Effects of brane-flux transitions on string theory compactifications

Oscar Loaiza-Brito

Departamento de Física, U. de Guanajuato

XII Mexican workshop in particles and fields

Mazatlán, November 11, 2009

1

An apology.....

You will find the words "AdS/CFT correspondence" only in this slide

A second apology.....

This is a VERY sketchy talk....you shouldn't expect a detailed information

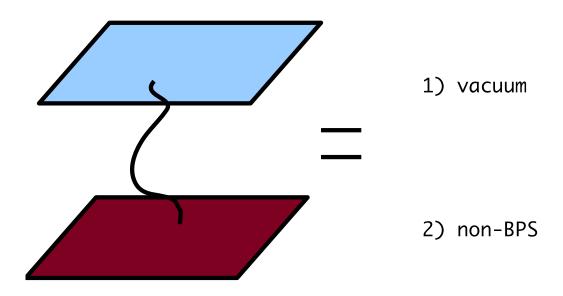
Plan

- Motivation
- Fluxes in String compactifications
- Topological inconsistencies
- Effects on supersymmetric black holes
- D-brane instabilities in geometric flux compactification
- Minkowski vacua transitions
- Final comments

Motivation

- The presence of fluxes on string compactifications has enriched our notions of geometry and increased the number of possible string vacua
- In the most conservative way, the number of vacua goes as 10^{500} .
- By considering the most general kind of flux compactifications in the context of F-theory, number of vacua increases to 10^{1000} .
- Are some vacua connected by topological equivalences driven by the presence of fluxes?
- A compactification threaded with fluxes leads to the existence of a transition between branes and fluxes

• The connection appears by twisting the commoun differential operator dF into $dF + H_3 \wedge F$. This twisted version (up to the absence of orientifold and orbifold singularities) connects to K-theory.



• K-theory equivalence classes are usually ignored in string phenomenological models. At most, models are restricted to conditions in which cohomology is enough to classify D-branes and fluxes.

• We are going to study topological transitions driven by fluxes and its consequences in string phenomenological models, which means essentially three points:

supersymmetric black holes constructed by wrapping D3-branes
 on internal cycles,

- wrapping D-branes on internal cycles (to get SM like models)
- transitions of Minkowski vacuum solutions

Flux compactification

- Typical compactifications without flux leads to a constant warping factor and a Calabi-Yau as an internal manifold [Candelas and Witten, 1995].
- There exists the problem that compactification moduli remains unfixed, pointing out the presence of large-range unobseved forces.
- In a supergravity compactification (with α' corrections neglected) to a maximal symmetric 4D spacetime , the presence of fluxes (internal or external) is prohibited (No-go theorem [Maldacena and Nunez, 2002]
- String theory avoid such theorem by including high order corrections and/or orientifold singularities.

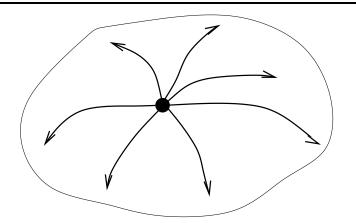
• The price to pay is to depart from the smooth scenario of CY compactifications: fluxes backreact!

• They contribute positively to the internal energy for a maximal symmetric 4D space-time.

 \bullet and they give RR D-brane charge, e.g. through the coupling $\int_{X_6} H_3 \wedge F_3$

• Supergravity equations of motion (in type IIB) are twisted by the presence of RR and NS-NS fields

$$d * F_5 = \rho_{sources} + H_3 \wedge F_3$$



• Tadpole condition, or Bianchi identity for the self-dual F_5 requires the presence of negative charged objects: *orientifolds*.

• In the absence of NS-NS flux, *cohomology* classifies RR fields: By SUGRA eof $\rightarrow dF_p = 0 \Rightarrow [F_p] \in H^p(X_6; Z)$ (quantization requires the field to be integers).

• Which mathematical structure classifies the fields in the presence of extra fluxes, and most important, *what is the physical interpretation* of having new equivalence relations of the RR fields?

