

http://www.phy.anl.gov/heory/staff/cdr.htm

Hadron Physics

\square
\square

Hadron Physics

Molecular Physics Scale $=\mathrm{nm}$

Office of Science

UChicago

 Argonne $_{\text {ue }}$

Argonne

Hadron Physics

Atomic Physics Scale $=\AA$

Argonne

 UChicago Argonne
 national laboratory

Office of Science office of Nuclear $\mathrm{Ph}_{y s i_{c s}}$

Hadron Physics

Nuclear Physics Scale $=10 \mathrm{fm}$

UChicago

 Argonne $_{\text {ue }}$
Hadron Physics

Hadron Physics Scale $=1 \mathrm{fm}$

Office of Science

UChicago

 Argonne
Hadron Physics

Argonne
AI

Hadron Physics Scale $=1 \mathrm{fm}$

$\$ 0,01 \mathrm{~m}$
Crystal

$1 / 10.000 .0$
$10^{-9} \mathrm{~m}$
Molecule
$1 / 10$
$10^{-10} \mathrm{~m}$
Atom
$1 / 10.000$
$10^{-14} \mathrm{~m}$
Atomic nucle
$1 / 10$
$10^{-15} \mathrm{~m}$
Proton
$1 / 1.000$
$<10^{-18} \mathrm{~m}$
Electron,
Quark
\square
\square

Hadron Physics

Meta-Physics Scale = Limited only by Theorists Imagination

Office of Science

UChicago -

 Argonne\square

Nucleon . . . 2 Key Hadrons = Proton and Neutron

Office of Science

national laboratory

Nucleon . . . 2 Key Hadrons = Proton and Neutron

- Fermions - two static properties: proton electric charge $=+1$; and magnetic moment, μ_{p}

Office of Science
 Argonne

Nucleon . . . 2 Key Hadrons = Proton and Neutron

- Fermions - two static properties: proton electric charge $=+1$; and magnetic moment, μ_{p}
- Magnetic Moment discovered by Otto Stern and collaborators in 1933; Awarded Nobel Prize in 1943
- Dirac (1928) - pointlike fermion: $\mu_{p}=\frac{e \hbar}{2 M}$ Argonne

Nucleon . . . 2 Key Hadrons = Proton and Neutron

- Fermions - two static properties:
proton electric charge $=+1$; and magnetic moment, μ_{p}
- Magnetic Moment discovered by Otto Stern and collaborators in 1933; Awarded Nobel Prize in 1943
- Dirac (1928) - pointlike fermion: $\mu_{p}=\frac{e \hbar}{2 M}$
(2) ENERRGY - Stern (1933) $-\mu_{p}=(1+1.79) \frac{e \hbar}{2 M}$

Office of Science

Argonne

Nucleon ... 2 Key Hadrons = Proton and Neutron

- Fermions - two static properties: proton electric charge $=+1$; and magnetic moment, μ_{p}
- Magnetic Moment discovered by Otto Stern and collaborators in 1933; Awarded Nobel Prize in 1943
- Dirac (1928) - pointlike fermion: $\mu_{p}=\frac{e \hbar}{2 M}$
(2) ENERGGY - Stern (1933) $-\mu_{p}=(1+1.79) \frac{e \hbar}{2 M}$

Office of Science

- Big Hint that Proton is not a point particle
- Proton has constituents
- These are Quarks and Gluons

Quark discovery via $e^{-} p$-scattering at SLAC in 1968

- the elementary quanta of Quantum Chromo-dynamics
- Action, in terms of local Lagrangian density:

$$
\begin{equation*}
S\left[A_{\mu}^{a}, \bar{q}, q\right]=\int d^{4} x\left\{\frac{1}{4} F_{\mu \nu}^{a}(x) F_{\mu \nu}^{a}(x)+\frac{1}{2 \xi} \partial_{\mu} A_{\mu}^{a}(x) \partial_{\nu} A_{\nu}^{a}(x)+\bar{q}(x)\left[\gamma_{\mu} D_{\mu}+M\right] q(x)\right\} \tag{1}
\end{equation*}
$$

- Chromomagnetic Field Strength Tensor $\partial_{\mu} A_{\nu}^{a}(x)-\partial_{\nu} A_{\mu}^{a}(x)+g f^{a b c} A_{\mu}^{b}(x) A_{\nu}^{c}(x)$
- Covariant Derivative $-D_{\mu}=\partial_{\mu}-i g \frac{\lambda^{a}}{2} A_{\mu}^{a}(x)$
- Current-quark Mass matrix: $\left(\begin{array}{cccc}m_{u} & 0 & 0 & \ldots \\ 0 & m_{d} & 0 & \ldots \\ 0 & 0 & m_{s} & \ldots \\ \vdots & \vdots & \vdots & \end{array}\right)$
- Understanding JLab Observables means knowing all that this Action predicts.
- Perturbation Theory (asymptotic freedom) is not enough!
- Bound states are not perturbative
- Confinement is not perturbative
- DCSB is not perturbative

Euclidean Metric

- Almost all nonperturbative studies in relativistic quantum field theory employ a Euclidean Metric. (NB. Remember the Wick Rotation?)
- It is possible to view the Euclidean formulation of a quantum field theory as definitive; e.g.,
- Symanzik, K. (1963) in Local Quantum Theory (Academic, New York) edited by R. Jost.
- Streater, R.F. and Wightman, A.S. (1980), PCT, Spin and Statistics, and All That (Addison-Wesley, Reading, Mass, 3rd edition).
- Glimm, J. and Jaffee, A. (1981), Quantum Physics. A Functional Point of View (Springer-Verlag, New York).
- Seiler, E. (1982), Gauge Theories as a Problem of Constructive Quantum Theory and Statistical Mechanics (Springer-Verlag, New York).
- That decision is crucial when a consideration of nonperturbative effects becomes important. In addition, the discrete lattice formulation in Euclidean space has allowed some progress to be made in attempting to answer existence questions for interacting gauge field theories.
- A lattice formulation is impossible in Minkowski space - the integrand is not non-negative and hence does not provide a probability measure.

Euclidean Metric:

Transcription Formulae

- To make clear our conventions: for 4-vectors a, b : $a \cdot b:=a_{\mu} b_{\nu} \delta_{\mu \nu}:=\sum_{i=1}^{4} a_{i} b_{i}$, Hence, a spacelike vector, Q_{μ}, has $Q^{2}>0$.
- Dirac matrices:
- Hermitian and defined by the algebra $\left\{\gamma_{\mu}, \gamma_{\nu}\right\}=2 \delta_{\mu \nu}$;
- we use $\gamma_{5}:=-\gamma_{1} \gamma_{2} \gamma_{3} \gamma_{4}$, so that $\operatorname{tr}\left[\gamma_{5} \gamma_{\mu} \gamma_{\nu} \gamma_{\rho} \gamma_{\sigma}\right]=-4 \varepsilon_{\mu \nu \rho \sigma}, \varepsilon_{1234}=1$.
- The Dirac-like representation of these matrices is:

$$
\vec{\gamma}=\left(\begin{array}{cc}
0 & -i \vec{\tau} \tag{2}\\
i \vec{\tau} & 0
\end{array}\right), \gamma_{4}=\left(\begin{array}{cc}
\tau^{0} & 0 \\
0 & -\tau^{0}
\end{array}\right)
$$

where the 2×2 Pauli matrices are:

Office of Science
fice of Nuclear Physics

Euclidean Metric:

Transcription Formulae

- It is possible to derive every equation introduced above assuming certain analytic properties of the integrands. However, the derivations can be sidestepped using the following transcription rules:

Configuration Space

1. $\int^{M} d^{4} x^{M} \rightarrow-i \int^{E} d^{4} x^{E}$
2. $\partial \partial \rightarrow i \gamma^{E} \cdot \partial^{E}$
3. $A \rightarrow-i \gamma^{E} \cdot A^{E}$
4. $A_{\mu} B^{\mu} \rightarrow-A^{E} \cdot B^{E}$
5. $x^{\mu} \partial_{\mu} \rightarrow x^{E} \cdot \partial^{E}$

Momentum Space

1. $\int^{M} d^{4} k^{M} \rightarrow i \int^{E} d^{4} k^{E}$
2. $\not k \rightarrow-i \gamma^{E} \cdot k^{E}$
3. $A \rightarrow-i \gamma^{E} \cdot A^{E}$
4. $k_{\mu} q^{\mu} \rightarrow-k^{E} \cdot q^{E}$
5. $k_{\mu} x^{\mu} \rightarrow-k^{E} \cdot x^{E}$

- These rules are valid in perturbation theory; i.e., the correct Minkowski space integral for a given diagram will be obtained by applying these rules to the Euclidean integral: they take account of the change of variables and rotation of the contour. However, for diagrams that represent DSEs which involve dressed n-point functions, whose analytic structure is not known a priori, the Minkowski space equation obtained using this prescription will have the right appearance but it's solutions may bear no relation to the analytic continuation of the solution of the Euclidean equation. Any such differences will be nonperturbative in origin.
\square Conclusion

What is QCD?

Office of Science

Argonne
 national laboratory

What is QCD?

- Gauge Theory:

Interactions Mediated by massless vector bosons

Fernmon Diogram of Quork-Quark Seatterina

Office of Science

UChicago

Argonne

What is QCD?

- Gauge Theory:

Interactions Mediated by massless vector bosons

Fernmon Diogram of Quork-Quark Seatterina

- Similar interaction in QED

UChicago Argonne

What is QCD?

