\rm e}$ candidate events are selected at the Far detector. Expected background: 27±5(stat)±2(syst) (1.5 σ)

Other Hints of Non-zero θ_{13}

20

Experimental Methods to Measure the "Little Mixing Angle", θ_{13}

- Long-Baseline Accelerators: Appearance $(v_{\mu} \rightarrow v_{e})$ at $\Delta m^{2} \approx 2.5 \times 10^{-3} \text{ eV}^{2}$
 - Look for appearance of ν_e in a pure ν_{μ} beam vs. L and E
 - Use near detector to measure background $\nu_{\rm e}{}^{\rm \prime}{\rm s}$ (beam and misid)

T2K: $<E_v> = 0.7 \text{ GeV}$ L = 295 km

- Reactors: Disappearance ($\bar{\rm v}_e \! \rightarrow \bar{\rm v}_e$) at $\Delta m^2 \! \approx \! 2.5 \! \times \! 10^{\text{-3}} \, eV^2$
 - Look for a change in \overline{v}_e flux as a function of L and E
 - Look for a non- $1/r^2$ behavior of the ν_e rate
 - Use near detector to measure the un-oscillated flux

Double Chooz: $\langle E_v \rangle = 3.5 \text{ MeV}$ L = 1100 m

Long-Baseline Accelerator Appearance Experiments

- Oscillation probability complicated and dependent not only on θ_{13} but also:
 - 1. CP violation parameter (δ)
 - 2. Mass hierarchy (sign of Δm_{31}^2)
 - 3. Size of $sin^2\theta_{23}$

$$\begin{split} P(\nu_{\mu} \to \nu_{e}) &= 4C_{13}^{2} S_{23}^{2} \sin^{2} \frac{\Delta m_{31}^{2} L}{4E} \times \left(1 + \frac{2a}{\Delta m_{31}^{2}} \left(1 - 2S_{13}^{2}\right)\right) \\ &+ 8C_{13}^{2} S_{12} S_{13} S_{23} (C_{12} C_{23} \cos \delta - S_{12} S_{13} S_{23}) \cos \frac{\Delta m_{32}^{2} L}{4E} \sin \frac{\Delta m_{31}^{2} L}{4E} \sin \frac{\Delta m_{21}^{2} L}{4E} \\ &- 8C_{13}^{2} C_{12} C_{23} S_{12} S_{13} S_{23} \sin \delta \sin \frac{\Delta m_{32}^{2} L}{4E} \sin \frac{\Delta m_{31}^{2} L}{4E} \sin \frac{\Delta m_{21}^{2} L}{4E} \\ &+ 4S_{12}^{2} C_{13}^{2} \left\{C_{12}^{2} C_{23}^{2} + S_{12}^{2} S_{23}^{2} S_{13}^{2} - 2C_{12} C_{23} S_{12} S_{23} S_{13} \cos \delta\right\} \sin^{2} \frac{\Delta m_{21}^{2} L}{4E} \\ &- 8C_{13}^{2} S_{13}^{2} S_{23}^{2} \cos \frac{\Delta m_{32}^{2} L}{4E} \sin \frac{\Delta m_{31}^{2} L}{4E} \frac{aL}{4E} \left(1 - 2S_{13}^{2}\right) \end{split}$$

⇒ These extra dependencies are both a "curse" and a "blessing"

Reactor Disappearance Experiments

- Reactor disappearance measurements provide a straight forward method to measure θ_{13} with no dependence on matter effects and CP violation

$$P(\overline{v_e} \to \overline{v_e}) = 1 - \sin^2 2\theta_{13} \sin^2 \frac{\Delta m_{13}^2 L}{4E} + \text{ small terms}$$

Reactor Neutrino Experiments

Reactor Measurements of θ_{13}

Reactor Disappearance Oscillation Probability

- A reactor disappearance experiment provides a straight forward method to measure $\sin^2 2\theta_{13}$ with no dependence on matter effect and CP violation
 - Only complication is associated with the atmospheric and solar Δm^2 interference terms which is small.

