Abrikosov Gluon Vortices in Color Superconductors

Efrain J. Ferrer

The University of Texas at El Paso

EJF & de la Incera, PRL 97 (2006) 122301 EJF & de la Incera, PRD 76 (2007) 045011 EJF & de la Incera, PRD 76 (2007) 114012

- Magnetized CS
- Gluon Vortices and Magnetic Antiscreening in MCS
- Chromomagnetic Instabilities & $G \tilde{B}$ Condensates
- Conclusions and Future Directions

Cooper Pair Condensation

$$\mathbf{F}[\Psi] = \int \mathbf{d}^3 \mathbf{x} \left\{ \frac{\hbar^2}{2\hat{\mathbf{m}}} \vec{\nabla} \Psi * \vec{\nabla} \Psi + \alpha (\mathbf{T} - \mathbf{T}_{\mathrm{C}}) \Psi * \Psi + \frac{\beta}{2} (\Psi * \Psi)^2 \right\}$$

V. L. Ginzburg

L. D. Landau

Electric Superconductivity

е

Broken Symmetry : U(1)_{em}

Color Superconductivity

Barrois '77; Frautschi '78; Bailin and Love'84; Alford, Rajagopal and Wilczek '98; Rapp, Schafer, Shuryak and Velkovsky '98

J. Bardeen, L. N. Cooper and J. R. Schrieffer

Electric Charge

е

Boson: Zero Spin and opposite momenta

🗸 🗸 🗸 🗸 🗸 🗸 🗸 🗸 🗸 🗸 🗸

Broken Symmetry : SU(3)_C, U(1)_{em}

In-Medium Magnetic Field

Neutron Stars

Diameter: $R \approx 10 \ km$ Mass: $1.25M_{\odot} \leq M \leq 2M_{\odot}$ **Temperature:** $10 \ keV \leq T \leq 10 MeV$ **Magnetic fields:** pulsar's surface: B~ 10¹²-10¹⁴G magnetar's surface: B~ 10¹⁵-10¹⁶G

Sketch of \tilde{B} vs μ phases of a Color Superconductor with Three-Quark Flavors

EJF & Incera, PRD 76 (2007)045011

*

#

Magnetic Effects on the Gluon Sector

EJF & de la Incera, PRL 97 (2006) 122301

Because of the modified electromagnetism, gluons are charged in the color superconductor

Gluon Mean-Field-Effective Action in the CFL Phase:

$$\Gamma_{eff} = -\frac{1}{4} \int d^4 x [(G^a_{\mu\nu})^2 + (f_{\mu\nu})^2] + \int d^4 x L_g(x)$$

$$- \frac{1}{2} \int d^4 x d^4 y G^a_\mu(x) \Pi^{ab}_{\mu\nu}(x, y) G^b_\nu(y)$$

$$- \frac{1}{2} \int d^4 x d^4 y A_\mu(x) \Pi_{\mu\nu}(x, y) A_\nu(y) \qquad (4)$$

Charged Gluons Effective Action

Effective action for the charged gluons within CFL at asymptotic densities

$$\begin{split} \Gamma^c_{eff} &= \int d^4 x \{ -\frac{1}{4} (\widetilde{f}_{\mu\nu})^2 - \frac{1}{2} | \widetilde{\Pi}_{\mu} G_{\nu}^- - \widetilde{\Pi}_{\nu} G_{\mu}^- |^2 \\ &- [(m_D^2 \delta_{\mu 0} \delta_{\nu 0} + m_M^2 \delta_{\mu i} \delta_{\nu i}) + i \widetilde{e} \widetilde{f}_{\mu\nu}] G_{\mu}^+ G_{\nu}^- \\ &+ \frac{g^2}{2} [(G_{\mu}^+)^2 (G_{\nu}^-)^2 - (G_{\mu}^+ G_{\mu}^-)^2] + \frac{1}{\lambda} G_{\mu}^+ \widetilde{\Pi}_{\mu} \widetilde{\Pi}_{\nu} G_{\nu}^- \}, \end{split}$$

where

$$\widetilde{\Pi}_{\mu} = \partial_{\mu} - i \widetilde{e} \widetilde{A}_{\mu}$$

Magnetic Instability for Charged Spin-1 Fields

Assuming that there is an external magnetic field H in the zdirection, one mode becomes unstable when $\tilde{H} > m^2_M$

$$\begin{pmatrix} m_M^2 & i \widetilde{e} \widetilde{H} \\ -i \widetilde{e} \widetilde{H} & m_M^2 \end{pmatrix} \rightarrow \begin{pmatrix} m_M^2 + \widetilde{e} \widetilde{H} & 0 \\ 0 & m_M^2 - \widetilde{e} \widetilde{H} \end{pmatrix}$$

with corresponding eigenvector: $(G_1^+, G_2^+) \rightarrow G(1, i)$

"Zero-mode problem" for non-Abelian gauge fields whose solution is the formation of a vortex condensate of charged spin-1 fields.

