Lorentz Violation on The Primordial Baryogenesis.

BY JORGE ALFARO
Pontificia Universidad Católica de Chile.

XII Mexican Workshop on Particles and Fields Mazatlán, México, November 13,2009

Table of contents

Table of conten	${ m ts}$	 · • • • • • • •	5
REFERENCE		 · · · · · · · · ·	8
BARYON ASY	MMETRY	 · · · · · · · · ·	9
LIV	· · · · · · · · · · · · · · · · · · ·	 1	.0
BARYOGENES	SIS	 1	. 1
THRESHOLD FACTOR.			

Reactions Allowed Zones	14
$X \longrightarrow b_1 + b_2$, b_i can be a baryon or anti-bary	on.
	14
$b_1 + b_2 \longrightarrow X$	15
Collision Factor and Departure from Equilibri	um
Condition	16
$X \operatorname{Decay} (a = Neq) \dots \dots \dots$	21
Inverse X Decay $(a = e q)$	23
Differential Equation Solution and Analysis .	24
LIV IN BARYOGENESIS	27
TEMPERATURE OF BARYOGENESIS	29

CONCLUSIONS AND OPEN PROBLEMS. 33

REFERENCE

• Lorentz Violation on The Primordial Baryogenesis. J.A. and Pablo Gonzalez, e-Print: arXiv:0909.3883 [hep-ph]

BARYON ASYMMETRY

- Why is our Universe made of matter and not antimatter?
- Parameter $B = \frac{n_b n_{\bar{b}}}{n_{\gamma}} \sim 10^{-10}$, $n_b/n_{\bar{b}}$:number of baryons/anti-baryon per unit volume, n_{γ} :photons number density at temperature T.
- Related previous work:
 CPT Violation and Baryogenesis, O. Bertolami,
 Don Colladay, V. Alan Kosteleckty, and R. Potting, Phys. Lett. B395(1997)178.

LIV

- Quantum gravity Phenomenology: Strings, LQG,SME.
- $E^2 = v_{max}^2 p^2 + m^2 c^4$

BARYOGENESIS.

- \bullet Boson X that produces baryons and anti-baryons when decaying.
- Baryon number violation
- C and CP Violation, with CPT symmetry.
- Departure from Thermal Equilibrium. Boltzmann Equation:

$$\frac{\partial n(t)}{\partial t} + 3H(t)n(t) = \frac{g \, v_{max}}{(2\pi\hbar)^3} \int \hat{C}[f] \frac{d^3 p}{E}$$

• Simpler model:

$$|M(X \to b + b)|^{2} = |M(\bar{b} + \bar{b} \to X)|^{2} = \frac{1}{2}(1 + \epsilon) |$$

$$|M_{0}|^{2}$$

$$|M(X \to \bar{b} + \bar{b})|^{2} = |M(b + b \to X)|^{2} = \frac{1}{2}(1 - \epsilon) |$$

$$|M_{0}|^{2}$$

Where $|M_0|^2$ is constant.

THRESHOLD ENERGY AND COLLISION FACTOR.

• For a process $a + b \longrightarrow 1 + 2 + ...$, the threshold condition is given by:

$$E_a + E_b \ge \sum_i E_i \ p_a - p_b = \sum_i p_i$$

Since a and b go from one to the other(head on collision) and the particles i go in the same direction.

Reactions Allowed Zones

 $X \longrightarrow b_1 + b_2$, b_i can be a baryon or anti-baryon.

• If $v_b > v_X$:

$$p_X \le \sqrt{\frac{m_X^2 - 4m_b^2}{(v_b^2 - v_X^2)}} c^2 \quad p_b \le \sqrt{\frac{m_X^2 - 4m_b^2}{4(v_b^2 - v_X^2)}} c^2$$

If we use $m_X \gg m_b$ and $\partial \alpha = \alpha_X - \alpha_b$, it is reduced to:

$$p_X \le \frac{m_X c}{\sqrt{2\partial \alpha}} \quad p_b \le \frac{m_X c}{2\sqrt{2\partial \alpha}}$$

• If $v_b \leq v_X$, we do not have a bound, since p_X^2 , $p_b^2 \geq 0$.

