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Motivation: Universality and efficiency

Gerber and Leutwyler (1989): Low-temperature expansion of
the QCD partition function

Two-flavor QCD in the chiral limit:
Spontaneous symmetry breaking of the chiral symmetry
SU(2) × SU(2) → SU(2) ≡ O(4) → O(3)

Similar to antiferromagnets: O(3) → O(2)
⇒ Consider O(N) antiferromagnets: O(N) → O(N−1) and do
the analysis both d=3+1 and d=2+1 space-time dimensions

Universality of the effective Lagrangian method

Systematic effective Lagrangian method is more powerful than
conventional condensed matter methods
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From the underlying theory to the effective theory

Construction of effective theories via symmetry analysis, in
particular of the spontaneously broken symmetry

Weinberg (1979): If one writes down the most general
possible Lagrangian, including all terms consistent with the
assumed symmetries, and then calculates matrix elements
with this Lagrangian to any given order of perturbation
theory, the result will simply be the most general S-matrix
consistent with analyticity, perturbative unitarity, cluster
decomposition and the assumed symmetries

The degrees of freedom in the effective Lagrangian are the
Goldstone bosons
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Spontaneous symmetry breaking in antiferromagnets

Heisenberg model:

H = −J
∑

n.n.

~Sm · ~Sn , J = const.

J < 0: Antiferromagnetic alignment of spins is preferred

Spontaneous symmetry breaking: O(3) ⇒ O(2)

Goldstone’s theorem: 2 magnons or spin waves

Antiferromagnetic magnons display a relativistic dispersion
relation much like the pions
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Magnon perturbation theory

Spontaneous global O(3) ⇒ O(2) spin symmetry breaking:

2 Goldstone bosons (magnons) described by unit vector

U i (x) =
(
Ua(x),U3(x)

)
∈ S2 = O(3)/O(2)

with x = (x1, x2, x3, t) or x = (x1, x2, t)
a = 1, 2 (1, 2, . . . ,N − 1), i = 0, 1, 2 (0, 1, 2, . . . ,N − 1)

Low-energy magnon physics described by nonlinear σ-model

L =
ρs

2
(∂rU

i∂rU
i +

1

c2
∂0U

i∂0U
i) + . . .

ρs : spin stiffness c : spin wave velocity
∂0: Temporal derivative ∂r = ~∇
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Effective Lagrangian for magnons up to order p4

The effective Lagrangian is organized according to the number
of space and time derivatives

Leff = L2
eff + L4

eff

L2
eff = 1

2F 2∂µU i∂µU i − ΣsH
iU i

L4
eff = − e1(∂µU i∂µU i )2 − e2 (∂µU i∂νU

i)2

+ k1
Σs

F 2
(H iU i)(∂µUk∂µUk) − k2

Σ2
s

F 4
(H iU i)2 − k3

Σ2
s

F 4
H iH i

In a Lorentz-invariant framework (c = vs) there are 7
unknown effective coupling constants up to order p4 to be
determined by experiment or simulation

External field H i = (H, 0, . . . , 0)
Staggered magnetization Σs
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Finite temperature

Partition function is represented as Euclidean functional integral

Tr [exp(−H/T )] =

∫
[dU] exp

(
−

∫

T
d4x Leff

)
,

where the integration is performed over all field configurations
which are periodic in the Euclidean time direction:
U(~x , x4 + β) = U(~x , x4), with β ≡ 1/T

The periodicity condition manifests itself in the thermal propagator

G (x) =

∞∑

n =−∞

∆(~x , x4 + nβ)

We work in the infinite volume limit

z = −T lim
L→∞

L−3 ln [Tr exp(−H/T )]
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Momentum expansion and power counting

Derivative expansion of the effective Lagrangian corresponds
to an expansion in the momenta or temperature

Example: Goldstone boson scattering

1 b1a 1c

4

Tree graph of order p2 is finite

Loops in d=3+1 are suppressed by two powers of momentum

Divergences in one-loop graph 1c of order p4 are absorbed
into coupling constants of order p4 graph 1b

At a given order in the derivative expansion only a finite
number of diagrams and coupling constants contribute
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Remarks on loop suppression

Consider the Goldstone boson loop
∫

dds+1P

P2
=

∫
dE dds p

E 2 + ~p2
∝ pds−1

Lorentz-invariant framework

d=3+1: Loops are suppressed by two powers of momentum
d=2+1: Loops are suppressed by one power of momentum