$$P_{\bar{\nu}_{e} \to \bar{\nu}_{e}} = 1 - 2\sin^{2}\theta_{13}\cos^{2}\theta_{13}\sin^{2}(\frac{\Delta m_{31}^{2}L}{4E})$$

$$- \frac{1}{2}\cos^{4}\theta_{13}\sin^{2}(2\theta_{12})\sin^{2}(\frac{\Delta m_{21}^{2}L}{4E}) \qquad \text{Measure } \Delta m_{12}^{2}: \text{Kamland}$$

$$+ 2\sin^{2}\theta_{13}\cos^{2}\theta_{13}\sin^{2}\theta_{12}(\cos(\frac{\Delta m_{31}^{2}L}{2E} - \frac{\Delta m_{21}^{2}L}{2E}) - \cos(\frac{\Delta m_{31}^{2}L}{2E}))$$

Reactor Measurements of $P(\overline{v_e} \rightarrow \overline{v_e})$

Reactor Neutrino Detection

Inverse Beta Decay (IBD) Signal

Correlated Background

Neutrons from cosmic ray muon interactions in rock \Rightarrow Fake signal

- 1) Scattered proton looks like positron
- 2) Neutron then gets captured

Backgrounds for Reactor Disappearance Exp's

 Backgrounds to the e⁺ - n coincidence signal

Uncorrelated Backgrounds

- ambient radioactivity
- accidentals
- cosmogenic neutrons

Correlated Backgrounds

- cosmic rays induce neutrons in the surrounding rock and buffer region of the detector
- cosmogenic radioactive nuclei that emit delayed neutrons in the detector

eg. ⁸He (T1/2=119ms) ⁹Li (T1/2=178ms)

Previous CHOOZ Reactor Experiment

- CHOOZ Experiment probed this region
 - One detector experiments
 - Major systematic associated with _____ reactor flux
 - Detectors used liquid scintillator with gadolinium and buffer zones for background reduction
 - Shielding:
 - CHOOZ: 300 mwe
 - Fiducial mass:
 - CHOOZ: 5 tons @ 1km, 5.7 GW
 - ~2.2 evts/day/ton with
 0.2-0.4 bkgnd evts/day/ton
 - ~3600 \overline{v} events

parameter	relative error $(\%)$
reaction cross section(flux)	1.9%
number of protons	0.8%
detection efficiency	1.5%
reactor power	0.7%
energy released per fission	0.6%
combined	2.7%

Current Limits on $sin^2\theta_{13}$

Best current limit from: CHOOZ (single detector experiment) $sin^2(2\theta_{13}) < 0.2$ $(sin^2(\theta_{13}) < 0.05)$

Upcoming Multi-Detector Reactor Experiments

Precision Reactor Disappearance Exp. Are Difficult

 Looking for a small change in the expected rate and/or shape of the observed event

Past reactor measurements:

- ⇒ Reduce systematic uncertainties due to reactor flux and detector
- \Rightarrow Larger detectors
- ⇒ **Reduce and control backgrounds**
- ⇒ Use Near/Far Detectors

Two Detector Reactor Experiment

Example Measurement (Double Chooz 3 yrs)

Detector Design Basics

• Multi-layer, high efficiency veto system

- Homogenous Volume
- Viewed by PMT's Coverage of 10% or better
- Gadolinium Loaded, Liquid Scintillator Target (10 – 20 tons) Enhances neutron capture
- Extra scintillator region to capture gammas that might leak out from Gd target region
- •Pure Mineral Oil Buffer To shield the scintillator from radioactivity in the PMT glass.

