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Motivation

The Higgs sector with CP violation has very particular and interesting issues:

ä Studying mechanisms and new sources of CP violation

→ is a required condition for baryogenesis.

ä The heavy Higgs bosons are unstable particles they occur as resonances of the propagator,

related to self-energies.

→ The masses as poles of the propagator are of Breit-Wigner’s form: [s−M2
φ+iMφΓφ]

−1

ä Degeneracy of the heavy neutral Higgses in the CP invariant case is manifested with H0 and

A0 as incoherent states.

→ in the CPV, degeneracy will be revealed with two mix states which are coherent and

interesting features will appear.

ä In a CP non-invariant Higgs sector the physical states are no longer CP defined

→ which implies differences in amplitudes where neutral Higgses are involved.
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Outline

ä I. CP invariant Higgs sector

ä II. Extended Higgs sector with CP violation

ä III. Self-energy neutral Higgs mass corrections

ä IV. Degeneracy of heavy neutral CP non-invariant Higgs bosons.

ä Conclusions
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I. CP invariant Higgs sector

ä Two SU(2) Higgs doublets:

Φ1 =

 
φ+

1
1√
2
(v1 +H1 + iA1)

!
, Φ2 =

 
φ+

2
1√
2
(v2 +H2 + iA2)

!

with

Hi , CP = 1→ scalar fields,

and

Ai , CP = −1→ pseudoscalar fields.

ä SSB: Assuming the scalar fields to develop nonzero vacuum expectation values that break

SU(2)L

< Φ1 >=
v1√

2

„
0

1

«
, < Φ2 >=

v2√
2

„
0

1

«
(1)

Defining: tan β =
v2
v1

and v = (v2
1 + v2

2)1/2 ≈ 246 GeV.
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I.1 THDM and MSSM Higgs potential

In terms of the two SU(2) Higgs doublet model potential (2HDM)

L2HDM
V = µ

2
1(Φ

†
1Φ1) + µ

2
2(Φ

†
2Φ2) +m

2
12(Φ

†
1Φ2) + λ1(Φ

†
1Φ1)

2

+λ2(Φ
†
2Φ2)

2
+ λ3(Φ

†
1Φ1)(Φ

†
2Φ2) + λ4(Φ

†
1Φ2)(Φ

†
2Φ1) (2)

And in the minimal supersymmetric case

µ
2
1 = −m2

1 − |µ|
2
, µ2

2 = −m2
2 − |µ|

2, m2
12 = Bµ (3)

λ1 = λ2 = −
1

4
(g

2
w + g

′2
), λ3 = −1

4(g2
w − g

′2), λ4 = 1
2g

2
w.
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At tree level we have the CP-even neutral Higgs masses releted using mA0 as free parameter:

m
2
h,H =

1

2

`
m

2
A +m

2
Z

´
∓

1

2

q
(m2

A +m2
Z)2 − 4m2

Am
2
Z cos2 2β

m
±
H = m

2
A + cos

2
θwm

2
Z (4)

ää The relations within MSSM parameters imposse, at tree level, a strong hierarchical structure on

mass spectrum:

mh < mZ, mA < mH and mW < mH±, → which is broken by radiative corrections.

ä Including radiative corrections the upper limit on light Higgs mass, mh will lead on the limits

for the parameters mA � mZ and tan β � 1.

ä In this limit the heavier CP-even, charged and CP-odd Higgs bosons become almost degenerate

in mass:

mH ' mH± ' mA.

Considering CP violation through radiative corrections the situation will change.
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II. Extended Higgs sector with CP violation

In terms of the two SU(2) Higgs doublet model potential (2HDM) with CP violation

L2HDM
V = µ

2
1(Φ

†
1Φ1) + µ

2
2(Φ

†
2Φ2) + m2

12(Φ
†
1Φ2) + λ1(Φ

†
1Φ1)

2

+λ2(Φ
†
2Φ2)

2
+ λ3(Φ

†
1Φ1)(Φ

†
2Φ2) + λ4(Φ

†
1Φ2)(Φ

†
2Φ1)

+λ5(Φ
†
1Φ2)

2
+ [λ6(Φ

†
1Φ1) + λ7(Φ

†
2Φ2)](Φ

†
1Φ2) + h.c. (5)

In the MSSM the complex couplings emerge at one-loop level couplings

(1) m
2
12 = m

2R
12 + im

2I
12 (2) λ5,6,7 = λ

R
5,6,7 + iλ

I
5,6,7 (6)

and necessarly generates the mixing of heavy neutral H − A Higgses.

