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Symmetry vs. Broken Symmetry

Masslessness from symmetry or broken symmetry

Gauge Symmetries
Generator of unbroken gauge symmetry ⇒ massless vector boson

General Relativity
Diffeomorphism invariance ⇒ massless gravitons

Spontaneously Broken Global Symmetry
Spontaneously broken global symmetry ⇒ massless Nambu-Goldstone
boson
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Symmetry vs. Broken Symmetry

Bumblebee dynamics

photons as Nambu-Goldstone modes

L = −1
4

(∂µBν − ∂νBµ)2 + V (BµBµ ± b2)

potential V breaks U(1) gauge invariance
potential V forces nonzero v.e.v. bµ for Bµ: spontaneous breaking of
Lorentz symmetry
natural to expand Bµ = bµ + Aµ
low-energy dynamics of fluctuations around v.e.v. equal to Maxwell
theory in axial gauge
possible presence of background “vacuum charge”
non-linear dynamics of massive modes at high energies/temperatures
model can be coupled consistently to gravity Bluhm, Kostelecky (2004)
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Symmetry vs. Broken Symmetry

Linearized “Cardinal” dynamics (V.A. Kostelecky and R.P., GRG 37 (2005) 1675)

gravitons as Nambu-Goldstone modes

L = 1
2CµνKµναβCαβ + V (Cµν , ηµν)

Kµναβ = −∂2(ηµαηνβ − 1
2ηµνηαβ) + ∂µηνα∂β + ∂νηµα∂β

Kµναβ : ghost-free quadratic kinetic operator for spin 2
Cµν : tensor density; ηµν : flat background metric
V : scalar potential built out of the 4 independent scalars
X1 = Cµνηνµ, X2 = (C · η · C · η)µµ,. . .
kinetic term invariant under Cµν → Cµν − ∂µΛν − ∂νΛµ; invariance
broken by V !
V acquires minimum for Cµν = cµν ≡ 〈Cµν〉 6= 0: spontaneous
breaking of Lorentz symmetry
fluctuations around vev: Cµν = cµν + C̃µν
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Symmetry vs. Broken Symmetry

Linearized “Cardinal” dynamics

At low energy, assume V can be approximated by sum of delta-functions
that fix the 4 independent scalars: V =

∑4
n=1

λn
n Xn

equations of motion:

KµναβC̃αβ − λ1ηµν − λ2(ηcη)µν − λ3(ηcηcη)µν − λ4(ηcηcηcη)µν = 0

constraints:
C̃µ
µ = 0 cµνC̃µν = 0 (cηc)µνC̃µν = 0 (cηcηc)µνC̃µν = 0

Low-energy dynamics of C̃µν-fluctuations around vev equal to linearized
general relativity (in axial-type gauge)!
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Symmetry vs. Broken Symmetry

Counting degrees of freedom

Propagating massless degrees of freedom
Can be considered Nambu-Goldstone modes of spontanously broken
Lorentz generators Eµα:

C̃µν = Eµαcαν + Eναcµα

Equations of motion imply masslessness ∂2C̃µν = 0 and Lorenz
conditions ∂µC̃µν = 0
Number of propagating massless degrees of freedom: 6− 4 = 2

R. Potting (Algarve) A theory of Gravity from spontaneous Lorentz violation Mazatlán 7 / 19



Symmetry vs. Broken Symmetry

Counting degrees of freedom

Propagating massless degrees of freedom
Can be considered Nambu-Goldstone modes of spontanously broken
Lorentz generators Eµα:

C̃µν = Eµαcαν + Eναcµα

Equations of motion imply masslessness ∂2C̃µν = 0 and Lorenz
conditions ∂µC̃µν = 0

Number of propagating massless degrees of freedom: 6− 4 = 2

R. Potting (Algarve) A theory of Gravity from spontaneous Lorentz violation Mazatlán 7 / 19



Symmetry vs. Broken Symmetry

Counting degrees of freedom

Propagating massless degrees of freedom
Can be considered Nambu-Goldstone modes of spontanously broken
Lorentz generators Eµα:

