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General aspects, computation
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For a classical A,(x) field, the effective action is given by :
» Spinor :
= —ilndet(iD — m),
» Scalar : ]
M= éln det(—D3% — m?),

where D = "D, = v*(0,, — ieA,(x)) .
These expressions correspond to a perturbative series :
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Lagrangian, obtained for a constant EM field background.
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However, for m — 0, there is no general approach.
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Example: The Yang-Mills Instanton

We have a fermion field with A,(r) = 721;’2 7

Since this field is self-dual, we have a remarkable property

[ spinor(A; M) = —2@ scatar(A; M) + (zero — modes) In m

Inm 1 17

m—oo i Tyin(M) = ==5= = 2505 =~ 735

t'Hooft (1976)

m=0 : Typmr(0)=a(1/2) ~0.145873 + O(m?)
Kwon, Lee and Min (2000)

2
Mm—0 : Fyme(m)=a(1/2)+ %[In M+~ —In2] + O(m*)
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Example: The Helmholtz operator

N a2 nm 2

H:[_dx2+m2 An m+<L>’
det[ +m2} ﬁ {m2+(Tﬂ)2} _ sinh(mL)

det[ dxg] n=1 [ Zr) } mL

GY Theorem :

d2
— et =0 40)=0 ;  0)=1
X
The solutions, including the "free equation”, are ¢(x) = Si“h,(n’"x)

and ¢o(x) =
det[ o +m} _ $(L) _ sinh(mL)

det[_ %22] ~do(l) omL
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Radially Symmetric Backgrounds

(D2 —mPyy i Au(r) =15, %9(r)

We have an O(2) x O(3) symmetry and we can set up a
partial-wave decomposition :

det(D? — m?) - det(H; + mP?)
" [det(az - m2)] 2 i [det(’l—l? + mP)

1=0

GY Theorem (initial value problem):

d2S(r)  [dSi(r)\? (1 by A (mr)\ dSi(r)
o+ (557) + (ramgiin) S5 v

{S1(0)=0, 5/(0) =0}

where Si(r) = In 1;"0((’)) and V(r) depends on g(r).




We can find S;(r) numerically

» Example: Si(r) , {/=4,h=—-4,-.- 4s3=1/2}



Is that simple?
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Is that simple?

However,
> det(H; + m2) >
QN1 = QNS ~ 00 |
In fact
L
> Q()S)(c0) ~ L



Is that simple?

However,

» Not really a surprise, in more than 1 + 1 dimensions, we
need renormalization.
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The strategy

L oo
§:f2 (NSi(00) = 3" Q)Si(c0)+ S Q(1)S/(50) = Mow+Tign
1=0

I=L+1/2

Low-modes: = GY Theorem (numerical solution)
High-modes: = WKB series (analytic calculation), perform
renormalization.

det(H; + m2) B _/OO §
0

e‘mzs/oo ar{A(r,r;8)—=A%r,r; s

where A((r,r';s) = (rle=s™|r') .

Vars

where V(r) includes a centrifugal term that depends on /.

—sV(r) 3 2
&mna—b+(;m0W—Zqu+m




The calculation
» First we perform the infinite sum over the angular
momentum /. We use the Euler-Maclaurin formula for this:

b

Zf(”)Z/bf(x)derf(aH_f(b)Jr...

2
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The calculation

» First we perform the infinite sum over the angular
momentum /. We use the Euler-Maclaurin formula for this:

b
> )= [ oo HALIO)

» Next we integrate over ds, we can perform renormalization
at this point.

» We are left with an integral over dr

2
ren > 1
o= /0 dr (Q,og(r) INL+> " Qu(NL"+ Q-n(N 5

n=0 n=1




The result: ™ =T, + F{_?iljgh < 00

» This shows an example of ""(m) for Scalar QED, with
g(r) = B(1 — Tanh[8VBr —¢]) ;{B=1,8=1,¢=38}

» The small-mass expansion (red), the large-mass
expansion (line), our method (dots).
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The spinor case

» The partial-wave decomposition is more subtle for Spinors.
» We must account for zero-modes.

» Our method allows A, (r) = 13, x,9(r) with arbitrary g(r).
The fall rate of g(r) determines the existence of
zero-modes.

» We can aim to find properties that are independent of the
precise form of g(r).
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One application

(1) — _L e % —mPs 2
Lipinar(@ b) = 8.2 /0 3 € {(ab)s coth(as)coth(bs)

S2
~ —g(az—bz)}

where & — b? = —}F,,F* and ab = —} F,,, Frv.

» The derivative expansion gives (m — 0 ):

(a,b) ~ 481772 [(a+ b)? — 5(a— b)?]In m + [finite]

+ [termsthat vanishas m — 0]

£

spinor

» However : [finite] = f(a, b) remains unknown.



Some tests

» Set m = 0, and consider

Q(r):ﬁ

» Now we may observe ""(m = 0) as a function of n (red)
or x (green) :




Conclusion

» We can now accurately calculate I'(m) for spinor abelian
theories, in radially symmetric backgrounds.

» There are interesting questions to investigate, now within
our reach.

» Thanks W
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