Topological inconsistencies

• The submanifold on which an stable D-brane is wrapped on is classified by ordinary homology: $[W] \rightarrow$ D-brane world-volume (with no boundary).

- Hence, in the fluxless case $\partial W_p = 0$ and $dF_p = 0$.
- Turn on a NS-NS flux H_3 , such that
 - Its restriction to W does not vanish,
 - all legs in the internal space X_6 .

• The NS-NS flux induces a monopole charge on W (dimW = p + 1):,

$$S \sim \int_{W_{p+1}} H_3 \wedge A_{p-2}$$

with A the magnetic dual to the A_1 potential on W.

- N units of H induce N units of monople charge on W.
- The variation of the action wrt A_{p-2} implies $\int H = 0 \Rightarrow$ an inconsistency appears.

• This is the classical version of a more refined result known as Freed-Witten anomaly [Freed, Witten 1999].

- The general result consider non-spin^c manifolds.

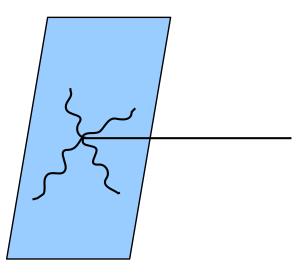
- That means, manifolds in which spinors are not coupled with gauge fields on W.

- I will restrict to scenarios where such coupling is possible.

 Hence, only the classical version of FW anomaly will be considered through this talk.

Topological inconsistencies II

- How to avoid/cancel such inconsistency?
- The traditional way is to consider a vanishing restriction (pullback) of the H_3 field to the D-brane worldvolume.
- Another one, is to provide of the magnetic sources required by a non-vanishing of H_3 in W.



• By adding a D(p-2) brane ending at the world -volume of a Dp-brane, the anomaly is cured.

- The endpoint of the $Dp\mbox{-brane}$ is the magnetic monopole of the gauge theory at W

$$S \sim \int_W F_{p-1} \wedge *F_{p-1} + \int H_3 \wedge A_{p-2}$$

and the eom are fulfilled: $d * F_2 = H_3$.

What would happen for an instantonic brane?

[Maldacena, Moore, Seiberg, 2001]

Brane-flux transition

Consider a background threaded with H_3 -flux

• A Dp-brane, wrapping a cycle W (identified with the worldvolume) on which H_3 vanishes, it is well defined (physical and mathematically).

The worldvolume and forms are classified by usual (co)homology

• There are cycles (submanifolds of the space background) on which the flux H_3 is supported.