- Gauge Theory:

Interactions Mediated by massless vector bosons

- Similar interaction in QED

UChicago

$$
\text { Argonne }_{\text {ur }}
$$

- Special Feature of QCD - gluon self-interactions

Completely Change the Character of the Theory
national laboratory

QED cf. QCD

Office of Science

UChicago Argonne

Argonne

 national laboratory

QED cf. QCD

Office of Science

$\underset{\text { Urgonne }}{\text { UChicago }^{\text {ACD }}}=\frac{\alpha}{1-\alpha / 3 \pi \ln \left(Q^{2} / m_{e}^{2}\right)}$
national laboratory

QED cf. QCD

Add three-gluon interaction

Office of Science

QED cf. QCD

Figure 9.2: Summary of the values of $\alpha_{s}(\mu)$ at the values of μ where they are measured. The lines show the central values and the $\pm 1 \sigma$ limits of our average. The figure clearly shows the decrease in $\alpha_{s}(\mu)$ with increasing μ. The data are, in increasing order of μ, τ width, γ decays, deep inelastic scattering, $e^{+} e^{-}$event shapes at 22 GeV from the JADE data, shapes at TRISTAN at $58 \mathrm{GeV}, Z$ width, and $e^{+} e^{-}$event shapes at 135 and 189 GeV .

$$
\alpha_{\mathrm{QCD}}=\frac{12 \pi}{\left(33-2 N_{\mathrm{Q}}\right) \ln \left(Q^{2} / \Lambda^{2}\right)}
$$

QED cf. QCD

2004 Nobel Prize in Physics: Gross, Politzer and Wilczek

Office of Science

Argonne

Quarks and Nuclear Physics

Office of Science

Argonne

national laboratory

Quarks and Nuclear Physics

Standard Model of Particle Physics

Six Flavours

Office of Science

$\left(-\frac{1}{3}\right)$
strange bottom

Quarks and Nuclear Physics

Normal Matter ...
Only Two Light
Aavours Active
Office of Science

UChicago

 ArgonneArgonne

$\left(-\frac{1}{3}\right)$

${ }^{\left(\frac{1}{3}\right)}$
strange bottom

Quarks and Nuclear Physics

top

Normal Matter ...
Only Two Light
$\left(-\frac{1}{3}\right)$
(- $\frac{1}{3}$)
$\left(-\frac{1}{3}\right)$

Office of Science

strange bottom

Quarks and Nuclear Physics

Normal Matter ...
Only Two Light
$\left(-\frac{1}{3}\right)$
$\left(-\frac{1}{3}\right)$
$\left(-\frac{1}{3}\right)$
 heavy-quarks

Office of Science

strange bottom

Nevertheless, I

Quarks and Nuclear Physics

 will focusprimarily on the light-quarks.

Normal Matter ...
Only Two Light
$\left(-\frac{1}{3}\right)$
$\left(-\frac{1}{3}\right)$ $\left(\frac{1}{3}\right)$

Office of Science

Favours Active

strange bottom
 heavy-quarks

Simple Picture

Office of Science

UChicago Argonne

Argonne

 national laboratory

Simple Picture

Office of Science office of Nuclear $P h_{y s_{i_{c s}}}$

UChicago Argonne

Argonne

\square

PROTON

Simple Picture

Office of Science office of Nuclear $\mathrm{Ph}_{y_{s} i_{c s}}$

UChicago

 Argonne $_{\text {us }}$
Argonne

PION
Conclusion
. Hadron Physics and Continuum Strong QCD

Study Structure via Nucleon Form Factors

Office of Science

Argonne

national laboratory

Study Structure via Nucleon Form Factors

- Electron's relativistic electromagnetic current:

$$
\begin{aligned}
j_{\mu}\left(P^{\prime}, P\right) & =i e \bar{u}_{e}\left(P^{\prime}\right) \Lambda_{\mu}(Q, P) u_{e}(P), Q=P^{\prime}-P \\
& =i e \bar{u}_{e}\left(P^{\prime}\right) \gamma_{\mu}(-1) u_{e}(P)
\end{aligned}
$$

Study Structure via Nucleon Form Factors

- Electron's relativistic electromagnetic current:

$$
\begin{aligned}
j_{\mu}\left(P^{\prime}, P\right) & =i e \bar{u}_{e}\left(P^{\prime}\right) \Lambda_{\mu}(Q, P) u_{e}(P), Q=P^{\prime}-P \\
& =i e \bar{u}_{e}\left(P^{\prime}\right) \gamma_{\mu}(-1) u_{e}(P)
\end{aligned}
$$

- Nucleon's relativistic electromagnetic current:

Office of Science

UChicago Argonne
Argonne

Study Structure via Nucleon Form Factors

- Electron's relativistic electromagnetic current:

$$
\begin{aligned}
j_{\mu}\left(P^{\prime}, P\right) & =i e \bar{u}_{e}\left(P^{\prime}\right) \Lambda_{\mu}(Q, P) u_{e}(P), Q=P^{\prime}-P \\
& =i e \bar{u}_{e}\left(P^{\prime}\right) \gamma_{\mu}(-1) u_{e}(P)
\end{aligned}
$$

- Nucleon's relativistic electromagnetic current:

$$
\begin{aligned}
& J_{\mu}\left(P^{\prime}, P\right)=i e \bar{u}_{p}\left(P^{\prime}\right) \Lambda_{\mu}(Q, P) u_{p}(P), Q=P^{\prime}-P \\
& \quad=i e \bar{u}_{p}\left(P^{\prime}\right)\left(\gamma_{\mu} F_{1}\left(Q^{2}\right)+\frac{1}{2 M} \sigma_{\mu \nu} Q_{\nu} F_{2}\left(Q^{2}\right)\right) u_{p}(P) \\
& G_{E}\left(Q^{2}\right)=F_{1}\left(Q^{2}\right)-\frac{Q^{2}}{4 M^{2}} F_{2}\left(Q^{2}\right), G_{M}\left(Q^{2}\right)=F_{1}\left(Q^{2}\right)+F_{2}\left(Q^{2}\right) .
\end{aligned}
$$

Study Structure via Nucleon Form Factors

- Electron's relativistic electromagnetic current:

$$
\begin{aligned}
j_{\mu}\left(P^{\prime}, P\right) & =i e \bar{u}_{e}\left(P^{\prime}\right) \Lambda_{\mu}(Q, P) u_{e}(P), Q=P^{\prime}-P \\
& =i e \bar{u}_{e}\left(P^{\prime}\right) \gamma_{\mu}(-1) u_{e}(P)
\end{aligned}
$$

- Nucleon's relativistic electromagnetic current:

Office of Science ffice of Nuclear Phys,

$$
\begin{aligned}
& J_{\mu}\left(P^{\prime}, P\right)=\text { ie } \bar{u}_{p}\left(P^{\prime}\right) \Lambda_{\mu}(Q, P) u_{p}(P), Q=P^{\prime}-P \\
& \quad=\quad i e \bar{u}_{p}\left(P^{\prime}\right)\left(\gamma_{\mu} F_{1}\left(Q^{2}\right)+\frac{1}{2 M} \sigma_{\mu \nu} Q_{\nu} F_{2}\left(Q^{2}\right)\right) u_{p}(P)
\end{aligned}
$$

$$
G_{E}\left(Q^{2}\right)=F_{1}\left(Q^{2}\right)-\frac{Q^{2}}{4 M^{2}} F_{2}\left(Q^{2}\right), G_{M}\left(Q^{2}\right)=F_{1}\left(Q^{2}\right)+F_{2}\left(Q^{2}\right) .
$$

Point-particle: $\boldsymbol{F}_{\mathbf{2}} \equiv \mathbf{0} \Rightarrow G_{E} \equiv G_{M}$

NSAC Long Range Plan

A central goal of nuclear physics is to understand the structure and properties of protons and neutrons, and ultimately atomic nuclei, in terms of the quarks and gluons of QCD

Office of Science
 Argonne
Argonne

NSAC Long Range Plan

A central goal of nuclear physics is to understand the structure and properties of protons and neutrons, and ultimately atomic nuclei, in terms of the quarks and gluons of QCD

So, what's the problem?

Office of Science

NSAC Long Range Plan

A central goal of nuclear physics is to understand the structure and properties of protons and neutrons, and ultimately atomic nuclei, in terms of the quarks and gluons of QCD

So, what's the problem?

- Confinement
- No quark ever seen in isolation

Office of Science

NSAC Long Range Plan

A central goal of nuclear physics is to understand the structure and properties of protons and neutrons, and ultimately atomic nuclei, in terms of the quarks and gluons of QCD

So, what's the problem?

- Confinement
- No quark ever seen in isolation
- Weightlessness
- 2004 Nobel Prize in Physics:

Mass of $u-\& d$-quarks, each just 5 MeV ;
Proton Mass is 940 MeV
\Rightarrow No Explanation Appare