$$b_1 + b_2 \longrightarrow X$$

$$\bullet \quad p_{b_1} \ge \frac{-v_b|p_X| + E_X}{2v_b}$$

Collision Factor and Departure from Equilibrium Condition

• The Collision Factor is:

$$\frac{g \, v_{max}}{(2\pi\hbar)^3} \int \hat{C}[f] \frac{d^3 p}{E} = -\int (2\pi\hbar)^4 \delta^4(p_X - p_{b_1} - p_{b_2}) \, \Upsilon_{X,b_1,b_2} \, d\Pi_1 d\Pi_2 d\Pi_X$$

$$\Upsilon_{X,b_1,b_2} = f_X(|M(X \to b_1 + b_2)|^2 + |M(X \to \bar{b_1} + \bar{b_2})|^2)$$

$$- f_{b_1} f_{b_2} | M(b_1 + b_2 \to X) |^2 - f_{\bar{b_1}} f_{\bar{b_2}} |$$

$$M(\bar{b_1} + \bar{b_2} \to X) |^2$$

Where f_X , f_{b_i} and $f_{\bar{b_i}}$ are Boson, baryons and anti-baryons distribution functions respectively, and $d\Pi_i = \frac{g_b v_b}{(2\pi\hbar)^3} \frac{d^3 p_{b_i}}{2E_{b_s}}$ and $d\Pi_X = \frac{g_X v_X}{(2\pi\hbar)^3} \frac{d^3 p_X}{2E_X}$.

• In the high temperature approximation:

$$f_X = e^{-\frac{E_X - \mu_X}{k_B T}}$$

$$f_{b_i} = e^{-\frac{E_{b_i} - \mu}{k_B T}} f_{\bar{b_i}} = e^{-\frac{E_{\bar{b_i}} + \mu}{k_B T}}$$

 μ_X , μ are the boson and baryon chemical potential.

• Bosons, baryons and anti-baryons are still in chemical equilibrium with the thermal bath. So

we have that $\mu_{b_i} = -\mu_{\bar{b_i}} = \mu$.

$$\frac{\partial n(t)}{\partial t} + 3H(t)n(t) = \frac{g_b^2 g_X v_X}{4v_b (2\pi\hbar)^5} |M_0|^2 \left(I_{b_1, b_2, X}^{Neq} - I_{b_1, b_2, X}^{eq} \right)$$

$$I_{b_1,b_2,X}^a = \frac{f_X^a \delta^4(p_X - p_{b_1} - p_{b_2})}{2E_{b_1}E_{b_2}E_X} v_b^3 d^3 p_{b_1} d^3 p_{b_1} d^3 p_X$$

 $I_{b_1,b_2,X}^{eq}$ and $I_{b_1,b_2,X}^{Neq}$ contains the distribution with and without equilibrium respectively and $p_i = [E_i; v_{max,i}\vec{p}_i]$

• We obtain, with:

$$a = -(2v_b v_X |\vec{p}_{b_1}||\vec{p}_X|)^2$$

$$b = 4v_b v_X |\vec{p}_{b_1}||\vec{p}_X|\cos(\theta_X)(2E_X E_{b_1} - m_X^2 c^4)$$

$$c = (2v_b v_X |\vec{p}_{b_1}||\vec{p}_X|\sin(\theta_X))^2 - m_X^4 c^8 - 4E_X^2 E_{b_1}^2 + 4E_X E_{b_1} m_X^2 c^4$$

$$\int \frac{f_X^a \Theta(E_X - E_{b_1}) \Theta(b^2 - 4ac)}{E_X p_X} dE_{b_1} d^3 p_X$$

Where we have used that $E_{b_1} = v_b p_{b_1}$. Analyzing the second Heaviside's, we can see that its argu-

ment is positive if:

$$\frac{E_X - v_X p_X}{2} \le E_{b_1} \le \frac{E_X + v_X p_X}{2}$$

X Decay (a = Neq)

 \bullet $v_b \leq v_X$

$$I_{b_1,b_2,X}^{Neq}(v_b \le v_X) = \frac{\pi}{v_b^3} \int \frac{f_X}{E_X} d^3 p_X W i t h: 0 \le p_X \le 0$$

 ∞

No difference to the case without Lorentz Violation

• But, if $v_b > v_X$ we have:

$$I_{b_{1},b_{2},X}^{Neq}(v_{b} > v_{X}) = \frac{\pi}{v_{b}^{3}} \times \left[\int \frac{f_{X}}{E_{X}} d^{3}p_{X} + \frac{4\pi y v_{b}}{v_{X}^{3}} \int_{B} f_{X} dE_{X} - \frac{4\pi}{v_{X}^{3}} \int_{B+C} E_{X} f_{X} dE_{X} \right]$$

with $A \to (p_X \le y)$, $B \to (y \le p_X \le 2y)$ and $C \to (p_X \ge 2y)$, where $y = \frac{m_X c}{2\sqrt{2\partial\alpha}}$

The integration zone in the first integral extend to all momenta.