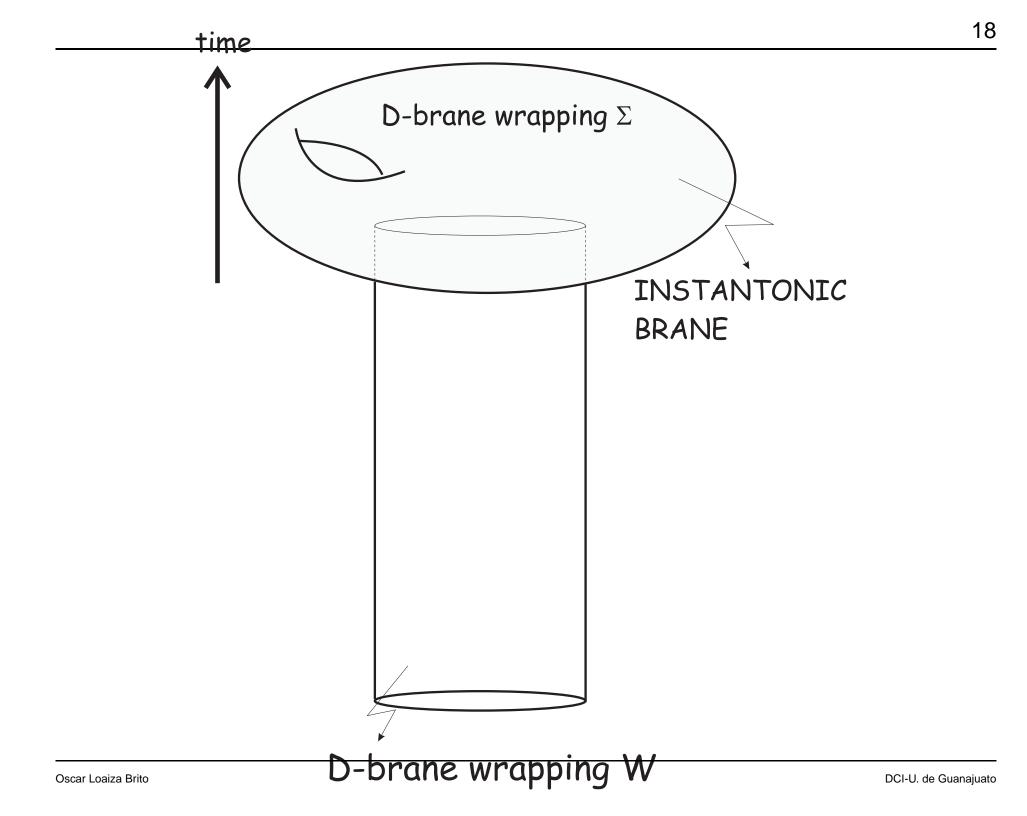
 $- \ Dp$ -branes $(p \geq 3)$ wrapping them, are ill-defined. A FW anomaly appears.

- The anomaly can be cured by adding extra D(p-2)-branes (Notice this is impossible in a compact manifold!)

• It could happen that, an stable Dp-brane encounters with an anomalous *instantonic* brane at some time t.

- The (in principle) stable Dp-brane cures the anomaly.

17



• The price to pay is that such Dp-brane decays.

- The decay is topological.

The same quantum numbers (charge, tension) are now carried by fluxes

- Such fluxes are the result of the coupling between the already present NS-NS flux H_3 and the magnetic field strength of the instantonic brane.

- E.g., A D3-brane in a background threaded by an H-flux supported on "transversal" coordinates, will decay after an encounter with an instantonic D5-brane.

- The magnetic RR field for the later is F_3 . The former RR D3-brane charge is now carried by $F_3 \wedge H_3$.

• This is precisely the physical interpretation of the twisted Blanchi identities for F_5 !

$$dF_5 = sources + H_3 \wedge F_3$$

• This tells us that D3-branes are created or annihilated by D5-branes supporting some units of H_3 -flux

The number of NS-NS flux fixes de number of unstable
 D-branes

- Is the total D3-brane charge, from physical D3-branes and fluxes, the quantity which is conserved.

• In a "democratic" notation

$$d * F = H_3 \wedge F$$

where $F = \sum_{n} F_{n}$.

All these transitions are the physical interpretation about the fact that D-branes are actually classified by *K-theory*

What is K-theory?

 Classifies pairs of D-branes- anti-D-branes modulo tachyon condensation [Witten 1995, Moore 1994].

- Classifies brane configurations preserving RR charge.
- For trivial tachyon condensation in the fluxless case , K-theory = cohomology
- There are backgrounds in which tachyon condensates in a "controled" way: e.g. orientifolds
- In such cases, K-theory provides more information than cohomology (non-BPS states in type I)