C̃µν = Eµαcαν + Eναcµα

Equations of motion imply masslessness ∂2C̃µν = 0 and Lorenz
conditions ∂µC̃µν = 0
Number of propagating massless degrees of freedom: 6− 4 = 2

R. Potting (Algarve) A theory of Gravity from spontaneous Lorentz violation Mazatlán 7 / 19



Bootstrap

Bootstrap in General Relativity

Write metric as Minkowski + fluctuations (gravitons):

gµν = ηµν + hµν

Quadratic action for (free) gravitons: LL
GR = 1

2hµνKµναβhαβ

Linear coupling to matter EM

L ⊃ hµντµν

τµν : trace-inversed energy-momentum tensor
linear coupling to EM-tensor gives rise to linearized Einstein equation

Kµναβhαβ ≡ RL
µν = τµν

R. Potting (Algarve) A theory of Gravity from spontaneous Lorentz violation Mazatlán 8 / 19



Bootstrap

Bootstrap in General Relativity

Write metric as Minkowski + fluctuations (gravitons):

gµν = ηµν + hµν

Quadratic action for (free) gravitons: LL
GR = 1

2hµνKµναβhαβ

Linear coupling to matter EM

L ⊃ hµντµν

τµν : trace-inversed energy-momentum tensor
linear coupling to EM-tensor gives rise to linearized Einstein equation

Kµναβhαβ ≡ RL
µν = τµν

R. Potting (Algarve) A theory of Gravity from spontaneous Lorentz violation Mazatlán 8 / 19



Bootstrap

Bootstrap in General Relativity

Write metric as Minkowski + fluctuations (gravitons):

gµν = ηµν + hµν

Quadratic action for (free) gravitons: LL
GR = 1

2hµνKµναβhαβ

Linear coupling to matter EM

L ⊃ hµντµν

τµν : trace-inversed energy-momentum tensor
linear coupling to EM-tensor gives rise to linearized Einstein equation

Kµναβhαβ ≡ RL
µν = τµν

R. Potting (Algarve) A theory of Gravity from spontaneous Lorentz violation Mazatlán 8 / 19



Bootstrap

Bootstrap in General Relativity

Write metric as Minkowski + fluctuations (gravitons):

gµν = ηµν + hµν

Quadratic action for (free) gravitons: LL
GR = 1

2hµνKµναβhαβ

Linear coupling to matter EM

L ⊃ hµντµν

τµν : trace-inversed energy-momentum tensor

linear coupling to EM-tensor gives rise to linearized Einstein equation

Kµναβhαβ ≡ RL
µν = τµν

R. Potting (Algarve) A theory of Gravity from spontaneous Lorentz violation Mazatlán 8 / 19



Bootstrap

Bootstrap in General Relativity

Write metric as Minkowski + fluctuations (gravitons):

gµν = ηµν + hµν

Quadratic action for (free) gravitons: LL
GR = 1

2hµνKµναβhαβ

Linear coupling to matter EM

L ⊃ hµντµν

τµν : trace-inversed energy-momentum tensor
linear coupling to EM-tensor gives rise to linearized Einstein equation

Kµναβhαβ ≡ RL
µν = τµν

R. Potting (Algarve) A theory of Gravity from spontaneous Lorentz violation Mazatlán 8 / 19



Bootstrap

consistent coupling

consistent coupling to total EM tensor

require coupling to total EM tensor, including contribution of
gravitational fluctuations (Gupta (1952); Kraichnan 1955; Feynman (1957);...)

Kµναβhαβ = τ
(1)
h µν

τ
(1)
h µν is quadratic in hµν , necessitating inclusion of cubic term in
lagrangian

cubic term yields new contribution to EM-tensor τ (2)
h µν ⇒ quartic

term in Lagrangian
etc., etc.

