

Current Neutrino Oscillation Results: Lecture 2 M. Shaevitz Columbia University

Outline

- Lecture 1: Experimental Neutrino Physics
 - Neutrino Physics and Interactions
 - Neutrino Mass Experiments
 - Neutrino Sources/Beams and Detectors for Osc. Exp's
- Lecture 2: The Current Oscillation Results
 - Solar and Kamland Neutrino Results
 - Atmospheric and Accelerator Neutrino Results
 - Global Oscillation Fits
- Lecture 3: Present and Future Oscillation Experiments
 - The Fly in the Ointment: LSND and MiniBooNE
 - Searches for θ_{13} / Mass Hierarchy / CP Violation
 - Current Hints
 - Reactor Experiments
 - Longbaseline experiments
 - Combining Experiments
 - Future Plans for Oscillation Experiments

Neutrino Oscillations

The observation of neutrino oscillations where one type of neutrino can change (oscillate) into another type implies:

1. Neutrinos have mass

and

2. Lepton number (electron, muon, tau) is not conserved $(v_e \rightarrow v_\mu, v_\mu \rightarrow v_\tau, v_e \rightarrow v_\tau)$

$$P_{Osc} = \sin^2 2\theta \sin^2 \left(1.27 \Delta m^2 L / E \right)$$

... Depends Upon Two Experimental Parameters:

- L The distance from the ν source to detector (km)
- E The energy of the neutrinos (GeV)

...And Two Fundamental Parameters:

•
$$\Delta m^2 = m_1^2 - m_2^2$$
 (eV²)
• $\sin^2 2\theta$

Derivation of Oscillation Formula (A favorite graduate exam problem)

Take the mixing matrix to be:

$$\begin{pmatrix} \boldsymbol{\nu}_e \\ \boldsymbol{\nu}_\mu \end{pmatrix} = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \boldsymbol{\nu}_1 \\ \boldsymbol{\nu}_2 \end{pmatrix}$$

At production (t = 0):

$$|\nu_{\mu}(0)\rangle = -\sin\theta|\nu_{1}\rangle + \cos\theta|\nu_{2}\rangle$$

At a later time:

$$|\psi(t)\rangle = -\sin\theta e^{-iE_1t}|\nu_1\rangle + \cos\theta e^{-iE_2t}|\nu_2\rangle$$

$$= \left(\cos^2\theta e^{-iE_1t} + \sin^2\theta e^{-iE_2t}\right) |\nu_e\rangle + \\ \sin\theta\cos\theta (e^{-iE_2t} - e^{-iE_1t}) |\nu_\mu\rangle$$

And the probability is:

$$P_{osc} = |\langle \nu_e | \psi(t) \rangle|^2$$

= $\frac{1}{2} \sin^2 2\theta [1 - \cos(E_2 - E_1)t]$

Use $E_1 = \sqrt{p^2 - m_1^2} \approx p + m_1^2/2p$ (and same for E_2) and (t/p) = (tc)/(pc) = L/E; then convert to "real" units

$$P_{osc} \approx \frac{1}{2} \sin^2 2\theta \left(1 - \cos\left(\frac{(m_2^2 - m_1^2)L}{E}\right) \right)$$
$$= \sin^2 2\theta \sin^2(1.27\Delta m^2 L/E)$$

$$P_{Osc} = \sin^2 2\theta \sin^2 \left(1.27 \Delta m^2 L / E \right)$$

See if you can derive the 1.27 factor in the formula by recovering from the hbar = c = 1.