In the presence of fluxes, K-theory is slightly different than cohomology,

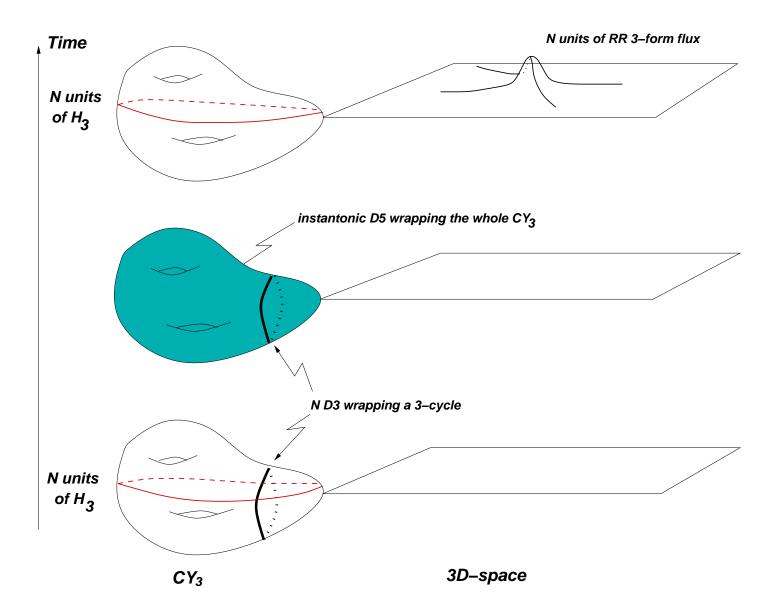
 This means there are D-brane configurations apparently stable in a cohomological classification, which turn out to be unstable in K-theory.

A way to connect cohomology with K-theory is by twisting the differential operator d to $d+H_3\wedge$

- This is the mathematical realization of canceling FW anomaly.
- Instantonic branes do not belong to K-theory classes (they are unstable).
- D-branes transforming into flux via the instantonic brane belong to the zero class in K-theory.

An example: A black hole transition

- A Black Hole in 4D is constructed by wrapping D3-branes on internal 3-cycles [Seiberg, 1996]
- In the presence of a NS-NS flux H_3 supported on *transversal* coordinates to the D3-branes, the configuration is "stable".
- Stability is lost by the appearance of an instantonic D5-brane on X_6 .
- D3-branes are transformed into fluxes $H_3 \wedge F_3$, with F_3 living on 4D [O. L-B., K-Y Oda, 2007].



Effects of brane/flux transition on string vacua

The presence of fluxes stabilize some moduli.

• In type IIB, 3-form fluxes does not stabilize Kähler moduli (volume)

Non-perturbative information is required [Kachru, Polchinski, Trivedi,
 2002]

 An alternative way is to consider extra degrees of freedom at the perturbative level:

- Under T-duality on coordinate a, a tori compactification threaded with a NS-NS flux with component H_{abc} , transforms into a *twisted* tori (metric changes) and no flux

$$H_{abc} \to f^a_{bc}$$

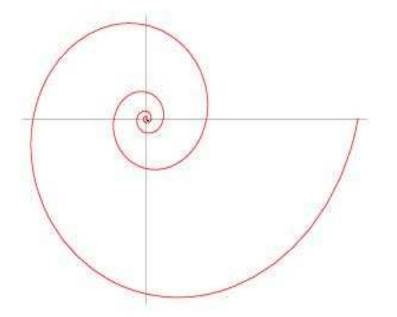
• A subsequent T-duality on coordinate *b* leads to a manifold with non-global defined geometry (volume is ill-defined: there is not Kähler moduli)

$$H_{abc} \to f^a_{bc} \to Q^{ab}_c$$

• The tori is transformed by the first duality into a twisted tori, which is said to be threaded with "metric fluxes" (nilpotent manifolds)

- Flux information is mapped to geometry

• By the second duality, it is said that the tori is threaded with *non-geometric flux* [Lawrance, Wecht, Taylor, 2007]



$$ds^2 = \frac{1}{1+Q^2 x_c^2} (dx_a^2 + dx_b^2) + dx_c^2$$

 A compactification on twisted torus and 3-form fluxes stabilizes all moduli.

- The superpotential : $W = \int (H_3 SF_3 + dJ) \wedge \Omega$
- $dJ \neq 0$ because of metric fluxes.

Connected to compactification on generalized CY manifolds:
 half-flat manifolds (next slide) J. Luis, A. Micu, 2004

How is brane/flux transition mapped into this background?