[Grzadkowski,Gunion,Kalinowski 99],[Choi,Kalinowski,Liao,Zerwas 05]
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II.1 MSSM CP violation sources

MSSM Higgs sector CP violation sources are:

À a relative phase between doublets:

Φ1 =

 
φ+

1
1√
2
(v1 +H1 + iA1)

!
, Φ2 = eiξ

 
φ+

2
1√
2
(v2 +H2 + iA2)

!

Á on the Soft SUSY Breaking L

Lq̃soft = −(Au,ij
˜̄U
i
Q̃
j
H1 + Ad,ij

˜̄D
i
Q̃
j
H2 + h.c) (7)

complex trilinear couplings, φf̃f̃ :
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II.2 Neutral Higgs mass matrix

The complete 4× 4 renormalized neutral Higgs mass matrix can be written as

M2
φ0 = m

(0)2

φ0 + δM2
φ0 = M

2
φ0 − iMφ0Γφ0 (8)

The radiative correction mass, δMφ0 written in the basis H1H2A1A2, may be expressed as

δMHHAA =

0@ δMS δMSP

δMSP† δMP

1A (9)

with

δM
S

=

 
MH1H1

MH1H2

M†
H2H1

MH2H2

!
; δMP =

 
MA1A1

MA1A2

M†
A2A1

MA2A2

!
; (10)

(11)

and the mixing part

δM
SP

=

 
MH1A1

MH1A2

M†
H2A1

MH2A2

!
(12)

[Frank,Hahn,Heinemeyer,Hollik,Rzehak and Weiglein 07]
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II.3 Neutral Higgs mass matrix for 2HDM

The 3 × 3 squared mass matrix M2
0 of neutral Higgs fields, is obtained after the rotation that

decouples the Goldstone boson, and has the following form, derived from L2HDM
V

M2
0 = v

2

0B@ λ −λ̂ −λ̂p
−λ̂ λ− λA + 1

v2M
2
A −λp

−λ̂p −λp 1
v2M

2
A.

1CA (13)

The λ, λ̂ and λA are functions of <eλi while λp and λ̂p are functions of =mλi in L2HDM
V .

To be supplemented by the anti-hermitian decay matrix −iMΓ(s) which is a function of s. This

includes the widths of the Higgs states in the diagonal elements, as well as the transition matrix

elements for any combination of pairs of states in the off diagonal elements.

M2
(s) =M2

0 − iM Γ(s) . (14)
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II.4 CP non-invariant neutral Higgs bosons mass matrix M2(s)

In the decoupling limit, defined by the inequality [Gunion, Haber 03]

m
2
A >> |λi|v

2
, (15)

the, mixing between the light state, H1(→ h0), and the heavy states, H2 and H3, is

small, compared with the mixing of the nearly degenerate heavy Higgs states H2 and H3.

[Félix-Beltrán,Gómez-Bock,Hernández, Mondragón,Mondragón to appear]

M2
H2−H3

(s) =

„
M2

H(s)− iMHΓH(s) ∆2
HA(s)

∆2
HA(s) M2

A(s)− iΓAMA(s)

«
(16)

[Pilaftsis 98],[Demir 99]

The mass matrix of the heavy neutral higgs CPV system is not Hermitian.
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III. Self-energy neutral Higgs mass corrections

The elements of the mass matrix M2
H2−H3

(s) is constructed explicitly from dominant self-energies

contributions diagrams
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III.1 Renormalization schemes

Various approaches have been applied: [Dabelstein 94]

À The effective potential method . The tree level mass matrix M0 of the neutral scalar

system is diagonalized as usual with angles α, β. Loop contributions to the quadratic part

of the potential (neglecting the q2 − dependence of the diagrams) modify the mass matrix

M0 →M0 + δM =M. Re-diagonalizing the one-loop MatrixM yields the corrected mass

eigenvalues mH0,h0, an effective mixing angle αeff instead of α

Á The renormalization group method. Solving the renormalization group equations for the

parameters of a general 2- doublet model and imposing the SUSY constraints at the scale

µ = MSUSY yields the effective parameters of the Higgs potential at the electroweak scale.