Meson Spectrum

LIGHT UNFLAVORED$(S=C \not B=0)$				$\begin{gathered} \text { STRANGE } \\ (S= \pm 1, C=B=0) \end{gathered}$	
- ${ }^{\text {+ }}$	$1^{-}\left(0^{-}\right)$	- $\pi_{2}(1670)$	$1^{-\left(2^{-+}\right)}$	- $K^{ \pm}$	$1 / 2\left(0^{-}\right)$
- $\pi^{0} 140 \mathrm{MeV}$	$1^{-}\left(0^{-+}\right)$	- $\phi(1680)$	$0^{-}\left(1^{--}\right)$	- K^{0}	1/2(0^{-})
- η	$0^{+}\left(0^{-+}\right)$	- $\rho_{3}(1690)$	$1^{+}\left(3^{--}\right)$	- K_{5}^{0}	$1 / 2\left(0^{-}\right)$
- $f_{0}(600)$	$0^{+}\left(0^{++}\right)$	- $\rho(1700)$	$1^{+}\left(1^{--}\right)$	- K_{L}^{0}	$1 / 2\left(0^{-}\right)$
- $\rho(770) 770$	$1^{+}\left(1^{--}\right)$	$a_{2}(1700)$	$1^{-}\left(2^{++}\right)$	$K_{0}^{*}(800)$	$1 / 2\left(0^{+}\right)$
- ω (782)	$0^{-}\left(1^{--}\right)$	- $f_{0}(1710)$	$0^{+}\left(0^{++}\right)$	- $K^{*}(892)$	1/2(1-)
- $\eta^{\prime}(958)$	$0^{+}\left(0^{-+}\right)$	$\eta(1760)$	$0^{+}\left(0^{-+}\right)$	- $K_{1}(1270)$	$1 / 2\left(1^{+}\right)$
- $f_{0}(980)$	$0^{+}\left(0^{++}\right)$	- $\pi(1800)$	$1^{-}\left(0^{-+}\right)$	- $K_{1}(1400)$	$1 / 2\left(1^{+}\right)$
- $\mathrm{a}_{0}(980)$	$1^{-}\left(0^{++}\right)$	$f_{2}(1810)$	$0^{+}(2++)$	- $K^{*}(1410)$	1/2(1+)
- $\phi(1020)$	$0^{-}\left(1^{--}\right)$	X(1835)	$?^{?}\left(?^{-+}\right)$	- $K_{0}^{*}(1430)$	$1 / 2\left(0^{+}\right)$
- $h_{1}(1170)$	$0^{-}(1+-)$	- $\phi_{3}(1850)$	$0^{-}\left(3^{--}\right)$	- $K_{2}^{*}(1430)$	$1 / 2\left(2^{+}\right)$
- $b_{1}(1235)$	$1^{+}(1+-)$	$\eta_{2}(1870)$	$0^{+}\left(2^{-+}\right)$	$K(1460)$	$1 / 2\left(0^{-}\right)$
- $a_{1}(1260)$	$1^{-}\left(1^{++}\right)$	$\rho(1900)$	$1^{+}\left(1-{ }^{-}\right)$	$K_{2}(1580)$	1/2(2-)
- $f_{2}(1270)$	$0^{+}\left(2^{++}\right)$	$f_{2}(1910)$	$0^{+}(2++)$	K(1630)	$1 / 2\left(?^{\text {? }}\right.$)
- $f_{1}(1285)$	$0^{+}(1++)$	- $f_{2}(1950)$	$0^{+}(2++)$	$K_{1}(1650)$	1/2(1+)
- $\eta(1295)$	$0^{+}\left(0^{-+}\right)$	$\rho_{3}(1990)$	$1^{+}\left(3^{--}\right)$	- $K^{*}(1680)$	1/2(1-)
- $\pi(1300)$	$1^{-}\left(0^{-+}\right)$	- $f_{2}(2010)$	$0^{+}(2++)$	- $K_{2}(1770)$	$1 / 2\left(2^{-}\right)$

Modern Miracles
 in Hadron Physics

Office of Science

UChicago Argonne $_{\text {ue }}$

Argonne

national laboratory

Modern Miracles
 in Hadron Physics

- proton $=$ three constituent quarks

Office of Science

UChicago

 Argonne $_{\text {ue }}$
Modern Miracles
 in Hadron Physics

- proton $=$ three constituent quarks
- $M_{\text {proton }} \approx 1 \mathrm{GeV}$

Modern Miracles in Hadron Physics

- proton $=$ three constituent quarks
- $M_{\text {proton }} \approx 1 \mathrm{GeV}$
- guess $M_{\text {constituent-quark }} \approx \frac{1 \mathrm{GeV}}{3} \approx 350 \mathrm{MeV}$

Office of Science

Modern Miracles in Hadron Physics

- proton $=$ three constituent quarks
- $M_{\text {proton }} \approx 1 \mathrm{GeV}$
- guess $M_{\text {constituent-quark }} \approx \frac{1 \mathrm{GeV}}{3} \approx 350 \mathrm{MeV}$
- pion = constituent quark + constituent antiquark

Office of Science

UChicago Argonne $_{\text {ue }}$

Argonne

Modern Miracles in Hadron Physics

- proton $=$ three constituent quarks
- $M_{\text {proton }} \approx 1 \mathrm{GeV}$
- guess $M_{\text {constituent-quark }} \approx \frac{1 \mathrm{GeV}}{3} \approx 350 \mathrm{MeV}$
- pion = constituent quark + constituent antiquark
- guess $M_{\text {pion }} \approx 2 \times \frac{M_{\text {proton }}}{3} \approx 700 \mathrm{MeV}$

Office of Science office of Nuclear $P h_{y}$ s; UChicago Argonne $_{n}$

Modern Miracles in Hadron Physics

- proton $=$ three constituent quarks
- $M_{\text {proton }} \approx 1 \mathrm{GeV}$
- guess $M_{\text {constituent-quark }} \approx \frac{1 \mathrm{GeV}}{3} \approx 350 \mathrm{MeV}$
- pion = constituent quark + constituent antiquark

Office of Science

- WRONG $\ldots \ldots \ldots \ldots \ldots \ldots . . \begin{aligned} & \text { pion }\end{aligned}=140 \mathrm{MeV}$

$$
M_{\text {pion }}=140 \mathrm{MeV}
$$

- guess $M_{\text {pion }} \approx 2 \times \frac{M_{\text {proton }}}{3} \approx 700 \mathrm{MeV}$

Modern Miracles in Hadron Physics

- proton = three constituent quarks
- $M_{\text {proton }} \approx 1 \mathrm{GeV}$
- guess $M_{\text {constituent-quark }} \approx \frac{1 \mathrm{GeV}}{3} \approx 350 \mathrm{MeV}$
- pion = constituent quark + constituent antiquark

Office of Science
 Argonne

- guess $M_{\text {pion }} \approx 2 \times \frac{M_{\text {proton }}}{3} \approx 700 \mathrm{MeV}$
- WRONG

$$
M_{\text {pion }}=140 \mathrm{MeV}
$$

- Another meson:
$\ldots M_{\rho}=770 \mathrm{MeV} \ldots$. . No Surprises Here

Modern Miracles in Hadron Physics

- proton $=$ three constituent quarks
- $M_{\text {proton }} \approx 1 \mathrm{GeV}$
- guess $M_{\text {constituent-quark }} \approx \frac{1 \mathrm{GeV}}{3} \approx 350 \mathrm{MeV}$
- pion = constituent quark + constituent antiquark

Office of Science

- WRONG

$$
M_{\mathrm{pion}}=140 \mathrm{MeV}
$$

- WRONG
- guess $M_{\text {pion }} \approx 2 \times \frac{M_{\text {proton }}}{3} \approx 700 \mathrm{MeV}$

Closer look at Spectrum

- Features of the Spectrum:
- $\frac{m_{\rho}^{2}}{m_{\pi}^{2}}=30 \quad \bullet \frac{m_{a_{1}}^{2}}{m_{\sigma}^{2}}=4.4$
? Hyperfine Splitting

Office of Science

UChicago

 Argonne $_{u}$Argonne
national laboratory

Closer look at Spectrum

- Features of the Spectrum:
- $\frac{m_{\rho}^{2}}{m_{\pi}^{2}}=30$
- $\frac{m_{a_{1}}^{2}}{m_{\sigma}^{2}}=4.4$
- $\frac{m_{\pi^{\prime}}^{2}}{m_{\pi}^{2}}=86$
- $\frac{m_{\rho^{\prime}}^{2}}{m_{\rho}^{2}}=3.5$
? Hyperfine Splitting

? Excitation Energy

Office of Science Argonne $_{u}$

Closer look at Spectrum

- Features of the Spectrum:
- $\frac{m_{\rho}^{2}}{m_{\pi}^{2}}=30 \quad \bullet \frac{m_{a_{1}}^{2}}{m_{\sigma}^{2}}=4.4$
$\cdot \frac{m_{\pi^{\prime}}^{2}}{m_{\pi}^{2}}=86 \quad \cdot \frac{m_{\rho^{\prime}}^{2}}{m_{\rho}^{2}}=3.5$
- $\frac{m_{N}}{m_{\pi}} \approx 7$
- $\frac{m_{N}}{m_{\rho}}=\frac{5}{4} \approx \frac{3}{2}$
? Quark Counting

Dichotomy of Pion - Goldstone Mode and Bound state

Office of Science

UChicago

 Argonne $_{u}$
Dichotomy of Pion - Goldstone Mode and Bound state

- How does one make an almost massless particle from two massive constituent-quarks?

Office of Science

Dichotomy of Pion - Goldstone Mode and Bound state

- How does one make an almost massless particle from two massive constituent-quarks?
- Not Allowed to do it by fine-tuning a potential Must exhibit $m_{\pi}^{2} \propto m_{q}$

Current Algebra ... 1968

Dichotomy of Pion

- Goldstone Mode and Bound state
- How does one make an almost massless particle from two massive constituent-quarks?
- Not Allowed to do it by fine-tuning a potential Must exhibit $m_{\pi}^{2} \propto m_{q}$ Current Algebra ... 1968
The correct understanding of pion observables; e.g. mass, decay constant and form factors, requires an approach to contain a
- well-defined and valid chiral limit;
- and an accurate realisation of dynamical chiral symmetry breaking.

Dichotomy of Pion

 - Goldstone Mode and Bound state- How does one make an almost massless particle from two massive constituent-quarks?
- Not Allowed to do it by fine-tuning a potential Must exhibit $m_{\pi}^{2} \propto m_{q}$ Current Algebra ... 1968
The correct understanding of pion observables; e.g. mass, decay constant and form factors, requires an approach to contain a
- well-defined and valid chiral limit;
- and an accurate realisation of dynamical chiral symmetry breaking.

What's the Problem?

Office of Science

UChicago Argonne $_{u}$

Argonne

 national laboratory

What's the Problem?

- Minimal requirements
- detailed understanding of connection between Current-quark and Constituent-quark masses;
- and systematic, symmetry preserving means of realising this connection in bound-states.

What's the Problem?

- Minimal requirements
- detailed understanding of connection between Current-quark and Constituent-quark masses;
- and systematic, symmetry preserving means of realising this connection in bound-states.
- Means ... must calculate hadron wave functions
- Can't be done using perturbation theory

What's the Problem?