Nonrelativistic framework: Ferromagnet with E ∝ ~p2

d=3+1: Loops are suppressed by three powers of momentum
d=2+1: Loops are suppressed by two powers of momentum

While for Lorentz-invariant theories the derivative expansion
fails in d=1+1, ferromagnetic spin-chains, e.g., are accessible
by effective field theory
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Feynman graphs: O(N) antiferromagnet in d=3+1

Low-temperature expansion of the partition function up to three
loop-order:

4A 4B 6B6A 6C2

8C 8D8A 8B

8E 8F 8G 8H

44 4

4 4

4

6

6 8
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Feynman graphs: O(N) antiferromagnet in d=2+1

Low-temperature expansion of the partition function up to three
loop-order:

3 4a 5 d4 b2

4 4

5c5a 5 b

In 2+1 dimensions the symmetries are more restrictive as
fewer effective coupling constants are needed
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Pseudo-Lorentz-invariance at order p2

Cubic (ds =3) or square (ds =2) lattices: Four derivatives are
needed to note the difference with respect to a spatially
isotropic system

The discrete 90 degrees rotation symmetry implies O(3)
Euclidean space rotation symmetry of L2

eff

L2
eff can be brought to Pseudo-Lorentz-invariant form,

1
2F 2

1 ∂0U
i∂0U

i + 1
2F 2

2 ∂rU
i∂rU

i ⇒ 1
2F 2∂µU i∂µU i

with the velocity of light replaced by the spin-wave velocity
vs = F2/F1

Universality: L2
eff for QCD exhibits the same structure, pions

take the role of the magnons
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Lorentz-noninvariant terms at order p4

However, at order p4 the lattice anisotropies allow the term
∑

s=1,2

∂s∂sU
i ∂s∂sU

i ,

which is not O(3) rotation invariant

In a Lorentz-noninvariant framework there are further terms in L4
eff :

∆U i∆U i , H iU i∂rU
k∂rU

k

However, all these terms merely modify mass renormalization or
the dispersion law through diagram 5d,

ω(~k) = v |~k | + O(~k3)

The magnon-magnon interaction will not be affected by
Lorentz-non-invariance up to the order we are considering
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Low-temperature expansion of the Free energy density

Free energy density of an O(N) antiferromagnet in d=2+1 up to
and including three loops:

z = −F 2M2 − 1
2(N − 1)(4π)−3/2 Γ(−3

2)M3 − 1
2(N − 1) g0(M,T )

− (k2 + k3)M4 + 1
8(N − 1)(N − 3)

M2

F 2
(G1)

2

+ 1
48 (N − 1)(N − 3)(3N − 7)

M2

F 4
(G1)

3

− 1
16 (N − 1)(N − 3)2

M4

F 4
(G1)

2
G2 + 1

48(N − 1)(N − 3)
M4

F 4
J1

− 1
4 (N − 1)(N − 2)

1

F 4
J2 + (N − 1)(k2 − k1)

M4

F 2
G1 + O(p6)

Note that the quantities above involve the bare Goldstone
boson mass M2 = ΣsH/F 2
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The functions g0, G1, G2, J1, and J2

Kinematical functions gr are associated with the
d-dimensional noninteracting Bose gas

gr (M,T ) = 2

∫ ∞

0

dρ

(4πρ)d/2
ρr−1 exp(−ρM2)

∞∑

n=1

exp(−n2/4ρT 2)

The quantities G1 and G2 are related to the thermal
propagator at the origin

G1 ≡ G (x)|x=0 , G2 = −
dG1

dM2

The functions J1 and J2 involve integrals over products of four
propagators

J1 =

∫

T
ddx

{
G (x)

}4

J2 =

∫

T
ddx

{
∂µG (x) ∂µG (x)

}2
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Dimensional regularization

Decompose the thermal propagator

G (x) =

∞∑

n =−∞

∆(~x , x4 + nβ)

into a temperature-independent and a temperature-dependent part

G (x) = ∆(x) + Ḡ (x)

In dimensional regularization the zero-temperature propagator
reads

∆(x) = (2π)−d

∫
ddp e ipx(M2+ p2)−1

=

∫ ∞

0
dρ (4πρ)−d/2 e−ρM2− x2/4ρ
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Dimensional regularization

At the origin we then have

G1 = 2M2λ + g1(M,T )