Proposed Reactor Oscillation Experiments (2005)

Current Reactor θ_{13} **Projects**

Event Rate (power x mass) vs Distance

Systematic uncertainties

		Chooz	Double-Chooz	
Reactor- induced	ν flux and $σ$	1.9 %	<0.1 %	
	Reactor power	0.7 %	<0.1 %	Two ''identical'' detectors, Low bkg
	Energy per fission	0.6 %	<0.1 %	
Detector - induced	Solid angle	0.3 %	<0.1 %	Distance measured @ 10 cm + monitor core barycenter
	Volume	0.3 %	0.2 %	Precise control of detector filling
	Density	0.3 %	<0.1 %	Accurate T control (near/far)
	H/C ratio & Gd concentration	1.2 %	<0.1 %	Same scintillator batch + Stability
	Spatial effects	1.0 %	<0.1 %	Identical detectors and monitoring
	Live time		0.25 %	Special electronic systems and monitoring
Analysis	From 7 to 3 cuts	1.5 %	0.2 - 0.3 %	Simplified cuts due to detector design
Total		2.7 %	< 0.6 %	

Daya Bay Experiment

41

Reactor Experiment for Neutrino Oscillations at YoungGwang in Korea

42

Expected Sensitivities

Sensitivity Estimates for θ_{13} vs Time

From Mauro Mezzetto NT 2009

Longbaseline v_e **Appearance Experiments**

Long-Baseline Accelerator Appearance

- Oscillation probability dependent not only on mixing angles but also:
 - 1. CP violation parameter (δ)
 - 2. Mass hierarchy (sign of Δm_{31}^2)
 - 3. Size of $sin^2\theta_{23}$ (as opposed to the measured $sin^22\theta_{23}$)
- These are both complications and an opportunity to measure these parameters
 - Use information from other oscillation measurements: reactors, solar/atmospheric/accelerator disappearance
 - Use combinations of appearance measurements for neutrinos and antinuetrinos at different baselines to determine CP δ and mass hierarchy

$$P(\nu_{\mu} \rightarrow \nu_{e}) = 4C_{13}^{2}S_{13}^{2}S_{23}^{2}\sin^{2}\frac{\Delta m_{31}^{2}L}{4E} \times \left(1 + \frac{2a}{\Delta m_{31}^{2}}\left(1 - 2S_{13}^{2}\right)\right) \qquad \text{where} \\ S_{ij} = \sin\theta_{ij} \\ +8C_{13}^{2}S_{12}S_{13}S_{23}(C_{12}C_{23}\cos\delta - S_{12}S_{13}S_{23})\cos\frac{\Delta m_{32}^{2}L}{4E}\sin\frac{\Delta m_{31}^{2}L}{4E}\sin\frac{\Delta m_{21}^{2}L}{4E} \\ -8C_{13}^{2}C_{12}C_{23}S_{12}S_{13}S_{23}\sin\delta\sin\frac{\Delta m_{32}^{2}L}{4E}\sin\frac{\Delta m_{31}^{2}L}{4E}\sin\frac{\Delta m_{21}^{2}L}{4E} \\ +4S_{12}^{2}C_{13}^{2}\left\{C_{12}^{2}C_{23}^{2} + S_{12}^{2}S_{23}^{2}S_{13}^{2} - 2C_{12}C_{23}S_{12}S_{23}S_{13}\cos\delta\right\}\sin^{2}\frac{\Delta m_{21}^{2}L}{4E} \\ -8C_{13}^{2}S_{13}^{2}S_{23}^{2}\cos\frac{\Delta m_{32}^{2}L}{4E}\sin\frac{\Delta m_{31}^{2}L}{4E}\frac{aL}{4E}\left(1 - 2S_{13}^{2}\right) \\ \end{cases}$$

Ambiguities and Correlations in Appearance Measurements

$$P_{long-baseline} \simeq \sin^{2} 2\theta_{13} \sin^{2} \theta_{23} \sin^{2} \Delta$$

$$\Rightarrow \sin 2\theta_{13} \sin \theta_{CP} \cos \theta_{13} \sin 2\theta_{12} \sin 2\theta_{23} \sin^{3} \Delta$$

$$\Rightarrow \sin 2\theta_{13} \cos \theta_{CP} \cos \theta_{13} \sin 2\theta_{12} \sin 2\theta_{23} \cos \Delta \sin^{2} \Delta$$