Nielsen & Olesen NPB 144 (1978)

Skalozub, Sov.JNP23 (1978);ibid 43 (1986)

Ambjorn & Olesen, NPB315 (1989)

EJF & Incera, IJMP 11 (1996)

Gibbs Free-Energy:

$$\mathcal{G}_c = \mathcal{F}_{n0} - 2G^{\dagger} \widetilde{\Pi}^2 G - 2(2\widetilde{e}\widetilde{B} - m_M^2)|G|^2 + 2g^2|G|^4 + \frac{1}{2}\widetilde{B}^2 - \widetilde{H}\widetilde{B}$$

Minimum Equations:

$$-\widetilde{\Pi}^2 G - (2\widetilde{e}\widetilde{B} - m_M^2)G + 2g^2|G|^2G = 0,$$

in the approximation:
$$\widetilde{e}\widetilde{H} \approx m_M^2 \gg |G|^2, \widetilde{e}(\widetilde{B} - \widetilde{H}_c)$$
$$\widetilde{\Pi}^2 G + \widetilde{e}\widetilde{H}_c G \approx 0$$
$$2\widetilde{e}|G|^2 - \widetilde{B} + \widetilde{H} \approx 0$$

Since $g^2 / \tilde{e}^2 > 1$ we have that $\alpha_{nc} < 0$ which is the required condition for vortex nucleation.

Conventional Superconductor *vs* **Color Superconductor**

Conventional Superconductor

H < Hc

H ≥ Hc

Linearizing the minimum equation for G* around the critical field

$$[\partial_j^2 - \frac{4\pi i}{\widetilde{\Phi}_0}\widetilde{H}_C x \partial_y - 4\pi^2 \frac{\widetilde{H}_C^2}{\widetilde{\Phi}_0^2} x^2 + \frac{1}{\xi^2}]G = 0, \quad j = x, y$$

where
$$\tilde{\Phi}_{0} = \frac{2\pi}{\tilde{e}}, \quad \xi^{2} = \frac{1}{(2\tilde{e}\tilde{H} - m_{M}^{2})} = \frac{1}{m_{M}^{2}}$$

to find the solution

$$G_k = \exp\left[-iky\right] \exp\left[-\frac{(x-x_k)^2}{2\xi^2}\right]$$
$$x_k = \frac{k\Phi_0}{2\pi\tilde{H}}$$

Vortex Solution

From the experience with conventional type II superconductivity, it is known that the inhomogeneous condensate solutions prefer periodic lattice domains to minimize the energy. Then, putting on periodicity in the *y*-direction:

$$\Delta y = b \implies k = 2 \pi n / b, n = 0, \pm 1, \pm 2, \dots$$

The periodicity is also transferred to the *x*-direction:

$$x_n = k_n \xi^2 = 2\pi n \xi^2 / b$$

Then, the general solution is given by the superposition:

$$\overline{G}(x,y) = \left[1/\sqrt{2}\widetilde{e}\xi\right]e^{-\frac{1}{2\xi^2}x^2}\vartheta_3(u,q)$$

The vortex lattice induces a magnetic field that forms a fluxoid along the z-direction. The magnetic flux through each periodicity cell in the vortex lattice is quantized

$$\widetilde{B}\Delta x \Delta y = 2\pi/\widetilde{e}$$

Neutrality Conditions

$$\frac{\partial \Omega}{\partial \mu_B} = J_0^{(B)}$$

 $\frac{\partial \, \Omega}{\partial \, \mu_e} = 0$

 $\frac{\partial \,\Omega}{\partial \,\mu_8} = 0$

$$\frac{\partial \,\Omega}{\partial \,\mu_3} = 0$$

 $\mu_8 = (\sqrt{3}g/2) \left\langle G_0^{(8)} \right\rangle$

$$\mu_3 = (g/2) \left\langle G_0^{(3)} \right\rangle$$

Cooper Pairing and Neutrality Conditions

The optimal Cooper pairing occurs when

$$\mu_d \simeq \mu_n \Rightarrow n_d \simeq \frac{\mu_d^3}{\pi^2} \simeq \frac{\mu_u^3}{\pi^2} \simeq n_u$$