Large logr terms are resummed, but effects from realistic mass spectra are not covered by this

approximation.

Â Complete one-loop calculation. A complete one-loop calculation to masses and couplings

accommodates all SUSY particles and mass parameters (or soft breaking parameters, respec-

tively) in the radiatively corrected version of masses (2-point functions) and mixing angles

and, in addition, provides the 3-point functions required for Higgs boson production and decay

processes. They are necessary to check the quality of the other two approximations and allow a

detailed study of the full parameter dependence of production cross sections and decay rates
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In the literature this issue has been treted from different approaches

ä SM contributions resummed in the Pinch Technique framework in a general [Papavassiliou and

Pilaftsis 96]

ä In MSSM CPV considering that this diagrams are dominated by the large CP-violationg trilineal

A-terms couplings to the stop and sbottom.[Carena, Ellis, Pilaftsis and Wagner 02]

ä All MSSM contributions calculated numerically by [Frank,Hahn,Heinemeyer,Hollik,Rzehak and

Weiglein 07]

At one-loop level,the renormalized self-energies, Π̂(s) can be expressed through a sum of

À the unrenormalized self-energies: Π(s),

Á the field renolrmalization constants: Φi → (1 + 1
2δZΦi

), and

Â counter terms arising from the 4× 4 mass matrix: δMhHAG = U(0)MH1H2A1A2
U†

(0)

obtaining that each element of the renormalized self-energy matrix will have have the form:

Π̂ij(s) = Πij(s) + δZij(s−m2
i,j)− δm

2
ij (17)
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III.2. Neutral heavy Higgs bosons as s-channel resonances
ä Masses and mixings of the H-A system may be detected as two relatively closely spaced or even

overlapping resonances in the s-channel reaction.

µ
+
µ
− → A

∗
/H

∗ → ff̄ (18)

[Pilaftsis 97],[Bernabeu, Binosi, Papavasiliu 06]

ä The line shape of this process would indicate the presence (or absence) of CPV in the heavy

Higgs system.

ä In the resonant region, the t-channel amplitude is relatively small and may be ignored

ä Then, in the electroweak basis, the transition amplitude matrix between states with CP-violation

via resonant Higgs exchange is

T res(s) = V
P
∆̂
−1
H2−H3

(s)V
D

(19)

where we identify the propagator as

∆̂
−1
H2−H3

(s) = s12×2−M2
H2−H3

(s) =

„
s− (M2

H − Π̂HH(s)) −Π̂HA(s)

−Π̂HA(s) s− (M2
A − Π̂AA(s))

«
(20)

At the one loop level, the production and decay vertices, V P
i (s) and V D

j (s) coincide with the

corresponding tree-level vertices.
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III.3. Physical masses as the poles of the propagator

The physical masses of the neutral heavy Higgs bosons are identified with the poles of the

propagator matrix ∆̂H2−H3
(s). Hence, the masses of the neutral, heavy Higgs bosons are defined

as the solutions of the implicit equation

det
h
∆̂H2−H3

(s
?
)
i

= det
h
(s
?
)12×2 −M2

H2−H3
(s
?
)
i

= 0. (21)

where

M2
H2−H3

(s
?
) =

„
M2

H(s?)− iMHΓH(s?) ∆2
HA(s?)

∆2
HA(s?) M2

A(s?)− iΓAMA(s?)