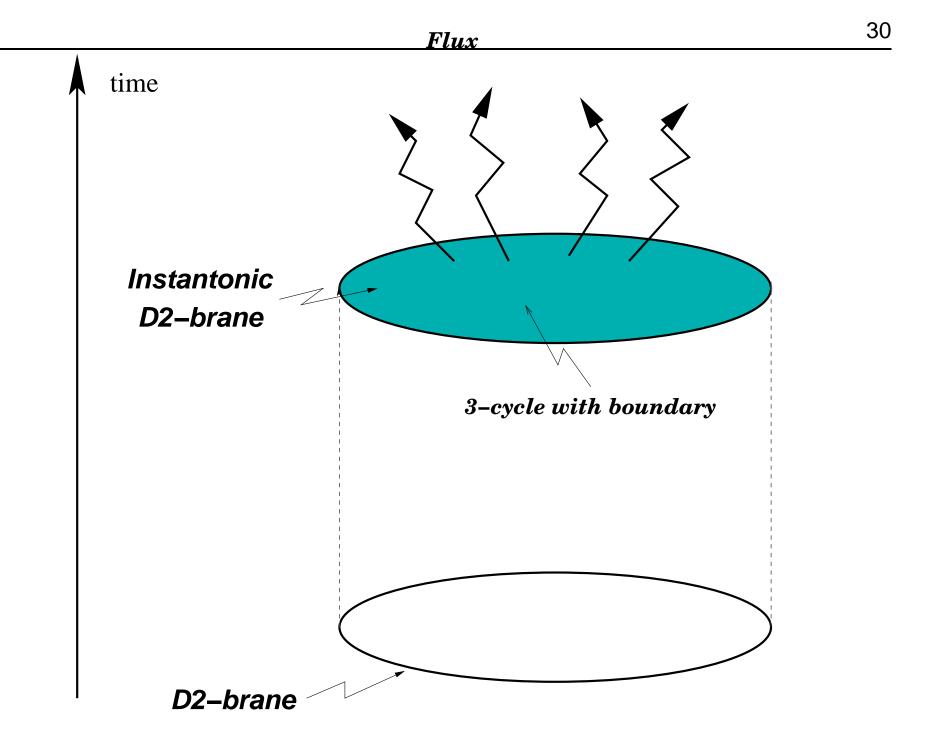
• H-Twisted cohomology is mapped into "metric-twisted" cohomology.

This means in a metric flux background, flux information is contained in ordinary cohomology in the new geometry [Marchesano, 2006]

• The transition is now driven by instantonic branes with the same dimensionality as the unstable D-branes [O. L-B., 2006]

- A D*p*-brane is transformed into $f \cdot *F_{p+2}$

• Connection with K-theory is obtained by adding extra NS-NS flux



r				-
	D6-branes	$\omega_{(x)}$	H_3	
	Torsion	$\mathrm{N}\Sigma_{123}$	$M\Sigma_{234} \ M\Sigma_{135} \ M\Sigma_{126} \ \mathbf{M\Sigma_{123}}$	
	instantonic	Σ_{456}	$\Sigma_{156} \ \Sigma_{264} \ \Sigma_{345} \ {f \Sigma}_{456}$	

 Not all cycles are suitable for D-brane building (this changes by including orientifold and orbifold singularities) [Cvetic et. al., 2006][O.L-B. in progress]

At the level of CY compactifications, T-duality on a torus fibration corresponds to mirror symmetry Seiberg 1997

 Metric fluxes correspond to a change on the holonomy and structure group

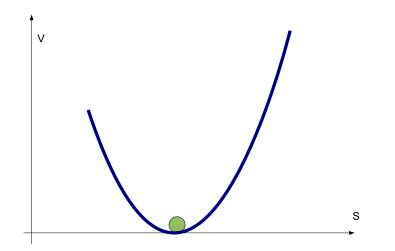
- Topology can be written in terms of internal spinors [Graña, Tomassielo,
 2006]
- Minkoswki Vacuum is obtained if the internal spinors satisfy $d_H \phi = 0.$

This suggests that (Minkowski) string vacua must be classified by K-theory

- This means that some vacua, which seems different from a cohomological classification of fluxes, could be related by some transition, if they belong to the same equivalence class in K-theory.
- String landscape size can be reduced.