- Minimal requirements
- detailed understanding of connection between Current-quark and Constituent-quark masses;
- and systematic, symmetry preserving means of realising this connection in bound-states.
- Means ... must calculate hadron wave functions
- Can't be done using perturbation theory
- Why problematic? Isn't same true in quantum mechanics?

What's the Problem?

- Minimal requirements
- detailed understanding of connection between Current-quark and Constituent-quark masses;
- and systematic, symmetry preserving means of realising this connection in bound-states.
- Means ... must calculate hadron wave functions
- Can't be done using perturbation theory
- Why problematic? Isn't same true in quantum mechanics?
- Differences!

Argonne $_{\text {un }}$

What's the Problem? Relativistic QFT!

- Minimal requirements
- detailed understanding of connection between Current-quark and Constituent-quark masses;
- and systematic, symmetry preserving means of realising this connection in bound-states.
- Differences!
- Here relativistic effects are crucial - virtual particles, quintessence of Relativistic Quantum Field Theory must be included

What's the Problem?
 Relativistic QFT!

- Minimal requirements
- detailed understanding of connection between Current-quark and Constituent-quark masses;
- and systematic, symmetry preserving means of realising this connection in bound-states.
- Differences!
- Here relativistic effects are crucial - virtual particles, quintessence of Relativistic Quantum Field Theory must be included
- Interaction between quarks - the Interquark "Potential" unknown throughout $>98 \%$ of a hadron's volume

Intranucleon Interaction

Office of Science

UChicago Argonne $_{\text {ue }}$

Argonne
 national laboratory

Intranucleon Interaction

Office of Science

UChicago

 Argonne
Argonne

Intranucleon Interaction

Argonne

What is the Intranucleon Interaction?

The question must be rigorously defined, and the answer mapped out using experiment and theory.

UChicago Argon

QCD's Challenges

Office of Science

UChicago • Argonne $_{u}$

Argonne

 aboratory

QCD's Challenges

- Quark and Gluon Confinement
- No matter how hard one strikes the proton, one cannot liberate an individual quark or gluon

QCD's Challenges

- Quark and Gluon Confinement
- No matter how hard one strikes the proton, one cannot liberate an individual quark or gluon
- Dynamical Chiral Symmetry Breaking
- Very unnatural pattern of bound state masses
- e.g., Lagrangian (pQCD) quark mass is small but ... no degeneracy between $J^{P=+}$ and $J^{P=-}$

QCD's Challenges

- Quark and Gluon Confinement
- No matter how hard one strikes the proton, one cannot liberate an individual quark or gluon
- Dynamical Chiral Symmetry Breaking
- Very unnatural pattern of bound state masses
- e.g., Lagrangian (pQCD) quark mass is small but ... no degeneracy between $J^{P=+}$ and $J^{P=-}$
- Neither of these phenomena is apparent in QCD's Lagrangian yet they are the dominant determining characteristics of real-world QCD.

Understand Emergent Phenomena

- Quark and Gluon Confinement
- No matter how hard one strikes the proton, one cannot liberate an individual quark or gluon
- Dynamical Chiral Symmetry Breaking
- Very unnatural pattern of bound state masses - e.g., Lagrangian (pQCD) quark mass is smalt but ... no degeneracy between $J^{P=+}$ and $J^{P=-}!$
- Neither of these phenomena is apparent in QCCD's Lagrangian yet they are the dominant determining characteristics of real-world QCD.
- QCD - Complex behaviour arises from apparently simple rules

Why should You care?

Absent DCSB: $m_{\pi}=m_{\rho} \Rightarrow$ repulsive and attractive forces in nucleon-nucleon interaction both have SAME range and there is No intermediate range attraction!

Office of Science

Argonne

Why should You care?

Absent DCSB: $m_{\pi}=m_{\rho} \Rightarrow$ repulsive and attractive forces in nucleon-nucleon interaction both have SAME range and there is No intermediate range attraction! Under these circumstances,

Office of Science

UChicago

Argonne $_{u}$

Why should You care?

Absent DCSB: $m_{\pi}=m_{\rho} \Rightarrow$ repulsive and attractive forces in nucleon-nucleon interaction both have SAME range and there is No intermediate range attraction! Under these circumstances,

- What is the range: $\frac{1}{2 m_{q}} \sim 20 \mathrm{fm}$ or $\frac{1}{2 M_{Q}} \sim \frac{1}{3} \mathrm{fm}$?

Argonne $_{u}$

Why should You care?

Absent DCSB: $m_{\pi}=m_{\rho} \Rightarrow$ repulsive and attractive forces in nucleon-nucleon interaction both have SAME range and there is No intermediate range attraction! Under these circumstances,

- What is the range: $\frac{1}{2 m_{q}} \sim 20 \mathrm{fm}$ or $\frac{1}{2 M_{Q}} \sim \frac{1}{3} \mathrm{fm}$?
- Is ${ }^{12} C$ stable?
Argonne

Why should You care?

Absent DCSB: $m_{\pi}=m_{\rho} \Rightarrow$ repulsive and attractive forces in nucleon-nucleon interaction both have SAME range and there is No intermediate range attraction! Under these circumstances,

- What is the range: $\frac{1}{2 m_{q}} \sim 20 \mathrm{fm}$ or $\frac{1}{2 M_{Q}} \sim \frac{1}{3} \mathrm{fm}$?
- Is ${ }^{12} C$ stable?
- Probably not, if range range $\sim \frac{1}{2 M_{Q}}$ Argonne

Why should You care?

Absent DCSB: $m_{\pi}=m_{\rho} \Rightarrow$ repulsive and attractive forces in nucleon-nucleon interaction both have SAME range and there is No intermediate range attraction! Under these circumstances,

- How does the binding energy of deuterium change?

Why should

You care?

Absent DCSB: $m_{\pi}=m_{\rho} \Rightarrow$ repulsive and attractive forces in nucleon-nucleon interaction both have SAME range and there is No intermediate range attraction! Under these circumstances,

- How does the binding energy of deuterium change?
- How does the neutron lifetime change?

Office of Science

UChicago
Argonne

Why should

You care?

Absent DCSB: $m_{\pi}=m_{\rho} \Rightarrow$ repulsive and attractive forces in nucleon-nucleon interaction both have SAME range and there is No intermediate range attraction! Under these circumstances,

- How does the binding energy of deuterium change?
- How does the neutron lifetime change?
- How does $m_{u}-m_{d}$ relate to $M_{U}-M_{D}$?

Why should

You care?

Absent DCSB: $m_{\pi}=m_{\rho} \Rightarrow$ repulsive and attractive forces in nucleon-nucleon interaction both have SAME range and there is No intermediate range attraction! Under these circumstances,

- How does the binding energy of deuterium change?
- How does the neutron lifetime change?
- How does $m_{u}-m_{d}$ relate to $M_{U}-M_{D}$?
- Can one guarantee $M_{n}>M_{p}$?

Why should

You care?

Absent DCSB: $m_{\pi}=m_{\rho} \Rightarrow$ repulsive and attractive forces in nucleon-nucleon interaction both have SAME range and there is No intermediate range attraction! Under these circumstances,

- How does the binding energy of deuterium change?
- How does the neutron lifetime change?
- How does $m_{u}-m_{d}$ relate to $M_{U}-M_{D}$?
- Can one guarantee $M_{n}>M_{p}$?
- How do such changes affect Big Bang Nucleosynthesis?

Why should

You care?

Absent DCSB: $m_{\pi}=m_{\rho} \Rightarrow$ repulsive and attractive forces in nucleon-nucleon interaction both have SAME range and there is No intermediate range attraction! Under these circumstances,

- How does the binding energy of deuterium change?
- How does the neutron lifetime change?
- How does $m_{u}-m_{d}$ relate to $M_{U}-M_{D}$?
- Can one guarantee $M_{n}>M_{p}$?

Is a unique long-range interaction between light-quarks responsible for all this or are there an uncountable infinity of qualitatively equivalent interactions?

Chiral Symmetry

Gauge Theories with Massless Fermions have

CHIRAL SYMMETRY

Office of Science

Chiral Symmetry

- Helicity $\lambda \propto J \cdot p$
- Projection of Spin onto Direction of Motion
- For massless particles, helicity is a Lorentz invariant Spin Observable.
- $\lambda= \pm$ (|| or anti- || to p_{μ})

Office of Science
 Argonne

Chiral Symmetry

- Chirality Operator: γ_{5}

- Chiral Transformation $q(x) \rightarrow \mathrm{e}^{i \gamma_{5} \theta} q(x)$

Office of Science

UChicago

 Argonne $_{\text {u }}$
Chiral Symmetry

- Chirality Operator: γ_{5}
- Chiral Transformation $q(x) \rightarrow \mathrm{e}^{i \gamma_{5} \theta} q(x)$
- Chiral Rotation $\theta=\frac{\pi}{2}$
- $q_{\lambda=+} \rightarrow q_{\lambda=+}, q_{\lambda=-} \rightarrow-q_{\lambda=-}$
- Hence, a theory invariant under chiral transformations can only contain interactions that are insensitive to a particle's helicity.

Chiral Symmetry

- Chirality Operator: γ_{5}
- Chiral Transformation $q(x) \rightarrow \mathrm{e}^{i \gamma_{5} \theta} q(x)$
- Chiral Rotation $\theta=\frac{\pi}{4}$
- Composite Particles: $J^{P=+} \leftrightarrow J^{P=-}$
- Equivalent to "Parity Conjugation" Operation

Office of Science

Chiral Symmetry

- A Prediction of Chiral Symmetry
- Degeneracy between Parity Partners

$$
\begin{aligned}
& N\left(\frac{1}{2}^{+}, 938\right)=N\left(\frac{1}{2}^{-}, 1535\right), \\
& \pi\left(0^{-}, 140\right)=\sigma\left(0^{+}, 600\right), \\
& \rho\left(1^{-}, 770\right)=a_{1}\left(1^{+}, 1260\right)
\end{aligned}
$$

- Doesn't Look too good

Predictions not Valid - Violations too Large.