G2 = (2 − d)λ + g2(M,T )

where the singularity is contained in λ

λ = 1
2(4π)−d/2 Γ(1 − d

2 )Md−4

Remarkably, in d=2+1 the quantity λ is finite

λ = −
1

8πM
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Regularization of J1 and J2

Removing the singularities in the integrals J1 and J2:

J̄1 = J1 − c1 − c2 g1(M,T )

J̄2 = J2 − c3 − c4 g1(M,T )

where the counterterms ci are singular functions of the space-time
dimension d

c1 and c3 renormalize the vacuum energy

c2 and c4 renormalize the Goldstone boson mass
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Renormalization of vacuum energy

Collect all contributions in the free energy density that are
independent of the temperature:

z0 = −F 2M2 − 1
12π (N − 1)M3 − (k2 + k3)M4

+ 1
128π2 (N − 1)(N − 3)

M4

F 2
− 1

6144π3 (N − 1)(N − 3)(9N − 23)
M5

F 4

+ 1
48(N − 1)(N − 3)

M4

F 4
− 1

4(N − 1)(N − 2)
1

F 4
c3

− 1
4π (N − 1)(k2 − k1)

M5

F 2
+ O(p6)

z0 renormalizes the vacuum energy
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Mass renormalization

Collecting all terms linear in the kinematical functions gr :

z{1} = −1
2(N − 1) g0(M,T ) + 1

2(N − 1)(N − 3)
M4

F 2
λ g1(M,T )

− 1
4 (N − 1)(N − 3)2

M8

F 4
λ2 g2(M,T )

+ (N − 1)(k2 − k1)
M4

F 2
g1(M,T )

+ 1
48c2(N − 1)(N − 3)

M4

F 4
g1(M,T )

− 1
4c4(N − 1)(N − 2)

1

F 4
g1(M,T )

+ 1
2 (N − 1)(N − 3)(2N − 5)

M6

F 4
λ2g1(M,T )
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Mass renormalization

Using the property
gr+1 = −

dgr

dM2
,

of the kinematical functions, one rewrites g0 in terms of the

physical mass, g0(M,T ) → g0(Mπ,T ), with

M2
π = M2+(N−3)λ

M4

F 2
+
{

2(k2−k1)+
b1

F 2
+

b2 λ2M2

F 2

} M4

F 2
+O(M5)

The coefficients b1 and b2

b1 = 1
24 (N − 3) γ2 −

1
2(N − 2) γ4 ,

b2 = (N − 3)(2N − 5) ,

involve γ2 and γ4 which are singular functions of the space-time
dimension d and are related to the counterterms c2 and c4 via

c2 = γ2M
2d−6 , c4 = γ4M

2d−2
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Free energy density in terms of renormalized mass Mπ

z = z0 −
1
2(N − 1) g0 + 1

8(N − 1)(N − 3)
M2

π

F 2
(g1)

2

− 1
128π (N − 1)(N − 3)(5N − 11)

M3
π

F 4
(g1)

2

+ 1
48 (N − 1)(N − 3)(3N − 7)

M2
π

F 4
(g1)

3

− 1
16 (N − 1)(N − 3)2

M4
π

F 4
(g1)

2 g2 +
Q

F 4
+ O(p6) ,

with Q(Mπ,T ) defined by

Q ≡ 1
48 (N − 1)(N − 3)M4

π J1 −
1
4 (N − 1)(N − 2) J2

This expression for the free energy density is free of
divergences and only involves the physical mass Mπ
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Free energy density in terms of hr

For dimensional reasons, the thermodynamic functions are of the
form T pf (τ), where τ is the dimensionless ratio τ = T/Mπ

Explicitly, in d=2+1 we have

g0 = T 3 h0(τ) , g1 = T h1(τ) , g2 =
1

T
h2(τ) , Q = T 5 q(τ)

The free energy density then reads

z = z0 −
1
2 (N − 1)h0(τ)T 3 + 1

8(N − 1)(N − 3)
1

F 2τ2
h1(τ)2 T 4

− 1
128π (N − 1)(N − 3)(5N − 11)

1

F 4τ3
h1(τ)2 T 5

+ 1
48 (N − 1)(N − 3)(3N − 7)

1

F 4τ2
h1(τ)3 T 5

− 1
16 (N − 1)(N − 3)2

1

F 4τ4
h1(τ)2h2(τ)T 5 +

1

F 4
q(τ)T 5 + O(T 6)
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Cateye graph

Extraction of the singularities in J2:

J2 = J2 − c3 − c4 g1(M,T )