Oscillation Phenomenology

- Two types of oscillation searches:
 - Appearance Experiment:
 - Look for appearance of v_e or v_τ in a pure v_u beam vs. L and E
 - Need to know the backgrounds
 - Disappearance Experiment:
 - Look for a change in ν_{μ} flux as a function of L and E
 - Need to know the flux and cross sections
- $P_{osc} = sin^2 2\theta sin^2 (1.27 \Delta m^2 L/E)$ sets the details of search
 - Mixing angle $sin^22\theta$ sets the needed statistics

$$P_{osc} = \sin^2(2\theta)\sin^2(1.27\Delta m^2 L/E)$$

 If you see an oscillation signal with

 $\mathbf{P}_{osc} = \mathbf{P} \pm \delta \mathbf{P}$

then carve out an **allowed region** in $(\Delta m^2, \sin^2 2\theta)$ plane.

• If you see no signal and limit oscillation with

P_{osc} < P @ 90% CL

then carve out an **excluded region** in the $(\Delta m^2, \sin^2 2\theta)$ plane.

Example of an Oscillation Signal

(Kamland Reactor Neutrino Exp)

$$\mathbf{P}_{osc} = \sin^2\left(2\theta\right)\sin^2\left(1.27\Delta m^2 L/E\right)$$

7

- The Kamland experiment measured the number of antineutrinos hitting its detector as a function of energy
 - Antineutrino source was all reactors in Japan: mean distance = 180km
- Compare measured data to expectation with and without neutrino oscillations
 - Find best set of oscillation parameters $\Delta m^2/sin^22\theta$ and uncertainties that explain the data.
- With E \approx 3 MeV and L = 180 km, 2nd oscillation maximum occurs when 1.27 Δm^2 L/E = $3\pi/2 \Rightarrow \Delta m^2 \approx 3.7 \times 3$ MeV/180,000m = 6.3×10^{-5} eV²

Example of an Oscillation Exclusion

(Double Chooz Reactor Neutrino Exp)

$$\mathbf{P}_{osc} = \sin^2\left(2\theta\right)\sin^2\left(1.27\Delta m^2 L/E\right)$$

- The Double Chooz experiment measured the number of events hitting its detector as a function of energy
 - Antineutrino source was two reactors which were ~1km away.
- Compare measured data to expectation with and without neutrino oscillations
 - Data agreed with the no oscillation hypothesis so exclude ranges of $\Delta m^2/sin^22\theta$ that are inconsistent with this agreement.
- With E \approx 3 MeV and L = 1 km, 1st oscillation maximum occurs when 1.27 Δm^2 L/E = $\pi/2 \Rightarrow \Delta m^2 \approx 1.24 \times 3$ MeV/1000m = 3.7×10^{-3} eV²

Situation in mid-1990's:

9

Three Experimental Indications for Neutrino Oscillations

Three Signal Regions (Mid 1990's)

Theoretical Prejudices before 1995

- Natural scale for ∆m² ~ 10 100 eV² since needed to explain dark matter
- Oscillation mixing angles must be small like the quark mixing angles
- Solar neutrino oscillations must be small mixing angle MSW solution because it is "cool"
- Atmospheric neutrino anomaly must be other physics or experimental problem because it needs such a large mixing angle
- LSND result doesn't fit in so must not be an oscillation signal

Theoretical Prejudices before 1995

	<u>What we know now</u>
 Natural scale for ∆m₂₃² ~ 10 – 100 eV² since needed to explain dark matter 	Wrong
 Oscillation mixing angles must be smal like the quark mixing angles 	ll Wrong
 Solar neutrino oscillations must be small mixing angle MSW solution because it is "cool" 	Wrong
 Atmospheric neutrino anomaly must be other physics or experimental problem because it needs such a large mixing a 	e Wrong angle
 LSND result doesn't fit in so must not be an oscillation signal 	????

Neutrino Revolution: 1995 - Present

- Solar Neutrino Oscillations Confirmed and Constrained
 - SNO experiments sees that total neutrino flux correct from sun but just changing flavor
 - Kamland experiment using reactor neutrinos confirms solar oscillations
 - Borexino measures ⁷Be neutrino rate
 - Combination of experiments \Rightarrow Large Mixing Angle Solution
- Atmospheric neutrino oscillations definitively confirmed
 - "Smoking Gun" ⇒ Super-K flux change with zenith angle (distance)
 - Accelerator neutrino confirmation with KEK to Super-K exp.
 - MINOS experiment makes improved Δm^2_{Atm} determination
 - Value of Δm^2 goes down to ~2.5 × 10⁻³ eV²

Solar Neutrino Deficit

Flux of solar neutrinos detected at the earth is much less than expected

 \Rightarrow Is it due to neutrino oscillations?