 Matter inside a star should be electrically neutral to guarantee the star stability and to minimize the system energy

$$\frac{2}{3}n_u - \frac{1}{3}n_d - n_e = 0 \Rightarrow n_d \simeq 2n_u$$

• There are no enough electrons in β equilibrium to balance the charge deficit $\mu_e = \mu_d - \mu_u \simeq \frac{1}{4} \mu_u \Rightarrow n_e \simeq \frac{1}{100} n_u \ll n_u$

Cooper pairing is consequently distorted by the Fermi sphere mismatch.

$$\delta\mu \equiv \frac{\mu_d - \mu_u}{2} = \frac{\mu_e}{2} \neq 0$$

Chromomagnetic Instabilities in 2SC

Huang/Shovkovy, PRD 70 (2004) 051501

Some Suggestions

- Crystalline Superconductivity Alford, Bowers & Rajagopal, PRD 63 (2001) 074016
- Phases with Additional Bose Condensates Bedaque & Schäfer, NPA 697 (2002) 802
- Homogeneous Gluon Condensate Gorbar, Hashimoto & Miransky, PLB 632 (2006) 305
- Inhomogeneous Gluon Condensate with an Induced Magnetic Field Ferrer& Incera, PRD 76 (2007) 114012

Chromomagnetic Instabilities & G-B Condensates in 2SC

EJF & de la Incera, PRD 76 (2007) 114012

$$\{G^{(1)}_{\mu}, G^{(2)}_{\mu}, G^{(3)}_{\mu}, K_{\mu}, K^{\dagger}_{\mu}, \widetilde{G}^{8}_{\mu}, \widetilde{A}_{\mu}\}$$

$$K_{\mu} \equiv \frac{1}{\sqrt{2}} \begin{pmatrix} G_{\mu}^{(4)} - iG_{\mu}^{(5)} \\ G_{\mu}^{(6)} - iG_{\mu}^{(7)} \end{pmatrix}$$

$$\frac{\partial \Omega}{\partial \mu_B} = J_0^{(B)}$$

 $\frac{\partial \,\Omega}{\partial \,\mu_e} = 0$

$$\frac{\partial \,\Omega}{\partial \,\mu_8} = 0 \qquad \qquad \frac{\partial \,\Omega}{\partial \,\mu_3} = 0$$

$$\mu_{8} = (\sqrt{3}g/2) \langle G_{0}^{(8)} \rangle \qquad \mu_{3} = (g/2) \langle G_{0}^{(3)} \rangle$$

Stable Phase:

$$\mu_3 = 0, \qquad \mu_8 << \mu_e < \mu, \qquad \mu_8 \sim \Delta / \mu$$

Huang/Shovkovy, PLB 564 (2003) 205

Effective Action

$$\begin{split} \Gamma_{eff}^{g} &= \int d^{4}x \{ -\frac{1}{4} (\widetilde{f}_{\mu\nu})^{2} - \frac{1}{2} |\widetilde{\Pi}_{\mu}K_{\nu} - \widetilde{\Pi}_{\nu}K_{\mu}|^{2} \\ &- [m_{M}^{2}\delta_{\mu i}\delta_{\nu i} - (\mu_{8})^{2}\delta_{\mu\nu} + i\widetilde{q}\widetilde{f}_{\mu\nu}]K_{\mu}K_{\nu}^{\dagger} \\ &+ \frac{g^{2}}{2} [(K_{\mu})^{2}(K_{\nu}^{\dagger})^{2} - (K_{\mu}K_{\mu}^{\dagger})^{2}] + \frac{1}{\lambda}K_{\mu}^{\dagger}\widetilde{\Pi}_{\mu}\widetilde{\Pi}_{\nu}K_{\nu} \} \end{split}$$

$$\begin{split} \langle K_{\mu} \rangle &\equiv \frac{1}{\sqrt{2}} \begin{pmatrix} \overline{G}_{\mu} \\ 0 \end{pmatrix} , \\ \overline{G}_{\mu} &\equiv G(x, y)(1, -i, 0, 0), \qquad \langle \widetilde{f}_{12} \rangle = \widetilde{B} \end{split}$$