- Appears to suggest quarks are Very Heavy

Chiral Symmetry

- A Prediction of Chiral Symmetry
- Degeneracy between Parity Partners

$$
\begin{aligned}
& N\left(\frac{1}{2}^{+}, 938\right)=N\left(\frac{1}{2}^{-}, 1535\right), \\
& \pi\left(0^{-}, 140\right)=\sigma\left(0^{+}, 600\right), \\
& \rho\left(1^{-}, 770\right)=a_{1}\left(1^{+}, 1260\right)
\end{aligned}
$$

- Doesn't Look too good

Predictions not Valid - Violations too Large.

- Appears to suggest quarks are Very Heavy

How can pion mass be so small
If quarks are so heavy?!

Propagators

- Extraordinary Effects in QCD Tied to Properties of Dressed-Quark and -Gluon Propagators

Quark
Gluon

$$
S_{f}(x-y) \equiv\left\langle q_{f}(x) \bar{q}_{f}(y)\right\rangle D_{\mu \nu}(x-y) \equiv\left\langle A_{\mu}(x) A_{\nu}(y)\right\rangle
$$

- Describe in-Medium Propagation Characteristics of Elementary Particles

Office of Science
office of Nuclear Ph ${ }_{s i}$ UChicago Argonne

Argonne

\square

Propagators

- Example: Solid-State Physics
- γ propagating in a Dense e^{-}Gas
- Acquires a Debye Mass

$$
m_{\mathrm{D}}^{2} \propto k_{F}^{2}: \frac{1}{Q^{2}} \rightarrow \frac{1}{Q^{2}+m_{\mathrm{D}}^{2}}
$$

- γ develops an Effective-mass

Office of Science
 Argonne

Propagators

- Example: Solid-State Physics
- γ propagating in a Dense e^{-}Gas
- Acquires a Debye Mass

$$
m_{\mathrm{D}}^{2} \propto k_{F}^{2}: \frac{1}{Q^{2}} \rightarrow \frac{1}{Q^{2}+m_{\mathrm{D}}^{2}}
$$

- γ develops an Effective-mass
- Leads to Screening of the Interaction: $r \propto \frac{1}{m_{D}}$
- Quark and Gluon Propagators:

Modified in a similar way -
Momentum Dependent Effective Masses

UChicago Argonne

- The Effect of this is Observable in QCD

Explicit Chiral Symmetry Breaking

Office of Science

UChicago Argonne $_{\text {u }}$

Argonne
 national laboratory

Explicit Chiral Symmetry Breaking

- Chiral Symmetry

Can be discussed in terms of Quark Propagator

- Free Quark Propagator $S_{0}(p)=\frac{-i \gamma \cdot p+m}{p^{2}+m^{2}}$

Office of Science
 Argonne $_{u}$

Explicit Chiral Symmetry Breaking

- Chiral Symmetry

Can be discussed in terms of Quark Propagator

- Free Quark Propagator $S_{0}(p)=\frac{-i \gamma \cdot p+m}{p^{2}+m^{2}}$
- Chiral Transformation

$$
\begin{aligned}
\mathbf{S}_{0}(p) & \rightarrow \mathrm{e}^{i \gamma_{5} \theta} S_{0}(p) \mathrm{e}^{i \gamma_{5} \theta} \\
& =\frac{-i \gamma \cdot p}{p^{2}+m^{2}}+\mathrm{e}^{2 i \gamma_{5} \theta} \frac{m}{p^{2}+m^{2}}
\end{aligned}
$$

- Symmetry Violation $\propto m$
- $\mathbf{m}=0: S_{0}(p) \rightarrow S_{0}(p)$

Explicit Chiral Symmetry Breaking

- Chiral Symmetry

Can be discussed in terms of Quark Propagator

- Free Quark Propagator $S_{0}(p)=\frac{-i \gamma \cdot p+m}{p^{2}+m^{2}}$
- Quark Condensate

Office of Science office of Nuclear $P h_{y} s_{i_{c s}}$
Argonne
$\langle\bar{q} q\rangle_{\mu} \equiv \int_{\mu}^{\Lambda} \frac{d^{4} p}{(2 \pi)^{4}} \operatorname{tr}[S(p)] \propto \int_{\mu}^{\Lambda} \frac{d^{4} p}{(2 \pi)^{4}} \frac{m}{p^{2}+m^{2}}$

- A Measure of the Chiral Symmetry Violating Term
\square

Explicit Chiral Symmetry Breaking

- Chiral Symmetry

Can be discussed in terms of Quark Propagator

- Free Quark Propagator $S_{0}(p)=\frac{-i \gamma \cdot p+m}{p^{2}+m^{2}}$
- Quark Condensate
$\langle\bar{q} q\rangle_{\mu} \equiv \int_{\mu}^{\Lambda} \frac{d^{4} p}{(2 \pi)^{4}} \operatorname{tr}[S(p)] \propto \int_{\mu}^{\Lambda} \frac{d^{4} p}{(2 \pi)^{4}} \frac{m}{p^{2}+m^{2}}$
- A Measure of the Chiral Symmetry Violating Term
- Perturbative QCD: Vanishes if $m=0$

Dynamical Symmetry Breaking

Office of Science

UChicago Argonne $_{\text {u }}$

Argonne

 national laboratory

Dynamical Symmetry Breaking

$$
V(x, y)=\left(\sigma^{2}+\pi^{2}-1\right)^{2}
$$

Hamiltonian: $T+V$, is Rotationally Invariant

Office of Science

Dynamical Symmetry Breaking

$$
V(x, y)=\left(\sigma^{2}+\pi^{2}-1\right)^{2}
$$

Hamiltonian: $T+V$, is Rotationally Invariant

Office of Science

UChicago Argonne $_{\text {u }}$

Dynamical Symmetry Breaking

$$
V(x, y)=\left(\sigma^{2}+\pi^{2}-1\right)^{2}
$$

Hamiltonian: $T+V$, is Rotationally Invariant

Office of Science

UChicago

 Argonne.

UNSTABLE

- Rotationally Invariant

Ground State?

- Ball at (σ, π) for which $\sigma^{2}+\pi^{2}=0$:

Argonne
national laboratory

Dynamical Symmetry Breaking

$$
V(x, y)=\left(\sigma^{2}+\pi^{2}-1\right)^{2}
$$

Hamiltonian: $T+V$, is Rotationally Invariant

Office of Science office of Nuclear Physics UChicago Argonne $_{u}$

Ground State

- Ball at any (σ, π) for which $\sigma^{2}+\pi^{2}=1$
- All Positions have Same (Minimum) Energy
- But not invariant under rotations

Dynamical Symmetry Breaking

$$
V(x, y)=\left(\sigma^{2}+\pi^{2}-1\right)^{2}
$$

Hamiltonian: $T+V$, is Rotationally Invariant Symmetry of Ground State \neq Symmetry of Hamiltonian

Office of Science office of Nuclear Physics

UChicago Argonne

Ground State

- Ball at any (σ, π) for which $\sigma^{2}+\pi^{2}=1$
- All Positions have Same (Minimum) Energy
- But not invariant under rotations

Dynamics and Symmetries

Office of Science

UChicago Argonne

Argonne
 NATIONAL laboratory

Dynamics and Symmetries

- Confinement:

NO quarks or gluons have ever reached a detector alone

Office of Science

UChicago Argonne $_{u}$

Dynamics and Symmetries

- Confinement:

NO quarks or gluons have ever reached a detector alone

- Chirality $=$ Projection of spin onto direction of motion Quarks are either left- or right-handed

Office of Science

Dynamics and Symmetries

- Confinement:

NO quarks or gluons have ever reached a detector alone

- Chirality $=$ Projection of spin onto direction of motion Quarks are either left- or right-handed
- Chiral Symmetry:

To classical QCD interactions,
left- and right-handed quarks are IDENTICAL

Office of Science

UChicago Argonne $_{u}$

Dynamics and Symmetries

- Confinement:

NO quarks or gluons have ever reached a detector alone

- Chirality $=$ Projection of spin onto direction of motion Quarks are either left- or right-handed
- Chiral Symmetry:

To classical QCD interactions, left- and right-handed quarks are IDENTICAL

- Challenge - Connect

Dynamical Symmetry Breaking and Confinement Start with Massless Quarks and through Interactions Alone, Generate Massive Quarks

Dynamics and Symmetries

- Confinement:

NO quarks or gluons have ever reached a detector alone

- Chirality $=$ Projection of spin onto direction of motion Quarks are either left- or right-handed
- Chiral Symmetry:

To classical QCD interactions,
left- and right-handed quarks are IDENTICAL

- Challenge - Connect

Dynamical Symmetry Breaking and Confinement Start with Massless Quarks and through Interactions Alone, Generate Massive Quarks

Quantum Mechanics?

- Plainly, nonperturbative method is necessary.

Office of Science
 Argonne $_{\text {u }}$

Quantum Mechanics?

- Plainly, nonperturbative method is necessary.
- However, is there an answer to the question?
- Possible to obtain or even sensible to ask for a quantum mechanical description of light-quark systems in a relativistic quantum gauge field theory, wherein virtual particles play an essential role?

Quantum Mechanics?

- Plainly, nonperturbative method is necessary.
- However, is there an answer to the question?
- Possible to obtain or even sensible to ask for a quantum mechanical description of light-quark systems in a relativistic quantum gauge field theory, wherein virtual particles play an essential role?
- No, it's not.

Office of Science

UChicago Argonne $_{\text {\# }}$

Quantum Mechanics?