Super-K Exp can see the sun underground from the other side of the earth using:

$$V_e + e^- \rightarrow V_e + e$$

Super- K (Japan) image of the sun using neutrinos

(Note: actual size of sun is <1 pixel. This is a blurry image!)

Solar Neutrino Spectrum

Solar Neutrino Experiments

- Two types of experiments:
 - Chemical Extraction experiments
 - Homestake ("Chlorine") $v_e + {}^{37}Cl \rightarrow {}^{37}Ar + e^-$
 - Sage and Gallex ("Gallium") $v_e + {}^{71}Ga \rightarrow {}^{71}Ge + e^-$
 - Scattering experiments
 - SuperKamioka (Kamioka) $v_{x,e} + e^- \rightarrow v_{x,e} + e^-$ (Light water)
 - SNO (Heavy water)
 - Borexino (Liquid Scintillator)

$$v_e + d \rightarrow e^- + p + p$$

 $v_x + d \rightarrow v_x + n + p$

$$v_{\rm x,e}$$
 + e⁻ \rightarrow $v_{\rm x,e}$ + e⁻

Super-K Experiment H₂O Cerenkov Detector

• SuperK

- 22.5 kton fiducial volume
- 36 m high, 34 m diam.
- 11,146 phototubes (50 cm)
- Energy threshold: 6.5 ${\rm MeV}$
- Linac (5 16 MeV) for in-situ calibration

Sudbury Neutrino Observatory (SNO)

- Advantages of Heavy vs Light Water
 - $v_x + d \rightarrow v_x + n + p (D_2O)$
 - $\nu_e^{} + d \rightarrow p + p + e^- (D_2^{}O)$
 - $v_x + e^- \rightarrow v_x + e^- \qquad (H_2O \text{ or } D_2O)$
 - Cross section $\propto (E_{cm})^2 = s$
 - $s = 2 m_{target} E_v$ $\Rightarrow s_N/s_{e-} = M_p/M_e \approx 2000$
 - But x5 more electrons in H_2O than n's

SNO (1kton) 8.1 CC events/day SuperK (22ktons) 25 events/day

Neutrino Reactions in SNO

- equal cross section for all active v flavors

Three Phases for neutron capture:

- 1) On Deuterium
- 2) On Salt
- 3) Using ³He Counters

SNO Physics

- First measurement of the total flux of ⁸Be neutrinos: \Rightarrow Solar Osci $\phi_{total}(^{8}Be) = 5.21 \pm 0.47 \times 10^{6} \text{ cm}^{-2}\text{s}^{-1}$ not totally
- Agrees well with solar models: $\phi_{total}(^{8}Be) = 5.05 \pm 1.00 \times 10^{6} \text{ cm}^{-2}\text{s}^{-1}$

⇒ Solar Oscillations not totally to sterile neutrinos

Borexino

- Neutrino-Electron scattering at Low energy \Rightarrow ⁷Be neutrinos
- Liquid scintillator neutrino target (~100t fiducial mass)
- Main issue is radioactive contamination
 - Need to use very "clean" material
 - Reduce cosmic muons

 $v_{x.e} + e^- \rightarrow v_{x,e} + e^-$

 $v_x + e^- \rightarrow v_x + e^-$

BOREXINO

 0.56 ± 0.08

Solar Measurements

Matter Effects in the Sun

From Stephen Parke (See PRD 74 (2006) 13006)