Weakly First-Order Phase transition

Free-Energy:

$$\mathcal{F}_g = \frac{\widetilde{B}^2}{2} - 2\overline{G}^* \widetilde{\Pi}^2 \overline{G} + 2g^2 |\overline{G}|^4$$
$$-2[2\widetilde{q}\widetilde{B} + (\mu_8 - \mu_3)^2 - m_M^2]|\overline{G}|^2$$

Minimum Equations:

$$-\widetilde{\Pi}^2 \overline{G} - (2\widetilde{q}\widetilde{B} + |m_M^2|)\overline{G} + 2g^2|\overline{G}|^2\overline{G} = 0$$

$$\begin{split} \underline{Linear Equations} \\ \delta\mu &\simeq \delta\mu_{c} & \longrightarrow \qquad |[\widetilde{\Pi}_{\mu}K_{\nu} - \widetilde{\Pi}_{\nu}K_{\mu}|^{2} \approx 0] \\ -\widetilde{\Pi}^{2}\overline{G} - (2\widetilde{q}\widetilde{B} + |m_{M}^{2}|)\overline{G} + 2g^{2}|\overline{G}|^{2}\overline{G} = 0 \\ & \bullet \\ \hline \Pi^{2}\overline{G} + \widetilde{q}\widetilde{B}\overline{G} \simeq 0 \\ 2\widetilde{q}|\overline{G}|^{2} - \widetilde{B} \simeq 0 \\ \hline \overline{Q}|\overline{G}|^{2} - \widetilde{B} \simeq 0 \\ \hline \overline{G}|^{2} &\simeq \Lambda_{g/\widetilde{q}}|m_{M}^{2}|/2\widetilde{q}^{2} + \mathcal{O}(m_{M}^{4})f(x,y) \\ \hline \widetilde{q}\widetilde{B} \simeq \Lambda_{g/\widetilde{q}}|m_{M}^{2}| + \mathcal{O}(m_{M}^{4})g(x,y) \\ \end{split}$$

Gluon-Condensate Solution

$$\widetilde{\Pi}^2 \overline{G} + \widetilde{q} \widetilde{B} \overline{G} \simeq 0$$

$$\left[\frac{1}{r}\partial_r(r\partial_r) + \frac{1}{r^2}\partial_\theta^2 + \frac{1}{\xi^2}(1-i\partial_\theta) - \frac{r^2}{4\xi^4}\right]G(r,\theta) = 0$$

$$\widetilde{A}_i = -(\widetilde{B}/2)\epsilon_{ij}x_j$$

$$\frac{r^2}{4\xi^4} \ll \frac{1}{\xi^2}$$

$$<\frac{1}{\xi^2}$$
 $G(r,\theta) \sim R(r)e^{i\chi}$

 $\xi^2 \equiv 1/\Lambda_{g/\widetilde{q}} |m_M^2|$

$$\left[r\partial_r(r\partial_r) + \frac{r^2}{\xi^2}\right]R(r) = 0$$

$$\widetilde{G}(r) = (1/\sqrt{2}\widetilde{q}\xi)J_0(r/\xi)\exp i\chi$$

$$|\overline{G}|^2 \simeq \frac{1}{2\tilde{q}^2\xi^2} - \frac{r^2}{4\tilde{q}^2\xi^4}$$

Condensate Free-Energy

Inhomogeneous Condensate: EJF & de la Incera, PRD 76 (2007) 114012

$$\overline{F_g} \approx -\frac{\pi |m_M^2|}{200\tilde{q}^2}$$

Homogeneous Condensate: Gorbar/Hashimoto/Miransky, PLB 632 (2006) 305

$$\overline{F}_{g} \approx -\frac{\left(\frac{g^{2}}{\tilde{q}^{2}}-1\right)\pi^{2}\left|m_{M}^{2}\right|^{2}}{200\,\alpha_{s}^{3}m_{g}^{2}}$$

Meissner Masses & Chromomagnetic Instabilities in Gapless-Three Flavor Quark Matter

Fukushima, PRD 72 (2005) 074002; Casalbouni et al, PLB 605 (2005) 362; Alford/Wang JPG 31 (2005) 719.

Conclusions and Future Directions

Magnetism in Color Superconductivity is totally different from magnetism in Conventional Superconductivity

Magnetism is reinforced in Color Superconductivity

Magnetars \leftrightarrow CS Cores (?)

Numerically solving the nonlinear equation, looking for the realization of the vortex state

Exploring the possibility to induce a magnetic field in a three-flavor system: vortex state in gCFL