$$\Rightarrow \alpha \sin 2\theta_{13} \cos \theta_{CP} \cos \theta_{13} \sin 2\theta_{12} \sin 2\theta_{23} \cos \Delta \sin^{2} \Delta$$

$$\Rightarrow \alpha \sin 2\theta_{13} \cos \theta_{CP} \cos \theta_{13} \sin 2\theta_{12} \sin 2\theta_{23} \cos \Delta \sin^{2} \Delta$$

$$\Rightarrow \alpha \sin 2\theta_{13} \cos \theta_{CP} \cos \theta_{13} \sin 2\theta_{12} \sin 2\theta_{23} \cos \Delta \sin^{2} \Delta$$

$$\Rightarrow \alpha \sin 2\theta_{13} \cos \theta_{CP} \cos \theta_{13} \sin 2\theta_{12} \sin 2\theta_{23} \cos \Delta \sin^{2} \Delta$$

$$\Rightarrow \alpha \sin 2\theta_{13} \cos \theta_{CP} \cos \theta_{13} \sin 2\theta_{12} \sin 2\theta_{23} \cos \Delta \sin^{2} \Delta$$

$$\Rightarrow \alpha \sin 2\theta_{13} \cos \theta_{CP} \cos \theta_{13} \sin 2\theta_{12} \sin 2\theta_{23} \cos \Delta \sin^{2} \Delta$$

$$\Rightarrow \alpha \sin^{2} \theta_{13} \sin^{2} \theta_{13} \sin^{2} \theta_{13} \sin^{2} \theta_{23} \sin^{2} \Delta$$

$$\Rightarrow \beta \sin^{2} \theta_{23} = \frac{1 \pm \sqrt{1 - \sin^{2} 2\theta_{23}}}{2}, \text{ not } \sin^{2} 2\theta_{23}$$

$$\Rightarrow \text{ Need } \sin^{2} \theta_{23} = \frac{1 \pm \sqrt{1 - \sin^{2} 2\theta_{23}}}{2}, \text{ not } \sin^{2} 2\theta_{23}$$

$$\Rightarrow \text{ Need } \sin^{2} \theta_{23} = \frac{1 \pm \sqrt{1 - \sin^{2} 2\theta_{23}}}{2}, \text{ not } \sin^{2} 2\theta_{23}$$

$$\Rightarrow \text{ Sign of } \Delta m_{31}^{2} \Rightarrow \text{ Overall shifts}$$

$$\Rightarrow \text{ Interference with subdominant } \Delta m_{12}^{2} \text{ terms}$$

$$\text{Matter Effects:}$$

$$P_{e\mu} = \sin^{2} 2\theta_{M} \sin^{2} \left(\frac{\Delta_{M}L}{2}\right)$$

$$\Delta_{M} = \sqrt{(A - \Delta \cos 2\theta)^{2} + \Delta^{2} \sin^{2} 2\theta}$$

$$\Rightarrow \text{ Need } \sin^{2} \left(\frac{\Delta_{M}L}{2}\right)$$

$$\Delta_{M} = \sqrt{(A - \Delta \cos 2\theta)^{2} + \Delta^{2} \sin^{2} 2\theta}$$

 $A = \pm \sqrt{2}G_F N_e$ (+ for neutrinos, - for antineutrinos)

Minakata and Nunokawa, hep-ph/0108085

The "Curse" and the "Blessing"

Upcoming Longbaseline Experiment: T2K and Nova

Use Near Detectors to Measure Beam Flux 50 and Backgrounds 4 blocks= IPND **T2K Near Detector UA1 Magnet Yoke** Add 2 blocks Add 4 Diverse for full Near Detector **Fine-Grain** Detectors Downstream P0D ECAL **NOvA Near Detector** (π⁰detector) **Solenoid Coil Barrel ECAL** P0D **ECAL**

2 25 3

3-5 4 GeV

NOvA Experiment in Minnesota

53 Main Backgrounds For Appearance Experiments

μ

Expected Sensitivity to θ_{13}

CP phase δ (degrees)

Experiments sensitive to $sin^2(2\theta_{13}) > 0.008$

Better Measurements of θ_{23} and Δm_{23}^2

NOvA + T2K Has Some Sensitivity to Mass Hierarchy (sign Δm_{23}^2)

95% CL Resolution of the Mass Ordering

And If One Is Lucky

- There are some values of the CP parameter δ that are easier to isolate and measure, i.e.
 If ⇒
 - $-\theta_{13}$ is big enough
 - Mass hierarchy is normal (∆m² > 0)
 - δ around $3\pi/2$

Then \Rightarrow

 Can observe a hint of CP violation at the 1 sigma level.