«
(22)

is the mass matrix of the neutral and heavy Higgs bosons in the CP-invariant basis. In the physical

basis,M2
H2−H3

(s) is diagonal, then eq. (24) becomes

(s2 − µ2
H2

(s2))(s3 − µ2
H3

(s3)) = 0 , (23)

where µHi(s) are the complex eigenvalues ofM2
H2−H3

(s).
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As the determinant is an invariant quantity, we may write eq.(24)

det
h
∆̂H2−H3

(s
?
)
i

= det
h
(s
?
)12×2 −M2

H2−H3
(s
?
)
i

= 0; (24)

Which in terms of the eigenvalues of the squared mass matrix M2
H2−H3

(s?) at the pole, we

obtain a system of two equations for s?2 6= s?3 :

µ
2
Hi

(s
?
i )− s

?
i = 0, (25)

with i = 2, 3. where s?i (x1, x2) is a function of two or more free parameters in L. Now, we may

identify s?i with the pole mass of the neutral, heavy Higgs bosons,

M2
Hi

(s?)− iMiΓi(s?) := µ2
Hi

(s?i ). (26)
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III.3 The propagator of the neutral heavy Higgs system

Another way of writing the mass matrix in terms of the Pauli matrices

M2
H2−H3

(s) =
1

2
T12×2 + (~R− i~Γ) · ~σ (27)

Then the propagator of the neutral heavy Higgs bosons takes the form

∆̂H2−H3
(s) =

h
s−M2

H2−H3
(s)
i−1

=
1

(s− 1
2T )2 − (~R− i~Γ)2

»
(s−

1

2
T )

21 + (~R− i~Γ) · ~σ
–

(28)

where

T =
1

2

h
(M

2
H +M

2
A)− i(MHΓH +MAΓA)

i
(29)

is the trace of the mass matrix and

~R =
“1

2
(M

2
H −M

2
A), 0, Re∆

2
HA

”
, ~Γ =

“
1
2(MHΓH −MAΓA), 0, Im∆2

HA

”
(30)
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III.4 Eigenvalues of the mass matrix

The eigenvalues of the mass matrixM2
H2,H3

(s) are

µ
2
Hi

(s) =
1

2
T ±

q
(~R− i~Γ)2 (31)

Hence, there is a pole on a degenerated masses eigenvalues

∆̂H2−H3
(s) =

1

(s− µ2
H2

(s))(s− µ2
H3

(s))

»
(s−

1

2
T )

21 + (~R− i~Γ) · ~σ
–

=
1

(µ2
H3

(s)− µ2
H2

(s))

"
1

(s− µ2
H2

(s))
−

1

(s− µ2
H3

(s))

#

×
»
(s−

1

2
T )

21 + (~R− i~Γ) · ~σ
–

(32)

19



IV. Degeneracy of neutral heavy CP non-invariant Higgs
bosons

Considering the full s-dependance, the true physical masses are identified with the poles of the

propagator. Therefore, the heavy Higgs bosons masses should be defined by the solutions of the

implicit equations [Stuart 95],[Bohm,Kaldass and Wickramasekara 02]

µ
2
Hi

(s
∗
Hi

)− s∗H1
= 0; i = 2, 3 (33)

We say that the two heavy neutral Higgs bosons are mass degenerate if there exist an s∗ such that

s
∗ − µ2

H2
(s
∗
) = 0

⇒ µ2
H2

(s∗) = µ2
H3

(s∗),

s
∗ − µ2

H3
(s
∗
) = 0

From the previous result

µ
2
H3

(s
∗
)− µ2

H2
(s
∗
) =

q
(~Rd − i~Γd)2 = 0 (34)
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that is R2
d(s

?) = Γ2
d(s

?) and ~Rd(s
?) · ~Γd(s?) = 0 for ~Rd, ~Γd 6= 0.