- Plainly, nonperturbative method is necessary.
- However, is there an answer to the question?
- Possible to obtain or even sensible to ask for a quantum mechanical description of light-quark systems in a relativistic quantum gauge field theory, wherein virtual particles play an essential role?
- No, it's not. True understanding of the hadron spectrum and decays requires the ab initio nonperturbative solution of a fully-fledged relativistic quantum field theory

Quantum Mechanics?

- Plainly, nonperturbative method is necessary.
- However, is there an answer to the question?
- Possible to obtain or even sensible to ask for a quantum mechanical description of light-quark systems in a relativistic quantum gauge field theory, wherein virtual particles play an essential role?
- No, it's not. True understanding of the hadron spectrum and decays requires the ab initio nonperturbative solution of a fully-fledged relativistic quantum field theory

NB. Hadron Physics Milestone, 2012: Measure the

Office of Science Argonne
electromagnetic excitations of low-lying hadrons and their transition form factors.

Model QCD

Office of Science

UChicago Argonne

Argonne

Traditional approach to strong force problem

Model QCD

Office of Science

UChicago Argonne
national laboratory

Traditional approach to strong force problem

Model QCD

Traditional approach to strong force problem

Model QCD

Lattice QCD

Office of Science

UChicago Argonne

Argonne

 national laboratory

One modern nonperturbative approach Lattice $Q C D$

Office of Science

UChicago

 Argonne
One modern nonperturbative approach Lattice QCD

Office of Science

UChicago
Argonne

national laboratory

One modern nonperturbative approach Lattice QCD

One modern nonperturbative approach Lattice $Q C D$

A Compromise?

Dyson-Schwinger Equations

Office of Science

UChicago

 Argonne $_{u}$national laboratory

A Compromise?

Dyson-Schwinger Equations

- 1994 ... "As computer technology continues to improve, lattice gauge theory [LGT] will become an increasingly useful means of studying hadronic physics through investigations of discretised quantum chromodynamics [QCD]."

A Compromise?

Dyson-Schwinger Equations

- 1994 ... "However, it is equally important to develop other complementary nonperturbative methods based on continuum descriptions. In particular, with the advent of new accelerators such as CEBAF and RHIC, there is a need for the development of approximation techniques and models which bridge the gap between short-distance, perturbative QCD and the extensive amount of low- and intermediate-energy phenomenology in a single covariant framework. ..."

A Compromise?

Dyson-Schwinger Equations

- 1994 ... "Cross-fertilisation between LGT studies and continuum techniques provides a particularly useful means of developing a detailed understanding of nonperturbative QCD."

Office of Science

\square

A Compromise?

Dyson-Schwinger Equations

- 1994 ... "Cross-fertilisation between LGT studies and continuum techniques provides a particularly useful means of developing a detailed understanding of nonperturbative QCD."
C. D. Roberts and A. G. Williams, "Dyson-Schwinger equations and their application to hadronic physics," Prog. Part. Nucl. Phys. 33, 477 (1994) [arXiv:hep-ph/9403224].

A Compromise?

Dyson-Schwinger Equations

- 1994 ... "Cross-fertilisation between LGT studies and continuum techniques provides a particularly useful means of developing a detailed understanding of nonperturbative QCD."
C. D. Roberts and A. G. Wrilliams, "Dyson-Schwinger equations and their application to hadronic physics," Prog. Part. Nucl. Phys. 33, 477 (1994) [arXiv:hep-ph/9403224].

A Compromise?

 Dyson-Schwinger Equations- Dyson (1949) \& Schwinger (1951) ... One can derive a system of coupled integral equations relating the Green functions for the theory to each other.

Office of Science

Argonne

A Compromise?

Dyson-Schwinger Equations

- Dyson (1949) \& Schwinger (1951) ... One can derive a system of coupled integral equations relating the Green functions for the theory to each other.

Office of Science affice of Nuclear Phys,

- These are nonperturbative equivalents in quantum field theory to the Lagrange equations of motion.

UChicago

 Argonne
A Compromise?

Dyson-Schwinger Equations

- Dyson (1949) \& Schwinger (1951) ... One can derive a system of coupled integral equations relating the Green functions for the theory to each other.

Office of Science office of Nuclear $\mathrm{Ph}_{y_{s i_{c s}}}$ UChicago Argonne

- These are nonperturbative equivalents in quantum field theory to the Lagrange equations of motion.
- Essential in simplifying the general proof of renormalisability of gauge field theories.

Dyson-Schwinger Equations

Euler-Lagrange equations for quantum field theory

- Well suited to Relativistic Quantum Field Theory

Dyson-Schwinger Equations

Euler-Lagrange equations for quantum field theory

- Well suited to Relativistic Quantum Field Theory
- Simplest level: Generating Tool for Perturbation Theory
.......................... Materially Reduces Model Dependence
\square

Dyson-Schwinger Equations

Euler-Lagrange equations for quantum field theory

- Well suited to Relativistic Quantum Field Theory
- Simplest level: Generating Tool for Perturbation Theory
.......................... Materially Reduces Model Dependence
- NonPerturbative, Continuum approach to QCD

Office of Science

Dyson-Schwinger Equations

Euler-Lagrange equations for quantum field theory

- Well suited to Relativistic Quantum Field Theory
- Simplest level: Generating Tool for Perturbation Theory
........................... Materially Reduces Model Dependence
- NonPerturbative, Continuum approach to QCD
- Hadrons as Composites of Quarks and Gluons
- Qualitative and Quantitative Importance of:
- Dynamical Chiral Symmetry Breaking

Office of Science

UChicago Argonne

- Generation of fermion mass from nothing
- Quark \& Gluon Confinement
- Coloured objects not detected, not detectable?

Dyson-Schwinger Equations

Euler-Lagrange equations for quantum field theory

- Well suited to Relativistic Quantum Field Theory
- Simplest level: Generating Tool for Perturbation Theory
........................... Materially Reduces Model Dependence
- NonPerturbative, Continuum approach to QCD
- Hadrons as Composites of Quarks and Gluons
- Qualitative and Quantitative Importance of:
- Dynamical Chiral Symmetry Breaking

Office of Science office of Nuclear Ph ${ }_{\text {sic }}$ - Generation of fermion mass from nothing

- Quark \& Gluon Confinement
- Coloured objects not detected, not detectable?
- Understanding \Rightarrow InfraRed behaviour of $\alpha_{s}\left(Q^{2}\right)$

Dyson-Schwinger Equations

Euler-Lagrange equations for quantum field theory

- Well suited to Relativistic Quantum Field Theory
- Simplest level: Generating Tool for Perturbation Theory Materially Reduces Model Dependence
- NonPerturbative, Continuum approach to QCD
- Hadrons as Composites of Quarks and Gluons - Qualitative and Quantitative Importance of:
- Dynamical Chiral Symmetry Breaking
- Generation of fermion mass from nothing
- Quark \& Gluon Confinement
- Coloured objects not detected, not detectable?
- Understanding \Rightarrow InfraRed behaviour of $\alpha_{s}\left(Q^{2}\right)$
- Method yields Schwinger Functions \equiv Propagators

Perturbative

Dressed-quark Propagator

Office of Science

UChicago Argonne

national laboratory

Dressed-quark Propagator

$$
S(p)=\frac{Z\left(p^{2}\right)}{i \gamma \cdot p+M\left(p^{2}\right)}
$$

Office of Science

UChicago Argonne $_{\text {ue }}$

Argonne

Dressed-quark Propagator

$$
S(p)=\frac{Z\left(p^{2}\right)}{i \gamma \cdot p+M\left(p^{2}\right)}
$$

- dressed-quark propagator

Gap Equation

$$
S(p)=\frac{1}{i \gamma \cdot p A\left(p^{2}\right)+B\left(p^{2}\right)}
$$

Office of Science

Dressed-quark Propagator

$$
S(p)=\frac{Z\left(p^{2}\right)}{i \gamma \cdot p+M\left(p^{2}\right)}
$$

- dressed-quark propagator

Gap Equation

$$
S(p)=\frac{1}{i \gamma \cdot p A\left(p^{2}\right)+B\left(p^{2}\right)}
$$

Office of Science office of Nuclear Physics

UChicago

 Argonne- Weak Coupling Expansion

Reproduces Every Diagram in Perturbation Theory

Argonne

Dressed-quark Propagator

$$
S(p)=\frac{Z\left(p^{2}\right)}{i \gamma \cdot p+M\left(p^{2}\right)}
$$

- dressed-quark propagator

$$
S(p)=\frac{1}{i \gamma \cdot p A\left(p^{2}\right)+B\left(p^{2}\right)}
$$

Office of Science office of Nuclear Physics

Weak Coupling Expansion
Reproduces Every Diagram in Perturbation Theory

But in Perturbation Theory

$$
B\left(p^{2}\right)=m\left(1-\frac{\alpha}{\pi} \ln \left[\frac{p^{2}}{m^{2}}\right]+\ldots\right) \xrightarrow{m \rightarrow 0} 0
$$

UChicago
Argonne
Argonne

Dressed-quark Propagator

$$
S(p)=\frac{Z\left(p^{2}\right)}{i \gamma \cdot p+M\left(p^{2}\right)}
$$

- dressed-quark propagator

$$
S(p)=\frac{1}{i \gamma \cdot p A\left(p^{2}\right)+B\left(p^{2}\right)}
$$

Weak Coupling Expansion
Reproduces Every Diagram in Perturbation Theory
But in Perturbation Theory
UChicago -

$$
B\left(p^{2}\right)=m\left(1-\frac{\alpha}{\pi} \ln \left[\frac{p^{2}}{m^{2}}\right]+\ldots\right)\left(\begin{array}{ll}
m \rightarrow 0 & 0
\end{array}\right.
$$