In fact, Minkowski vacua is constructed as a solution for the SUSY equations $D_i W = 0$.

 The amount of flux we turned on, establishes the properties of the vacuum.



• But the superpotential W is not invariant under a flux-brane transition.

We expect some connections among different vacua [W. Herrera-Suarez, O. L-B., 2009]

Consider the simplest orientifold type IIB string compactification:

- A toroidal compactification with NS-NS and R-R fluxes H_3 and F_3
- D3-branes and O3-planes sitting at a point in T^6
- Total D3-brane charge in T^6 vanishes (tadpole condition)

The Minkowski vacuum is a solution of the supersymmetry conditions on the superpotential W: $D_i W = 0$

• In this case,
$$W = \int (F_3 - SH_3) \wedge \Omega = W(S, \rho)$$

$$W_H = P_1(\rho) - SP_2(\rho)$$

• P are cubic polynomials on ρ with coefficients fixed by the amount of fluxes

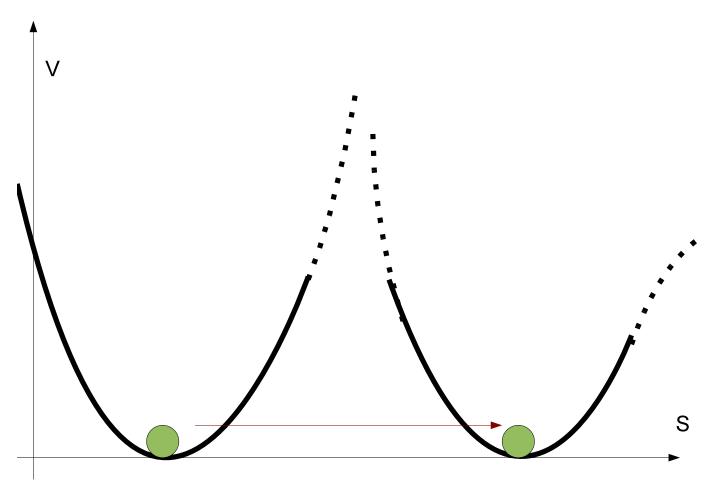
• The solution to susy equations fixed the values for S and ρ .

How those values change under a brane/flux transition?

After the appearance of an instantonic D5-brane wrapping T^6 , some D3-brane become unstable and decay to fluxes.

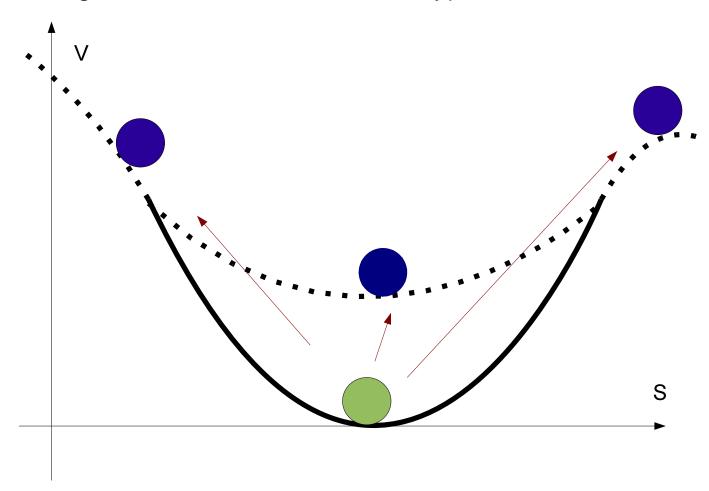
- The amount of RR flux F_3 changes.
- Then the superpotential polynomial is now different
- Solutions to susy equations suffer a change
- Both set of solutions are then connected through a brane/flux transition driven by an instantonic brane

Fora particular case (some specific instantonic branes):



Found and studied by Kachru et. al in 2003. Different susy solutions differ by a rescaling of fluxes.