Inverse X Decay (a = e q)

- $v_b \le v_X$ $I_{b_1, b_2, X}^{eq}(v_b \le v_X) = \frac{\pi}{v_b^3} \int \frac{f_X^{eq}}{E_X} d^3 p_X$
- $v_b > v_X$, $I_{b_1,b_2,X}^{eq}(v_b > v_X)$

$$= \frac{\pi}{v_b^3} \left[\int \frac{f_X^{eq}}{E_X} d^3 p_X - \frac{4\pi}{v_X^3} \int_C f_X^{eq} E_X dE_X \right]$$

Differential Equation Solution and Analysis

• If $v_b \leq v_X$:

$$\ddot{n}(t) + 3\left[\dot{H}(t)n(t) + H(t)\dot{n}(t)\right] = M(t)[n_X^{eq}(t) - 1]$$

$$[n_X(t)] + \mu_X \frac{\partial \beta}{\partial t} \frac{e^{\beta \mu_X}}{e^{\beta \mu_X}} [\dot{n}(t) + 3H(t)n(t)]$$

• If $v_b > v_X$:

$$\ddot{n}(t) + 3 \left[\dot{H}(t) n(t) + \right]$$

$$= M(t) \left[n_X^{eq}(t) - n_X(t) + \frac{4\pi g_X}{v_X^3 (2\pi\hbar)^3} \frac{\partial J}{\partial \beta} \right]$$

$$+ \mu_{X} \frac{\partial \beta}{\partial t} \frac{e^{\beta \mu_{X}}}{e^{\beta \mu_{X}} - 1} [\dot{n}(t) + 3H(t)n(t)]$$

With
$$M(t) = \frac{g_b^2 v_X}{16\pi v_i^4 \hbar^2} |M_0|^2 \frac{\partial \beta}{\partial t}$$

$$J = \frac{1}{\beta^2} e^{-\beta y v_b} \left[e^{-\beta y v_b} (2\beta y v_b + 1) - e^{\beta \mu_X} (\beta y v_b e^{-\beta y v_b} + 1) \right]$$

LIV IN BARYOGENESIS

* LIV in Baryogenesis

$$F(\ddot{n}_X, \dot{n}_X, n_X, \mu_X) \propto -H(t)T^2 \propto -T^4$$

where F is the usual differential equation that represents Baryogenesis without Lorentz violation (or $v_b \leq v_X$). As the Baryogenesis temperature is very high (Grand Unification Level), the Lorentz violation effect, when the Baryogenesis starts, is very important; when-

ever $v_b > v_X$. The effects of this factor on the solution will be seen in a subsequent work. So far, the important result is that it is possible to find a trace of a possible Lorentz violation in the Baryogenesis.

TEMPERATURE OF BARYOGE-NESIS

• Temperature at the beginning of the Baryogenesis:

Remembering the bound found with the Threshold Energy for the boson decay, if $v_b > v_X$:

$$p_X \le \frac{m_X c}{\sqrt{2\partial \alpha}}$$

we can find a limit to the temperature when these reactions start. We are looking for the temperature to fullfill that:

$$\langle p_X \rangle = \frac{m_X c}{\sqrt{2\partial \alpha}}$$

For this, we need the relation between average momentum and temperature. Using a Fermi statistic and $E_X = v_X p_X$, we obtain:

$$\langle p_X \rangle = \frac{k_B T \pi^4}{30c\zeta(3)}$$

So, the temperature at the beginning of the Baryogenesis is:

$$k_B T_B = \frac{30\zeta(3)m_X c^2}{\pi^4 \sqrt{2\partial\alpha}}$$
$$\frac{k_B T_B}{m_X c^2} \approx 0.3702 \times 10^{11}$$

Where we used $\partial \alpha = 5 \times 10^{-23}$. As the energies are in the Grand Unification level, it is required that $k_B T_B \gtrsim 10^{16}$ [GeV]. Then:

$$m_X c^2 \gtrsim 2.7012 \times 10^5 [G \, e \, V]$$

So, in spite of having an extremely high mass $(m_X \gg m_b)$, these values are far below of the Grand Unification level (Desert). So, it is possible that the X Boson would be observed in the LHC where the maximum energies are $\sqrt{s} = 14$ [TeV] in proton-proton collisions.

CONCLUSIONS AND OPEN PROBLEMS.

- If the baryon and boson maximum velocities are related by $v_b > v_X$, an important LIV contribution to Baryogenesis appears.
- We estimated a condition for the moment when the Baryogenesis begun, given by the LIV. This condition tells us that $k_BT_B = 0.262 \times 10^{11} m_X c^2$. Then the majority of bosons start to decay.

 $m_X c^2 \gtrsim 2.7012 \times 10^5 [G \, e \, V]$

So, it is possible that the X Boson would be observed in the LHC where the maximum energies are $\sqrt{s} = 14$ [TeV] in proton-proton collisions.

• OPEN PROBLEM: To estimate the effects of dilution mechanisms(sphalerons).

THANK YOU!