Method: Cut out a sphere sphere S around the origin of radius
|S| ≤ β/2 and decompose J2

J2 =

∫

S
ddx

{
∂µG (x) ∂µG (x)

}2
+

∫

T \S
ddx

{
∂µG (x) ∂µG (x)

}2

In the integral over the complement T \S of the sphere, the
integrand is not singular and the limit d → 3 can readily be
taken

In the integral over the sphere, insert the decomposition

G (x) = ∆(x) + Ḡ (x)
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Cateye graph

J2 =

∫

S
ddx

({
∂µḠ ∂µḠ

}2
+ 4∂µḠ ∂µḠ ∂νḠ ∂ν∆

+ 4∂µḠ ∂µ∆ ∂ν Ḡ ∂ν∆ + 2∂µḠ ∂µḠ ∂ν∆ ∂ν∆

+ 4∂µḠ ∂µ∆ ∂ν∆ ∂ν∆ +
{

∂µ∆ ∂µ∆
}2
)

In d=2+1 the first four terms are convergent. However, the
last two terms, involving three and four non-thermal
propagators, respectively, are divergent
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Cateye graph

Disregarding derivatives for a moment, one shows that∫

S
ddx Ḡ∆3 = g1

∫

S
ddx ch(Mx4)∆3 ,

and splits the integral over the sphere into two pieces,

4g1

∫

S
ddx ch(Mx4)∆3

= 4g1

∫

R
ddx ch(Mx4)∆3 − 4g1

∫

R\S
ddx ch(Mx4)∆3

The singularity is now contained in the integral over all
Euclidean space, in the form of the counterterm c2:

c2 = 4

∫

R
ddx ch(Mx4)∆3
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Cateye graph

The same line of reasoning goes through for the expression
4∂µḠ∂µ∆ ∂ν∆∂ν∆, where one ends up with the counterterm

c4 = 4

∫

R
ddx ∂µch(Mx4) ∂µ∆ ∂ν∆∂ν∆

As far as the term involving four non-thermal propagators is
concerned, it suffices to subtract the temperature-independent

integral of
{

∂µ∆(x)∂µ∆(x)
}2

over all Euclidean space,

c3 =

∫

R
ddx

{
∂µ∆∂µ∆

}2

Net result:
J2 = J2 − c3 − c4 g1(M,T )
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Cateye graph

Collecting the various pieces, the renormalized integral in d=2+1 is

J2 =

∫

T
d3x T +

∫

T \S
d3x U −

∫

R\S
d3x ∂µ∆∂µ∆ · W

T =
(
∂µḠ ∂µḠ

)2
+ 4∂µḠ ∂µḠ ∂νḠ ∂ν∆ + 4∂µḠ ∂µ∆ ∂ν Ḡ ∂ν∆

+2∂µḠ ∂µḠ ∂ν∆ ∂ν∆

U = 4∂µḠ∂µ∆ ∂ν∆∂ν∆ + ∂µ∆ ∂µ∆ ∂ν∆ ∂ν∆

W = 4g1∂µch(Mx4) ∂µ∆ + ∂µ∆ ∂µ∆

This expression involves ordinary, convergent integrals
Ḡ (x) and ∆(x) only depend on r = |~x | and on t = x4, such
that the integrals become two-dimensional d3x = 2πr dr dt

Numerical consistency check: J̄2 must be independent of the
size of the sphere
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Low-temperature expansion of the pressure

Remarkably, for N=3 – the Heisenberg antiferromagnet on a square
lattice – most of the terms in the free energy density drop out:

z = z0 − h0(τ)T 3 +
1

F 4
q(τ)T 5 + O(T 6) (N = 3)

The pressure is given by the temperature dependent part:

P = z0 − z = h0(τ)T 3 −
1

F 4
q(τ)T 5 + O(T 6)

The value τ = T/Mπ can take any value, as long as both T

and Mπ are small compared to the intrinsic scale Λ (J) of the
theory
In particular, the limit T � Mπ is implemented by holding T

fixed and sending Mπ (or H) to zero
Mermin-Wagner theorem: No spontaneous symmetry breaking
at any finite temperature in the Heisenberg model
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Low-temperature expansion of the pressure