Need Much Larger Experiments For Measuring CP Violation \Rightarrow **Super-Beam Exps**

Future Longbaseline Experiments

Hyper-K Experiment

J-PARC Upgrade KEK Roadmap →1.7MW

Best Optimization

Huge v detector •Water Cherenkov (500 kton) •Lq. Ar TPC *O*(~100k)ton

> GUT Proton Decay

Hyper-K CP Violation Sensitivities

Long Baseline Neutrino Experiment at DUSEL

- Beam Requirements:
 - Large neutrino flux covering 1st and 2nd oscillation max points (0.8 and 2.4 GeV)
 - High purity ν_{μ} flux with little ν_{e} contamination
 - Minimize flux with energy above 5 GeV that causes background
- \Rightarrow Run at reduced energy 90 \pm 30 GeV but then less flux

DUSEL LBNE Experiment and Expectations

- Baseline experiment:
 - Three 100 kton fiducial "water Cherenkov" detectors (Each 5 times Super-K)
 - 1 MegaWatt (2.3 MW) 120 GeV beam with plug to reduce high $E_{\rm v}$
 - 3 yrs v + 3 yrs \overline{v} of data

	sin²2θ ₁₃ ≠0	sign($\Delta m_{_{31}}^2$)	CPV
	3σ , all $\delta_{_{cp}}$	3σ , all $\delta_{_{cp}}$	3σ, 50% δ _{cp}
1 MW	0.007	0.021	0.019
2.3 M	0.004	0.014	0.012

On-axis Beam May Be Better for DUSEL Exp

 On-axis beam spans large energy region that allows one to measure the oscillation probability at both the first and second maximum (sin²(1.27∆m²L/E)

1st Maximum : Gives the neutrino mass hierarchy 2nd Maximum : Sensitive to CP Violation effects 63

0 mrad

7 mrad ∣4 mrad

21 mrad

CC events/kt/3.7E 20 POT /0.2 GeV

30

25

20

15

10

rates for L = 810 km

Fermilab to DUSEL Sensitivities

NOvA - NOvA+5ktLAr - NOvA+5ktLAr+PX - NOvA+100kt LAr +PX 100ktLAr (OR 500kt WC) +New WBB+PX at DUSEL

Final Comments

- Reactor and longbaseline experiments will be soon providing new information on θ_{13}
 - θ_{13} is a important physics parameter for modeling v mixing
 - θ_{13} is key for planning future long-baseline experiments to measure CP violation and the mass hierarchy
 - If $sin^2 2\theta_{13}$ is > ~0.03, T2K and Nova can make important measurements
 - If sin²2θ₁₃ is < ~0.01, need other techniques to access the physics (1st,2nd max. measurements; Superbeam exps, Neutrino Factory....)
- Longbaseline experiments are more complicated but have the promise to give information on the mass hierarchy and CP violation
 - T2K and Nova could give some early hints of these parameters
 - Next generation superbeams will be necessary to make quantitative measurements
- There is a strong ongoing program of oscillation experiments and serious plans for taking the next step to superbeams
 - Bright future for energetic young physicists to make all this happen

Hallelujah !

CHOOZ Data and Predictions

Data Compared to Expectation

Veto Background Events

Fast neutrons

⁹Li and ⁸He

- Produced by a few cosmic ray muons through spallation
- Large fraction decay giving a correlated β+n

A few second veto after every muon that deposits more than 2 GeV in the detector may be able to reduce this rate.