After resumming all terms one obtains Einstein-Hilbert action!
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Bootstrap

Cardinal bootstrap (V.A. Kostelecky and R.P., Phys. Rev. D (2009))

Deser’s procedure
bootstrap can be done in one step using procedure developed by Deser
for GR

use trace-reverted field: Cµν = −Cµν + 1
2η

µνCα
α

can rewrite original linearized cardinal dynamics using Palatini
formalism with auxiliary field Γαµν :

LL = Cµν(Γαµν,α − Γµ,ν) + ηµν(ΓαµνΓα − ΓαβµΓβαν)

1 step coupling

Have to include coupling to energy-momentum tensor of LL in
self-consistent manner
Use Rosenfeld method, promoting ηµν to variable metric density and
partial derivatives to ηµν-covariant ones.
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Bootstrap

Cardinal bootstrap

It follows: −1
2τµν = δLL

δηµν = ΓαµνΓα − ΓαβµΓβαν + total derivative

Full nonlinear action obtained by coupling nonderivative part of τµν as
source for Cµν :

L = LL + Cµν(ΓαµνΓα − ΓαβµΓβαν)

final result for kinetic term
recursive process yields nonlinear “bootstrapped” action∫

d4x
(
C
µν(Γαµν,α − Γµ,ν) + (η + C)µν(ΓαµνΓα − ΓαβµΓβαν)

)
≡
∫

d4x(η + C)µνRµν(Γ)

Thus (η + C)µν is naturally interpreted as curved-space metric density!
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Bootstrap

Bootstrap of matter tensor and scalar potential

Bootstrap can also be applied to scalar potential and matter EM tensor
flat-space matter EM-tensor yields curved-space matter lagrangian
with metric density (η + C)µν : LM,C =

√
|η + C|LL

M,C
|η→η+C

procedure compatible with scalar potential depending only on Cµν and
background Minkowski metric ηµν

integrability conditions

Bootstrap requires V satisfy integrability conditions
Conditions satisfied only by particular solutions, e.g.:

1, X1, X2 − X
2
1

2 , X3 − 3X1X2
4 + X

3
1

8 , . . .

(X1 = Cµνηνµ,X2 = (C · η · C · η)µµ, . . . etc.)
Particular linear combination yields cosmological constant

√
|η + C|
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Bootstrap

Bootstrap of scalar potential

integrable scalar potentials
Particularly interesting: Scalar potentials of the form

V ({Xi}) =
1
2

∑
i ,j

mij(Xi − xi )(Xj − xj) +O(Xi − xi )
3

with local minimum at Xi = xi (i = 1 . . . 4)
Represent possibly stable vacuum

Integrability and stability highly nontrivial conditions
Limit mij →∞ corresponds to bootstrap of linearized limit

V L = λ1(X1 − x1) + λ2(X2 −
X

2
1
2
− x2 +

x21
2

) + . . .
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Vacuum EM tensor

Vacuum energy-momentum tensor

Bootstrapped Lagrangian

(η + C)µνRµν(Γ)−
√
−|η + C|V (X1,X2,X3,X4) + Lmatter (C, η, φi , ∂µφi )

Linearized equations of motion

Kµναβhαβ = (ηµν∂1 + 2ηµαcαβηβν∂2 + ...)V + τ (m)
µν (η, φi , ∂µφi )

∂n ≡
∂

∂Xn
Xn = (C · η)n (n = 1 . . . 4)

“vacuum energy-momentum tensor”

T (vac)
µν = τ (vac)

µν − 1
2
ηµν
(
τ (vac)

)α
α
.

where
τ (vac)
µν = (ηµν∂1 + 2ηµαCαβηβν∂2 + ...)V
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Vacuum EM tensor

Vacuum energy-momentum tensor (cont.)