Nambu-Jona-Lasinio Model

- Recall the Gap Equation:

$$
\begin{align*}
& S^{-1}(p)=i \gamma \cdot p A\left(p^{2}\right)+B\left(p^{2}\right)=i \gamma \cdot p+m \\
& \quad+\int^{\Lambda} \frac{d^{4} \ell}{(2 \pi)^{4}} g^{2} D_{\mu \nu}(p-\ell) \gamma_{\mu} \frac{\lambda^{a}}{2} \frac{1}{i \gamma \cdot \ell A\left(\ell^{2}\right)+B\left(\ell^{2}\right)} \Gamma_{\nu}^{a}(\ell, p) \tag{4}
\end{align*}
$$

- NJL: $\Gamma_{\mu}^{a}(k, p)_{\text {bare }}=\gamma_{\mu} \frac{\lambda^{a}}{2}$;

$$
\begin{equation*}
g^{2} D_{\mu \nu}(p-\ell) \rightarrow \delta_{\mu \nu} \frac{1}{m_{G}^{2}} \theta\left(\Lambda^{2}-\ell^{2}\right) \tag{5}
\end{equation*}
$$

Office of Science office of Nuclear Physics

- NJL Gap Equation

UChicago Argonne

$$
\begin{aligned}
& i \gamma \cdot p A\left(p^{2}\right)+B\left(p^{2}\right) \\
& \quad=\quad i \gamma \cdot p+m+\frac{4}{3} \frac{1}{m_{G}^{2}} \int \frac{d^{4} \ell}{(2 \pi)^{4}} \theta\left(\Lambda^{2}-\ell^{2}\right) \gamma_{\mu} \frac{-i \gamma \cdot \ell A\left(\ell^{2}\right)+B\left(\ell^{2}\right)}{\ell^{2} A^{2}\left(\ell^{2}\right)+B^{2}\left(\ell^{2}\right)} \gamma_{\mu}
\end{aligned}
$$

Solving NJL Gap Equation

- Multiply Eq. (6) by $(-i \gamma \cdot p)$; trace over Dirac indices:

$$
\begin{equation*}
p^{2} A\left(p^{2}\right)=p^{2}+\frac{8}{3} \frac{1}{m_{G}^{2}} \int \frac{d^{4} \ell}{(2 \pi)^{4}} \theta\left(\Lambda^{2}-\ell^{2}\right) p \cdot \ell \frac{A\left(\ell^{2}\right)}{\ell^{2} A^{2}\left(\ell^{2}\right)+B^{2}\left(\ell^{2}\right)} \tag{7}
\end{equation*}
$$

- Angular integral vanishes, therefore

$$
\begin{equation*}
A\left(p^{2}\right) \equiv 1 \tag{8}
\end{equation*}
$$

This owes to the the fact that NJL model is defined by four-fermion contact interaction in configuration space, entails momentum-independence of interaction in momentum space.

- Tracing over Dirac indices; use Eq. (8):

$$
\begin{equation*}
B\left(p^{2}\right)=m+\frac{16}{3} \frac{1}{m_{G}^{2}} \int \frac{d^{4} \ell}{(2 \pi)^{4}} \theta\left(\Lambda^{2}-\ell^{2}\right) \frac{B\left(\ell^{2}\right)}{\ell^{2}+B^{2}\left(\ell^{2}\right)}, \tag{9}
\end{equation*}
$$

- Integral is p^{2}-independent.
- Therefore $B\left(p^{2}\right)=$ constant $=M$ is the only solution.

NJL Mass Gap

- Evaluate integrals; Eq. (9) becomes

$$
\begin{align*}
M & =m+M \frac{1}{3 \pi^{2}} \frac{1}{m_{G}^{2}} \mathcal{C}\left(M^{2}, \Lambda^{2}\right) \tag{10}\\
\mathcal{C}\left(M^{2}, \Lambda^{2}\right) & =\Lambda^{2}-M^{2} \ln 1+\Lambda^{2} / M^{2} \tag{11}
\end{align*}
$$

- Λ defines model's mass-scale. Henceforth set $\Lambda=1$. Then all other dimensioned quantities are given in units of this scale, in which case the gap equation can be written

$$
\begin{equation*}
M=m+M \frac{1}{3 \pi^{2}} \frac{1}{m_{G}^{2}} \mathcal{C}\left(M^{2}, 1\right) \tag{12}
\end{equation*}
$$

- Chiral limit: $m=0, \quad M=M \frac{1}{3 \pi^{2}} \frac{1}{m_{G}^{2}} \mathcal{C}\left(M^{2}, 1\right)$
- Solved if $M \equiv 0$
... This is the perturbative result: start with no mass, end up with no mass.
- Suppose $M \neq 0$
- Solved iff $1=\frac{1}{3 \pi^{2}} \frac{1}{m_{G}^{2}} \mathcal{C}\left(M^{2}, 1\right)$.

NJL Dynamical Mass

- Can one satisfy $1=\frac{1}{3 \pi^{2}} \frac{1}{m_{G}^{2}} \mathcal{C}\left(M^{2}, 1\right)$?
- $\mathcal{C}\left(M^{2}, 1\right)=1-M^{2} \ln 1+1 / M^{2}$
- Monotonically decreasing function of M
- Maximum value at $M=0: \mathcal{C}(0,1)=1$.
- Consequently $\exists M \neq 0$ solution iff $\frac{1}{3 \pi^{2}} \frac{1}{m_{G}^{2}}>1$
- Typical scale for hadron physics $\Lambda \sim 1 \mathrm{GeV}$.

Office of Science

- Interaction Strength is proportional to $\frac{1}{m_{G}^{2}}$
- When interaction is strong enough,
- $M \neq 0$ solution iff $m_{G}^{2}<\frac{\Lambda^{2}}{3 \pi^{2}} \simeq(0.2 \mathrm{GeV})^{2}$
one can start with no mass but end up with a massive quark.

NJL Dynamical Mass

- Can one satisfy $1=\frac{1}{3 \pi^{2}} \frac{1}{m_{G}^{2}} \mathcal{C}\left(M^{2}, 1\right)$?
- $\mathcal{C}\left(M^{2}, 1\right)=1-M^{2} \ln 1+1 / M^{2}$
- Monotonically decreasing function of M
- Maximum value at $M=0: \mathcal{C}(0,1)=1$.
- Consequently $\exists M \neq 0$ solution iff $\frac{1}{3 \pi^{2}} \frac{1}{m_{G}^{2}}>1$
- Typical scale for hadron physics $\Lambda \sim 1 \mathrm{GeV}$.
- Interaction Strength is proportional to $\frac{1}{m_{G}^{2}}$
- When interaction is strong enough, one can start with no mass but end up with a massive quark.

Dynamical Chiral Symmetry Breaking

NJL Dynamical Mass

Solve $M=m_{0}+M \frac{1}{3 \pi^{2}} \frac{1}{m_{G}^{2}} \mathcal{C}\left(M^{2}, 1\right) \quad$ NJL Mass Gap

Office of Science office of Nuclear Physics

- Weak coupling: $\Leftrightarrow m_{G}$ large

NJL Model and Confinement?

- Confinement - no free-particle-like quarks

Office of Science

UChicago

 Argonne
NJL Model and Confinement?

- Confinement - no free-particle-like quarks
- Fully-dressed NJL propagator

$$
\begin{equation*}
S(p)^{\mathrm{NJL}}=\frac{1}{i \gamma \cdot p\left[A\left(p^{2}\right)=1\right]+\left[B\left(p^{2}\right)=M\right]}=\frac{-i \gamma \cdot p+M}{p^{2}+M^{2}} \tag{15}
\end{equation*}
$$

NJL Model and Confinement?

- Confinement - no free-particle-like quarks
- Fully-dressed NJL propagator

$$
\begin{equation*}
S(p)^{\mathrm{NJL}}=\frac{1}{i \gamma \cdot p\left[A\left(p^{2}\right)=1\right]+\left[B\left(p^{2}\right)=M\right]}=\frac{-i \gamma \cdot p+M}{p^{2}+M^{2}} \tag{17}
\end{equation*}
$$

- This is merely a free-particle-like propagator with a shifted mass:

$$
\begin{equation*}
p^{2}+M^{2}=0 \Rightarrow \text { Minkowski-space mass }=M . \tag{18}
\end{equation*}
$$

NJL Model and Confinement?

- Confinement - no free-particle-like quarks
- Fully-dressed NJL propagator

$$
\begin{equation*}
S(p)^{\mathrm{NJL}}=\frac{1}{i \gamma \cdot p\left[A\left(p^{2}\right)=1\right]+\left[B\left(p^{2}\right)=M\right]}=\frac{-i \gamma \cdot p+M}{p^{2}+M^{2}} \tag{19}
\end{equation*}
$$

- This is merely a free-particle-like propagator with a shifted mass:

$$
\begin{equation*}
p^{2}+M^{2}=0 \Rightarrow \text { Minkowski-space mass }=M \tag{20}
\end{equation*}
$$

Office of Science

$$
\text { Argonne }_{\text {w }}
$$

- Hence, while NJL Model certainly contains DCSB, it does not exhibit confinement.

Munczek-Nemirovsky Model

- Munczek, H.J. and Nemirovsky, A.M. (1983), "The Ground State $q \bar{q}$ Mass Spectrum In QCD," Phys. Rev. D 28, 181.
- $\Gamma_{\mu}^{a}(k, p)_{\text {bare }}=\gamma_{\mu} \frac{\lambda^{a}}{2}$;

$$
\begin{equation*}
g^{2} D_{\mu \nu}(k) \rightarrow(2 \pi)^{4} G \delta^{4}(k)\left[\delta_{\mu \nu}-\frac{k_{\mu} k_{\nu}}{k^{2}}\right] \tag{21}
\end{equation*}
$$

Here G defines the model's mass-scale.