The non-trivial dependence of P on the ratio τ = T/Mπ is
contained in the functions h0(τ) and q(τ). In the limit T � Mπ

we have

hd=3
0 (τ) =

1

π

[
ζ(3) −

1

4

M2
π

T 2
+

1

4

M2
π

T 2
ln

M2
π

T 2

−
1

6

M3
π

T 3
+

1

96

M4
π

T 4
+ O

(Mπ

T

)6
]

q(τ) = q1 + q2
M2

π

T 2
+ O

(Mπ

T

)4

, τ =
T

Mπ

q1 = −0.008779
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Low-temperature expansion of the pressure

The function q(σ) for N=3 in terms of the dimensionless
parameter σ = Mπ/2πT = 1/2πτ :

0 0.2 0.4 0.6 0.8 1
σ

-0.008

-0.006

-0.004

-0.002

0

q(
σ)

P =
ζ(3)

π
T 3
[
1 −

πq1

ζ(3)

T 2

F 4
+ O(T 3)

]
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Thermodynamic quantities

s =
∂P

∂T
, u = Ts − P , cV =

∂u

∂T
= T

∂s

∂T

u =
2 ζ(3)

π
T 3
[
1 −

2πq1

ζ(3)

T 2

F 4
+ O(T 3)

]

≈ 0.7653T 3
[
1 + 0.04589

T 2

F 4
+ O(T 3)

]

s =
3 ζ(3)

π
T 2
[
1 −

5πq1

3ζ(3)

T 2

F 4
+ O(T 3)

]

≈ 1.1479T 2
[
1 + 0.03824

T 2

F 4
+ O(T 3)

]
,
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Thermodynamic quantities

P =
ζ(3)

π
T 3
[
1 −

πq1

ζ(3)

T 2

F 4
+ O(T 3)

]

T 3-term: Free Bose gas contribution (One-loop graph)

Remarkably, the interaction only manifests itself through a
term T 5 (Three loop-graph)

Coefficient q1 is negative, such that interaction is repulsive at
low temperatures
This statement is independent of the two-dimensional lattice

No interaction term of order T 4: Two-loop contribution is
proportional to N-3
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Comparison with the condensed matter literature

Inconsistencies between spin-wave theory, Schwinger boson
mean field theory and Monte Carlo simulations already at
leading order T 3 in the free energy density

No calculation of order T 4 exists

Calculation of order T 5 beyond the reach of any spin-wave
calculation

Conclusion: The systematic effective Lagrangian method
clearly proves to be superior to conventional condensed matter
methods, such as spin-wave theory
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Power counting and loop suppression

Low-temperature expansion of the partition function up to three
loop-order:

4A 4B 6B6A 6C2

8C 8D8A 8B

8E 8F 8G 8H

44 4

4 4

4

6

6 8

Loops are suppressed by two momentum powers
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Low-temperature expansion: General remarks

L8
eff - and L6

eff -couplings merely renormalize the vacuum
energy and the mass

Effective couplings from the next-to-leading order Lagrangian
L4

eff , however, are relevant for the
magnon-magnon-interaction in d=3+1

Loops are suppressed by two momentum powers: The
low-temperature expansion of thermodynamic quantities is
expected to proceed in steps of powers of T 2

Logarithmic renormalization of low-energy coupling constants,
such that chiral logarithms show up in the low-temperature
expansion
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Low-temperature expansion of the pressure

P = 1
2 (N−1)g0 + 4πa (g1)

2 + πg
[
b−

j

π3F 4

]
+O(p10) (d = 3+1)

The temperature dependence is contained in the kinematical
functions gr (Mπ,T ) and in j(Mπ,T ). In the limit H → 0 (or,
equivalently, T � Mπ), analytical expressions for g0, g1 and g can
be provided:

g1(Mπ,T ) = 1
12T 2

[
1 −

3

π

Mπ

T
+ O

(M2
π

T 2
ln

Mπ

T

)]
,

g(Mπ,T ) = 1
675π4T 8

[
1 −

15

4π2

M2
π

T 2
+ O

(Mπ

T

)3
]
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Low-temperature expansion of the pressure

P = 1
2 (N−1)g0 + 4πa (g1)

2 + πg
[
b−

j

π3F 4

]
+O(p10) (d = 3+1)

The function j , containing the cateye graph, has to be evaluated
numerically,

j = ν ln
T

Mπ
+ j1 + j2

M2
π

T 2
+ O

(Mπ

T

)3
, ν ≡

5(N−1)(N−2)

48

The coefficients j1 and j2 are real numbers
The function j(τ) diverges logarithmically in the limit H → 0

a = −
(N−1)(N−3)

32π

ΣsH

F 4
−

(N−1)3

256π3

(ΣsH)2

F 8
ln

H

Ha

,

b = −
5(N−1)(N−2)