Explicit solutions
Explicit solutions of linearized equations of motion can be obtained for
hµν with nonzero vacuum energy-momentum tensor

Initial/boundary values can be defined on suitable initial
timelike/spacelike spacetime slices (4 independent functions)

Conservation and initial conditions
If matter EM tensor conserved independently, same is true for vacuum EM
tensor

then
Choosing T (vac)

µν to be zero at suitable initial timelike/spacelike spacetime
slices ensures it is zero at all spacetime
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Issues

Quantum effective action

Quantum effective action
Kinetic term not protected by gauge invariance

One can expect quantum corrections will render kinetic term
non-gauge invariant (Krauss & Tomboulis 2002)
In general the 4 auxiliary modes can become propagating
Yields Lorentz-violating corrections to Lagrangian (Carroll et.al.
(2009))
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Issues

Renormalization

Fixed points of Renormalization Group
Interesting to consider behaviour of theory under (Wilson)
renormalization group

A related vector model with spontaneous Lorentz violation, the
bumblebee, has been shown to have Gaussian fixed point that is UV
stable in certain directions of linearized RG flow (Altschul &
Kostelecky, 2005)
These relevant directions of RG flow correspond to asymptotically free
theory with nonpolynomial interactions, similar to behaviour found by
Halpern & Huang (1995) for scalar fields
Stable minima of these bumblebee potentials are necessarily Lorentz
violating
Similar analysis for cardinal model very interesting but challenging
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Conclusions and future work

Conclusions

Construction of alternative theory of gravity possible

Massless gravitons can be interpreted as Nambu-Goldstone modes of
spontaneously broken Lorentz symmetry
Nonlinear lagrangian from requirement of consistent coupling to total
energy-momentum tensor
Low-energy Lagrangian corresponds to Einstein-Hilbert action
Full Lagrangian includes 4 massive graviton modes
Integrability conditions for potential very restrictive
Formalism gives rise to “vacuum energy-momentum tensor”
Quantum effective action can turn auxiliary modes propagating at low
energy
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Classification of all integrable and bootstrapped potentials

What is the behaviour of the theory at high energies/temperatures?
Behaviour under Renormalization Group?
Cosmological implications of vacuum energy-momentum tensor?
Extension of cardinal model: extra massless modes (ex. combination
with bumblebee)?

R. Potting (Algarve) A theory of Gravity from spontaneous Lorentz violation Mazatlán 19 / 19



Conclusions and future work

Future work

Classification of all integrable and bootstrapped potentials
What is the behaviour of the theory at high energies/temperatures?

Behaviour under Renormalization Group?
Cosmological implications of vacuum energy-momentum tensor?
Extension of cardinal model: extra massless modes (ex. combination
with bumblebee)?

R. Potting (Algarve) A theory of Gravity from spontaneous Lorentz violation Mazatlán 19 / 19



Conclusions and future work

Future work

Classification of all integrable and bootstrapped potentials
What is the behaviour of the theory at high energies/temperatures?
Behaviour under Renormalization Group?

Cosmological implications of vacuum energy-momentum tensor?
Extension of cardinal model: extra massless modes (ex. combination
with bumblebee)?

R. Potting (Algarve) A theory of Gravity from spontaneous Lorentz violation Mazatlán 19 / 19



Conclusions and future work

Future work

Classification of all integrable and bootstrapped potentials
What is the behaviour of the theory at high energies/temperatures?
Behaviour under Renormalization Group?
Cosmological implications of vacuum energy-momentum tensor?

Extension of cardinal model: extra massless modes (ex. combination
with bumblebee)?

R. Potting (Algarve) A theory of Gravity from spontaneous Lorentz violation Mazatlán 19 / 19



Conclusions and future work

Future work

Classification of all integrable and bootstrapped potentials
What is the behaviour of the theory at high energies/temperatures?
Behaviour under Renormalization Group?
Cosmological implications of vacuum energy-momentum tensor?
Extension of cardinal model: extra massless modes (ex. combination
with bumblebee)?

R. Potting (Algarve) A theory of Gravity from spontaneous Lorentz violation Mazatlán 19 / 19


	Symmetry vs. Broken Symmetry