The most general case allows different type of transitions:

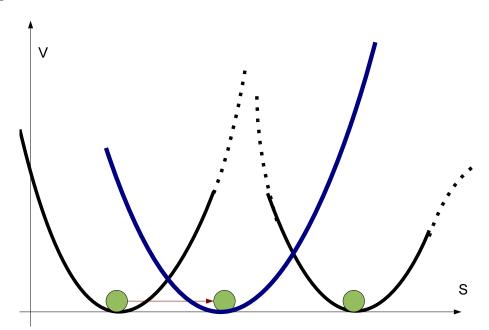


Notice the possibility of breaking susy in a minimal of the transformed scalar potential (Work in progress)

38

We can consider flux/brane transitions mediated by instantonic NS5-branes (S-dual version) [J. Evslin, 2003]

- The twisted differential operator reads $d_F = d + F_3 \wedge$
- N D3-branes are unstable to decay into the flux configuration $F_3 \wedge H_3$ if encounters an instantonic NS5-brane supporting N units of R-R flux F_3 .



Consider a most general flux orientifold compactification with non-geometric fluxes

- Geometric flux is projected out by the orientifold action
- S-duals of Q, denoted P-flux is also considered.

- $P\mbox{-}f\mbox{-}l\mbox{-} P\mbox{-}f\mbox{-}l\mbox{-} required for S-duality for the superpotential in type IIB [Aldazabal, Camara, Font, 2006]$

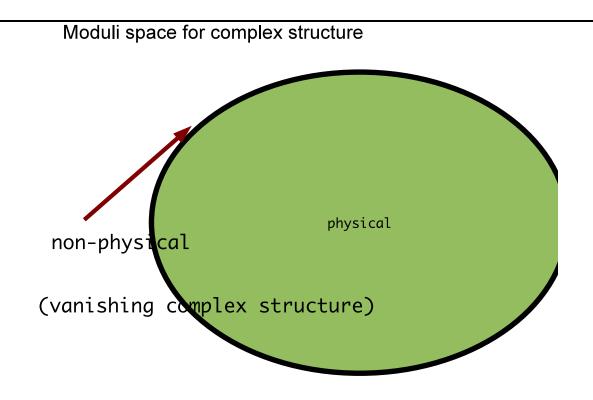
• The superpotential now reads

 $W(S,\rho,\tau) = \int (H_3 - SF_3 + (Q + SP) \cdot J_4) \wedge \Omega$

There are some restrictions for the fluxes to satisfy:

 \bullet Bianchi constraints $Q\cdot H=Q\cdot Q=0$

• Compatibility with Bianchi identities to brane/flux transitions Hence, not all possible transitions are allowed. The number of configurations giving rise to transitions is reduced



- Physical SUSY solutions (non-vanishing C.S)., flux configurations are not allowed to drive a brane/flux transition
- Unphysical SUSY solutions (vanishing C.S) allows the configuration to suffer a transitions. However the transition connects solutions also in the boundary of the moduli space.

Final comments

- We have studied topological transitions between branes and fluxes
- For the transition to actually happening, initial configuration energy must not be smaller then the final one
- A dynamical process would show this [Kachru, et, al 2003, Martelli,
 Maldacena, 2009]
- For the vanishing complex structure, we have degenerate tori, which for finite Kähler moduli, implies some cycles could shrink into a point. Non-perturbative corrections are needed to fully understand such case.
- It would be interesting to study under which conditions we can (or cannot) connect a susy Minkwsky vacuum to a non-susy one. A dynamical proces describing this topological transition would break susy.
- The S-duality classification of fluxes and branes by K-theory is still

an open question.