96π3F 4
ln

H

Hb
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Low-temperature expansion for of the pressure

Limit H → 0:

P = 1
90π2(N−1)T 4

[
1+

N−2

72

T 4

F 4
ln

Tp

T
+O(T 6)

]
(d = 3+1)

T 4-contribution represents the free Bose gas term which
originates from a one-loop graph

Effective interaction among the Goldstone bosons, remarkably,
only manifests itself through a term of order T 8

This contribution contains a logarithm, characteristic of the
effective Lagrangian method in four space-time dimensions,
which involves a scale, Tp, related to Hb

Divergences in the function j and in the constant cancel, such
that the limit H → 0 is well defined
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Low-temperature expansion of the pressure

P = 1
90π2(N−1)T 4

[
1+

N−2

72

T 4

F 4
ln

Tp

T
+O(T 6)

]
(d = 3+1)

At low temperatures, the logarithm ln[Tp/T ] is positive, such
that the interaction among the Goldstone bosons in d=3+1,
in the absence of H, is repulsive, much like in d=2+1
The symmetries in d=3+1, however, are less restrictive than
in d=2+1, because next-to-leading order effective constants
from L4

eff do show up in the scale Tp.
Still, the symmetry is also rather restrictive in d=3+1, as it
unambiguously fixes the coefficient in front of the logarithm in
terms of the coupling constant F

No term of order T 6: Two-loop contribution ∝ a
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N=3: Comparing d=3+1 and d=2+1

P = 1
45π2 T 4

[
1 +

1

72

T 4

F 4
ln

Tp

T
+ O(T 6)

]
, (d = 3 + 1,N = 3)

s = 4
45π2 T 3

[
1 +

1

288

T 4

F 4

(
8 ln

Tp

T
− 1
)

+ O(T 6)

]

P =
ζ(3)

π
T 3
[
1 −

πq1

ζ(3)

T 2

F 4
+ O(T 3)

]
, (d = 2 + 1,N = 3) ,

s =
3 ζ(3)

π
T 2
[
1 −

5πq1

3ζ(3)

T 2

F 4
+ O(T 3)

]

T-series proceed in steps of T 2 and T , respectively
No two-loop contribution in the limit H → 0
Absence of logarithmic scale in d=2+1
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Summary

Condensed matter systems exhibiting a spontaneously broken
symmetry may be analyzed with the fully systematic effective
Lagrangian method

The low-temperature properties of O(N) antiferromagnets are
determined by the Goldstone bosons

The leading order effective Lagrangian is ”Lorentz-invariant”
– anisotropies only manifest themselves at order L4

eff

The magnon-magnon interaction in the d=2+1 Heisenberg
antiferromagnet is very weak and repulsive, manifesting itself
through a term proportional to T 5 in the pressure – the
coefficient of this term is completely determined by L2

eff

The effective Lagrangian method is by far superior to
conventional condensed matter methods as it adopts a unified
and model-independent view based on symmetry
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Outlook

Incorporation of magnetic and external fields: Order
parameter and susceptibilities

Incorporation of magnetic-dipole and spin-orbit interactions

Extraction of effective constants via experiment and
simulation

Condensed matter analog of baryon chiral perturbation theory:
Doped antiferromagnets which are the precursors of
high-temperature superconductors

Low-energy physics of phonons and phonon-magnon
interaction
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Cateye graph

J̄2 =

∫

T \S
d3x Ũ +

∫

S
d3x Ṽ −

∫

R\S
d3x ∂µ∆∂µ∆ · W̃ ,

Ũ =
(
∂µG ∂µG

)2
,

Ṽ =
(
∂µḠ ∂µḠ

)2
+ 4∂µḠ∂µḠ ∂νḠ ∂ν∆ + 2Qµµ ∂ν∆ ∂ν∆ + 4Qµν ∂µ∆

W̃ = w̃ + 4g1∂µch(Mx4) ∂µ∆ + ∂µ∆ ∂µ∆ ,

with

w̃ =
1

x2

[
(3
2x4 − 9

2x2x2
4 + 9x4

4 ) g2
0 + 12M2x4

4 g0 g1 + 2(2M4x4
4 + M4x

Qµν = ∂µḠ (x) ∂ν Ḡ (x) − ḠµαḠνβ xαxβ ,

Ḡµν = −1
2δµν g0 + δ4

µδ4
ν (3

2g0 + M2g1) .
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