From this conditions for degeneration we found that at degeneracy

(~Rd − i~Γd) · ~σ = MdΓd

„
1 i

i −1

«
, (35)

The propagator can be written as

∆
(d)
H2−H3

(s) =

0@ 1

(s−M2
d

+iMdΓd)

1

(s−M2
d

+iMdΓd)2

0 1

(s−M2
d

+iMdΓd)

1A (36)

We then can write the resonant transition matrix in the mass representation as

T res(d)
(s) = (Ṽ

P
1 , Ṽ

P
2 )∆

(d)
H2,H3

(s)

„
Ṽ D

1

Ṽ D
2

«
= Ṽ

P
1

1

s−m2
Ṽ
D

1 + Ṽ
P

2

1

s−m2
Ṽ
D

2 + Ṽ
P

1

1

(s−m2)2
Ṽ
D

2 (37)

with

Ṽ
P,D
i =

1

2

„
1 +i

1 −1

« 
V P,D

1

V P,D
2

!
(38)
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IV.1 An approach for neutral Higgs boson mass matrix M2(s) in the 2HDM

The matrix elements are expressed as functions of the model parameters. In the decoupling limit

M2
A >> |λi|v

2, we may find a simplifying approach for the relations of the mass matrix elements

as [Choi,Kalinowski,Liao and Zerwas 05]

M
2
H −M

2
A ≈ λv

2
cosφ (39)

32π[MHΓH −MAΓA] ≈ [∆t + 9λ
2
v

2
cos 2φ] (40)

Re∆
2
HA ≈ −

1

2
λv

2
sinφ (41)

32π Im∆
2
HA ≈ −

9

2
λ

2
v

2
sin 2φ (42)

We have taken the magnitudes of all λi as same order, and φ is the CP violating common phase

of the complex couplings. And

∆t = −12M
2
H/A(mt/v)

2
(1− β2

t )βt, (43)

is the one loop contribution of the top quark.
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IV.2 Exceptional point in the mass complex surfaces
With this relations of the mass matrix elements we are able to write explicity the masses of the

heavy neutral Higgs bosons as functions of the parameters λ and φ and if further more we neglect

the weak s dependence of the elements of M2
HA, we found an approximation for pole position

mass. The term under the square root is a regular function of its arguments and may admit a

Puiseux expansion series around the exceptional point [Hernández,Jáuregui and Mondragón 06]

µ
2
2,3(λ, φ) =

1

2

q
c

(1)
1 (λ− λ?) + c

(1)
2 (φ− φ?) + ... (44)

where the degeneracy conditions we get the exceptional point as: λ? = 0.1075, φ? = π/2 and

c
(1)
k are the derivatives of µ2

2,3 with respect to the parameters λ and φ.

<eµ2
2,3 = ±

1

2
√

2
|~ζ|1/2

»q
( ~R · ζ̂)2 + (~I · ζ̂)2 + ( ~R · ζ̂)

–1/2

(45)

=mµ2
2,3 = ±

1

2
√

2
|~ζ|1/2

»q
( ~R · ζ̂)2 + (~I · ζ̂)2 − ( ~R · ζ̂)

–1/2

(46)

with

~R =
“
<e c(1)

1 ,<e c(1)
2

”
, ~I =

“
=mc

(1)
1 ,=mc

(1)
2

”
, ~ζ =

„
λ− λ?
φ− φ?

«
. (47)
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IV.3 Unfolding of the exceptional point
The figures show the mass hypersurface representing the imaginary parts of µ2

2,3 as function of the

Lagrangian parameters in the neighbourhood of the exceptional point

24



IV.4 Trajectory of the physical system on the mass surfaces

Real and imaginary trajectories of the physical system on the mass surfaces when the system makes

a circular excursion around the exceptional point :

The system requires 4π in order to return to its original position, giving rise to a Berry phase.
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Conclusions

ä CP-violating complex couplings allow for the possibility of mixing and degeneracy of the H2, H3

system.

ä The mass matrix of the system is no longer Hermitian.

ä At exact mass degeneracy, the propagator of the system has one double and one single pole in

the complex energy s-plane.

ä In parameter space the mass surfaces have one branch point of rank one where exact degeneracy

occurs.

ä Real and imaginary parts have branch cuts starting at the same branch point and extending in

opposite directions in parameter space.

ä At degeneracy, the identification of the two particles will depend strongly on the values of the

parameters.

ä These features would make a CP-violating Higgs sector of the MSSM easily discernible from a

CP-preserving one.
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