Comes about because there are many free electrons in the sun

 $\Rightarrow \text{Which makes } \nu_e \text{ interaction rate} \\ \text{different from } \nu_{\mu\prime\tau} \text{ interactions}$

masses and mixings of the neutrino eigenstates

Life of a Boron-8 Solar Neutrino:

From Stephen Parke (See PRD 74 (2006) 13006)

Solar Oscillation Summary

 $f_1 = \cos^2 \theta_{\odot}^N$ and $f_2 = \sin^2 \theta_{\odot}^N$ $\langle P_{ee} \rangle = f_1 \cos^2 \theta_{\odot} + f_2 \sin^2 \theta_{\odot}$

The low energy pp and ⁷Be Solar Neutrinos exit the sun as two thirds ν_1 and one third ν_2 due to (quasi-) vacuum oscillations.

 $f_1=65\pm2\%$, $f_2=35\mp2\%$ with $P_{ee}pprox 0.56$

The high energy ⁸B Solar Neutrinos exit the sun as "PURE" ν_2 mass eigenstates due to <u>matter effects</u>.

 $f_2 = 91 \pm 2\%$ and $f_1 = 9 \mp 2\%$ with $P_{ee} \approx 0.35$.

$$\begin{split} \delta m_{\odot}^2 &= 8.0 \pm 0.4 \times 10^{-5} eV^2 \\ \sin^2 \theta_{\odot} &= 0.310 \pm 0.026 \\ _{\rm at \ 68\% \ CL} \end{split}$$

SNO, KamLAND, SK/K, GNO/Gallex, SAGE, Cl

Solar Mass Hierarchy Is Determined From Matter Effects

If we chose the wrong mass hierarchy for the v_1 and v_2 , then:

Solar matter effects put more of the neutrino into ν_2 . This raises the survival probability above vacuum value since ν_2 has more ν_e . But the minimum of P_{ee} in vacuum is 1/2.

For this hierarchy $P_{ee}^{matter} \geq P_{ee}^{vac} \geq 1/2$ But $P_{ee}^{SNO} = 0.347 \pm 0.038 < 1/2$

This solar hierarchy EXCLUDED !!!.

Transition from Vacuum to Matter Oscillations

Kamland Reactor Exp. (Probes for $\overline{v_e}$ Osc. In the Solar Region)

- Uses $\overline{\nu}_e$ from all the reactors in Japan
- 85% of signal events from:
 - Closest 60 GW of power
 - Distance range 140km-344 km with mean 180km
- KamLAND is a 1 kton liquid scintillator detector
 - 2000 photomultiplier tubes
 - 1 km underground
- Began data taking in Sept., 2001.

KamLAND Results

Observed:258 eventsNo-oscillation:365.2 ± 23.7 eventsBackground:17.6 ± 7.2 events

(N_{obs} – N_{bkgnd})/N_{no-osc} = 0.658 ± 0.044 (stat) ± 0.047 (syst) (99.998 % CL signal)

Neutrino Oscillation Interpretation

Summary Solar Data and Neutrino Oscillations

- Know that solar model is giving correct flux due to SNO neutral current measurement
- Solar disappearance probability depends on energy ⇒ Need to include matter effects (electron density)
- Kamland reactor experiment agrees with solar oscillation parameters
 - \Rightarrow Constrains Δm^2

Atmospheric Neutrinos: v_e and v_u

- $> \pi$ or K decay ---> $\mu + \nu_{\mu}$.
- Then the muon decays to $e + v_e + v_{\mu}$

- > $(v_{\mu} + \overline{v}_{\mu})/(v_{e} + \overline{v}_{e})$ ratio should be = 2.
- Measured to be 1 by some experiments.
- > Some others closer to 2.
- Inconclusive.
- Then SuperKamiokande was built.