- δ-function in momentum space
cf. NJL, which has δ-function in configuration space.
- Gap equation

$$
\begin{equation*}
i \gamma \cdot p A\left(p^{2}\right)+B\left(p^{2}\right)=i \gamma \cdot p+m+G \gamma_{\mu} \frac{-i \gamma \cdot p A\left(p^{2}\right)+B\left(p^{2}\right)}{p^{2} A^{2}\left(p^{2}\right)+B^{2}\left(p^{2}\right)} \gamma_{\mu} \tag{22}
\end{equation*}
$$

MN Model's Gap Equation

- The gap equation yields the following two coupled equations (set the mass-scale $G=1$):

$$
\begin{align*}
& A\left(p^{2}\right)=1+2 \frac{A\left(p^{2}\right)}{p^{2} A^{2}\left(p^{2}\right)+B^{2}\left(p^{2}\right)} \tag{23}\\
& B\left(p^{2}\right)=m+4 \frac{B\left(p^{2}\right)}{p^{2} A^{2}\left(p^{2}\right)+B^{2}\left(p^{2}\right)}, \tag{24}
\end{align*}
$$

- Consider the chiral limit equation for $B\left(p^{2}\right)$:

$$
\begin{equation*}
B\left(p^{2}\right)=4 \frac{B\left(p^{2}\right)}{p^{2} A^{2}\left(p^{2}\right)+B^{2}\left(p^{2}\right)} \tag{25}
\end{equation*}
$$

- Obviously, $B \equiv 0$ is a solution.
- Is there another?

DCSB in MN Model

- The existence of a $B \not \equiv 0$ solution; i.e., a solution that dynamically breaks chiral symmetry, requires (in units of G)

$$
\begin{equation*}
p^{2} A^{2}\left(p^{2}\right)+B^{2}\left(p^{2}\right)=4 \tag{26}
\end{equation*}
$$

- Substituting this identity into equation Eq. (23), one finds

$$
\begin{equation*}
A\left(p^{2}\right)-1=\frac{1}{2} A\left(p^{2}\right) \Rightarrow A\left(p^{2}\right) \equiv 2 \tag{27}
\end{equation*}
$$

which in turn entails

$$
\begin{equation*}
B\left(p^{2}\right)=2^{\mathrm{p}} \overline{1-p^{2}} \tag{28}
\end{equation*}
$$

- Physical requirement: quark self energy is real on the spacelike domain \Rightarrow complete chiral-limit solution -

$$
\begin{align*}
& A\left(p^{2}\right)= \begin{cases}2 ; & p^{2} \leq 1 \\
\frac{1}{2}\left(1+\sqrt{1+8 / p^{2}}\right) ; & p^{2}>1\end{cases} \tag{29}\\
& B\left(p^{2}\right)= \begin{cases}\sqrt{1-p^{2}} ; & p^{2} \leq 1 \\
0 ; & p^{2}>1\end{cases} \tag{30}
\end{align*}
$$

- NB. Dressed-quark self-energy is momentum dependent, as is the case in QCD.

Confinement in MN Model

- Solution is continuous and defined for all p^{2}, even $p^{2}<0$; namely, timelike momenta.
- Examine the propagator's denominator:

$$
\begin{equation*}
p^{2} A^{2}\left(p^{2}\right)+B^{2}\left(p^{2}\right)>0, \forall p^{2} . \tag{31}
\end{equation*}
$$

This is positive definite . . . there are no zeros

- This is nothing like a free-particle propagator. It can be interpreted as describing a confined degree-of-freedom
- Note that, in addition there is no critical coupling: the nontrivial solution exists so long as $\mathbf{G}>0$.
- Conjecture: All confining theories exhibit DCSB.
- NJL model demonstrates that converse is not true.

Massive Solution in MN Model

- In the chirally asymmetric case the gap equation yields

$$
\begin{align*}
A\left(p^{2}\right) & =\frac{2 B\left(p^{2}\right)}{m+B\left(p^{2}\right)} \tag{32}\\
B\left(p^{2}\right) & =m+\frac{4\left[m+B\left(p^{2}\right)\right]^{2}}{B\left(p^{2}\right)\left(\left[m+B\left(p^{2}\right)\right]^{2}+4 p^{2}\right)} . \tag{33}
\end{align*}
$$

- Second is a quartic equation for $B\left(p^{2}\right)$.
- Can be solved algebraically with four solutions, available in a closed form.
- Only one has the correct $p^{2} \rightarrow \infty$ limit: $B\left(p^{2}\right) \rightarrow m$.
- NB. The equations and their solutions always have a smooth $m \rightarrow 0$ limit, a result owing to the persistence of the DCSB solution.

MN Dynamical Mass

$$
\begin{array}{ll}
\hline M\left(s=p^{2}\right)=\frac{B(s)}{A(s)} \\
\text { Large } s: \\
M(s) \sim m_{0} \\
\text { Small } s \\
M \gg m_{0} \\
\text { This is the } \\
\text { essential } \\
\text { characteristic } \\
\text { of DCSB } \\
p^{2} \text {-dependent } \\
\text { mass function is } \\
\text { quintessential } \\
\text { feature of QCD. }
\end{array}
$$

Office of Science

UChicago

 Argonne
Real World Alternatives

$g^{2} D\left(Q^{2}\right)=4 \pi \frac{G\left(Q^{2}\right)}{Q^{2}}$

- $G(0)<1$:
$M(s) \equiv 0$ is only solution for $m=0$.
- $G(0) \geq 1$
$M(s) \neq 0$ is possible and energetically favoured: DCSB.
- $M(0) \neq 0$ is a

Office of Science

UChicago Argonne $_{3}$ new, dynamically generated mass-scale. If it is large enough, it can explain how a theory that is

$G(Q)$
0.6 apparently massless (in the Lagrangian) possesses the spectrum of a massive theory.

Overview

- Confinement and Dynamical Chiral Symmetry Breaking are Key

 Emergent Phenomena in QCD
Overview

- Confinement and Dynamical Chiral Symmetry Breaking are Key Emergent Phenomena in QCD
- Understanding requires Nonperturbative Solution of Fully-Fledged Relativistic Quantum Field Theory

Overview

- Confinement and Dynamical Chiral Symmetry Breaking are Key Emergent Phenomena in QCD
- Understanding requires Nonperturbative Solution of Fully-Fledged Relativistic Quantum Field Theory
- Mathematics and Physics still far from being able to accomplish that

Overview

- Confinement and Dynamical Chiral Symmetry Breaking are Key Emergent Phenomena in QCD
- Understanding requires Nonperturbative Solution of Fully-Fledged Relativistic Quantum Field Theory
- Confinement and DCSB are expressed in QCD's propagators and vertices

UChicago Argonne $_{u}$
\square

Overview

- Confinement and Dynamical Chiral Symmetry Breaking are Key Emergent Phenomena in QCD
- Understanding requires Nonperturbative Solution of Fully-Fledged Relativistic Quantum Field Theory
- Confinement and DCSB are expressed in QCD's propagators and vertices
- Nonperturbative modifications should have observable consequences

Office of Science

UChicago Argonne $_{3}$ ons
\square

Overview

- Confinement and Dynamical Chiral Symmetry Breaking are Key Emergent Phenomena in QCD
- Understanding requires Nonperturbative Solution of Fully-Fledged Relativistic Quantum Field Theory
- Confinement and DCSB are expressed in QCD's propagators and vertices
- Dyson-Schwinger Equations are a useful analytical and numerical tool for nonperturbative study of relativistic quantum field theory

Overview

- Confinement and Dynamical Chiral Symmetry Breaking are Key Emergent Phenomena in QCD
- Understanding requires Nonperturbative Solution of Fully-Fledged Relativistic Quantum Field Theory
- Confinement and DCSB are expressed in QCD's propagators and vertices
- Dyson-Schwinger Equations are a useful analytical and numerical tool for nonperturbative study of relativistic quantum field theory
- Simple models (NJL) can exhibit DCSB

Overview

- Confinement and Dynamical Chiral Symmetry Breaking are Key Emergent Phenomena in QCD
- Understanding requires Nonperturbative Solution of Fully-Fledged Relativistic Quantum Field Theory
- Confinement and DCSB are expressed in QCD's propagators and vertices
- Dyson-Schwinger Equations are a useful analytical and numerical tool for nonperturbative study of relativistic quantum field theory
- Simple models (NJL) can exhibit DCSB
- DCSB \nRightarrow Confinement

Overview

- Confinement and Dynamical Chiral Symmetry Breaking are Key Emergent Phenomena in QCD
- Understanding requires Nonperturbative Solution of Fully-Fledged Relativistic Quantum Field Theory
- Confinement and DCSB are expressed in QCD's propagators and vertices
- Dyson-Schwinger Equations are a useful analytical and numerical tool for nonperturbative study of relativistic quantum field theory
- Simple models (NJL) can exhibit DCSB
- DCSB \nRightarrow Confinement
- Simple models (MN) can exhibit Confinement

Overview

- Confinement and Dynamical Chiral Symmetry Breaking are Key Emergent Phenomena in QCD
- Understanding requires Nonperturbative Solution of Fully-Fledged Relativistic Quantum Field Theory
- Confinement and DCSB are expressed in QCD's propagators and vertices
- Dyson-Schwinger Equations are a useful analytical and numerical tool for nonperturbative study of relativistic quantum field theory
- Simple models (NJL) can exhibit DCSB
- DCSB \nRightarrow Confinement
- Simple models (MN) can exhibit Confinement
- Confinement \Rightarrow DCSB

Overview

- Confinement and Dynamical Chiral Symmetry Breaking are Key Emergent Phenomena in QCD
- Understanding requires Nonperturbative Solution of Fully-Fledged Relativistic Quantum Field Theory
- Confinement and DCSB are expressed in QCD's propagators and vertices
- Dyson-Schwinger Equations are a useful analytical and numerical tool for nonperturbative study of relativistic quantum field theory
- Simple models (NJL) can exhibit DCSB
- DCSB \nRightarrow Confinement
- Simple models (MN) can exhibit Confinement
- Confinement \Rightarrow DCSB
- What's the story in QCD?
national laboratory