Super-Kamiokande (Super-K) Detector

- 22.5 kton of ultra-pure water
- 11,150 20 inch phototubes
- Located in Kamioka mine at a depth of 1000m below the surface

Atmospheric Neutrino Studies

 $\cos\theta_{\text{Zenith}} = -1.0$

Atmospheric Neutrino Data from Super-K

Super-K-I+II+III (2806 days (173kton • yr) for FC+PC, 3109 days for up-μ)

Atmospheric Oscillation Results vs L/E Osc Behaviior

$$\mathbf{P}_{osc} = \sin^2\left(2\theta\right)\sin^2\left(1.27\Delta m^2 L/E\right)$$

Inconsistent with:

Neutrino decay (4.4 σ) Neutrino decoherence (5.4 σ)

Super-K Fits to $v_{\mu} \rightarrow v_{\tau}$

K2K (KEK to Super-K) Oscillation Experiment (Accelerator Check of Atmospheric Osc.)

- Low energy, <E_v>=1.4 GeV, beam sent from KEK to SuperK (250 km)
- See large deficit of neutrinos (~50%)
- Confirm Atmospheric oscillations
 using an accelerator neutrino beam

MINOS Accelerator Oscillation Experiment at Fermilab

MINOS v_{μ} **Disappearance Results**

848 CC v_{μ} candidates $\leftarrow \rightarrow$ 1065 \pm 60(syst) no-osc. prediction

PRL 101 (2008) 131802 (hep-ex/0806.2273)

Summary of Current "Atmospheric" Region Results ⁴⁶

 $\Delta m_{23}^2 = 2.43 \pm 0.13 \times 10^{-3} \text{eV}^2$ (5% accuracy, MINOS)

1st MINOS "Pure" \overline{v}_{μ} Disappearance Results

- CPT invariance requires that \overline{v}_{μ} and v_{μ} disappearance should be the same
- MINOS is first longbaseline experiment that can separate $\bar{\nu}_{\mu}$ and ν_{μ} interactions using the sign of the outgoing muon.
 - For the standard v_{μ} running, 6.4% of CC interactions from \overline{v}_{μ} with 82% efficiency and 97% purity.
 - \Rightarrow Can search for \overline{v}_{μ} disappearance!

Next: Plan to run v_{μ} starting next year

 $\overline{\nu}_{\mu}$ and ν_{μ} Compatible within statistical uncertainties

MINOS Search for Oscillations to Sterile Neutrinos

- "Atmospheric region" oscillations from $\nu_{\mu} \rightarrow \nu_{\tau}$ but ν_{τ} energy is below threshold to produce τ leptons \Rightarrow only v_{τ} NC interactions

For Neutral Current Interactions:

 $v_{\mu} + N \rightarrow v_{\mu} + N'$ Same as $v_{\tau} + N \rightarrow v_{\tau} + N'$

 \Rightarrow NC rate in near and far detector should be the same

• If $v_{\mu} \rightarrow v_{\text{sterile}}$ then NC rate should be less in far detector

Data are consistent with no NC deficit at FD and thus with no sterile neutrino mixing

OPERA and **ICARUS**: v_{τ} Appearance Search

- Uses 400 GeV protons to produce neutrino beam $\langle E_{\rm v} \rangle \approx 17 \; GeV$
- $\langle E_{\nu} \rangle$ above threshold to produce τ leptons from ν_{τ}
- $\langle L/E \rangle \approx 43$ so oscillation probability for Δm^2_{atm} is small

OPERA: Nuclear Emulsion plus Lead

- Scintillator Strips isolate emulsion brick with an event
- Robot then picks out brick to be scanned.
- 1^{st} event 2007 \Rightarrow 10% run completed (1700 v-events recorded)

ICARUS: Liquid Argon TPC 600 Tons

- Will use kinematic reconstruction to isolate $\nu_\tau\text{-events.}$
- 1st event expected by end of 2009

OPERA

Expect about 15 events in 5 years.

Current Oscillation Summary

Current Global Fits to Solar, Atmospheric, Accelerator, and Reactor Data 53

Big Questions in Neutrino Oscillations

Still missing some information

